
Supervised by Dr. Robert Vanderheyden, Ph.D

Department of Data Science & Analytics

What is a Class?
A class is a user-defined blueprint from which objects are created
or instances of the class. Creating a new class creates a new type of
object and defines those objects' properties and behaviors.
Properties are attributes of an object, and behaviors are methods
that modify the object. For example, the class I created, Graphs,
has four attributes, two quantitative variables and two qualitative
variables, and has ten methods, which two are shown under the
sample code section.

Overall, classes provided a simplistic way of keeping attributes
and methods together, which helps keep the program organized and
allows for reusability. Another functionality of a class is
inheritance, or when a defined class inherits all the methods and
attributes from another class.

Sample Code

My Code Why My Code Matters

Data Science & Classes
Tiana Chargin

The class was developed to be completely reproducible and a simplistic experience for the user. All the user has to do
is import a cleaned dataset, create an object of the class, pass the desired attributes to the object, and apply a method
to the object. The sample code to the left displays two methods and creating an object. The first method calculates the
bin width for a histogram, and the second method creates a stacked histogram of a variable with the combination of
two other variables. Allowing another method, bin_width(), to calculate the bin width means the user does not have
to calculate or define how the bins will increment. The user can simply pass any quantitative variable, and the
method will do all the work. Having the bin_width() method be its own method allows other methods to use it as
well. The method stacked_histogram() first calculates the possible combinations of two variables. It then calls the
method bin_width() to calculate the bins for the graph. Lastly, it creates the histogram by iterating through all
possible combinations. Meaning, the user does not have to specify the number of combinations.

Even though data science's impressive side is the more advanced
methods like XG Boost and multilayered neural networks, classes
are a significant part. Classes allow code to be more readable and
reproducible. They also can help users build dashboards to quickly
and easily see results and be a part of automated pipelines. The class
I developed could be a part of an automated report system for a
company with a certain number of standard graphs they want to use
to check performance. Using and developing classes, methods, and
for loops are all essential parts of a data scientist's job.

class Graphs:
#Constructor with parameters
def __init__(self, quantVar1, quantVar2, qualVar1, qualVar2):

self.A = quantVar1 #First quantitative variable
self.B = quantVar2 #Second quantitative variable
self.C = qualVar1 #First qualitative variable
self.D = qualVar2 #Second qualitative variable

#Function that calculates bin width for the histogram
def bin_width(self):

#Import libaray
import math
#Create variable to create array for bins
#Find min of column
min = data[self.A].min()
#Find max of column
max = data[self.A].max()
#Find the the count of rows (number of data/size/n)
index = data.index
number_of_rows = len(index)
#Calculate number of bins and round up
num_of_bins = (math.ceil(math.sqrt(number_of_rows)))
#Calculate bin width (max - min)/# of bins
bin_size = ((max - min)/num_of_bins)
#Round bin width to one decimal place
increment_bin = round(bin_size, 1)
#Start bin
start_bin = (min - increment_bin)
#End bin
end_bin = (max + increment_bin)
return start_bin, end_bin, increment_bin

#Stacked Histogram Function
def stacked_histogram(self):

#Import libraries
import numpy as np
from matplotlib import pyplot as plt
#Create combonations of the values for the two options
data[self.C + "-" + self.D] = data[self.C] + " " + data[self.D]
combos = np.unique(data[self.C + "-" + self.D])
#Create variable that we call the function to calculate the bin width
bin = self.bin_width()
#Start at value = bin[0], Stop at value = bin[1], Increment by value of bin[2]
bins = np.array(np.arange(start = bin[0], stop = bin[1], step = bin[2]))
#Create histogram
for i in range(len(combos)):

plt.hist(data[data[self.C+""+self.D].isin(combos[i:(len(combos))])][self.A],
bins, label = combos[i:(len(combos))])

#x-axis label
plt.xlabel(self.A, fontsize = 16)
#y-axis lable
plt.ylabel("Frequency of ", fontsize = 16)
#Legend of graph
plt.legend(loc = 'upper left')
#Title of graph
plt.title("Histogram of " + self.A + " with unique combinations of " + self.D

+ " and " + self.C, loc = 'center')
plt.show()
return

#Create an object from class Graphs that will have three parameters
stacked_histo = Graphs('JOBSAT', None, 'Gender', 'POSITION')
#Call stacked_histogram() function to apply to object
stacked_histo.stacked_histogram()

https://github.com/tianachargin
https://www.linkedin.com/in/tian
achargin/

https://github.com/tianachargin
https://www.linkedin.com/in/tianachargin/

	Slide Number 1

