Java, Java, Java

Object-Oriented Problem Solving
Third Edition

R. Morelli and R. Walde
Trinity College
Hartford, CT

June 25, 2017

This work is licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).

This book was previously published by
Pearson Education, Inc.

Preface to the Open Source
Edition

Java, Java, Java, 3e was previously published by Pearson Education, Inc.
The first edition (2000) and the second edition (2003) were published by
Prentice-Hall. In 2010 Pearson Education, Inc. reassigned the copyright to
the authors, and we are happy now to be able to make the book available
under an open source license.

This PDF edition of the book is available under a Creative Commons
Attribution 4.0 International License, which allows the book to be used,
modified, and shared with attribution:

(https:/ /creativecommons.org/licenses /by /4.0/).

— Ralph Morelli and Ralph Walde
— Hartford, CT
— December 30, 2016

ii

Preface to the Third Edition

We have designed this third edition of Java, Java, Java to be suitable for
a typical Introduction to Computer Science (CS1) course or for a slightly
more advanced Java as a Second Language course. This edition retains the
“objects first” approach to programming and problem solving that was
characteristic of the first two editions. Throughout the text we emphasize
careful coverage of Java language features, introductory programming
concepts, and object-oriented design principles.

The third edition retains many of the features of the first two editions,
including:

e Early Introduction of Objects

e Emphasis on Object Oriented Design (OOD)

e Unified Modeling Language (UML) Diagrams
o Self-study Exercises with Answers

e Programming, Debugging, and Design Tips.

o From the Java Library Sections

o Object-Oriented Design Sections

e End-of-Chapter Exercises

e Companion Web Site, with Power Points and other Resources

The In the Laboratory sections from the first two editions have been moved
onto the book’s Companion Web Site. Table 1 shows the Table of Contents
for the third edition.

What’s New in the Third Edition

The third edition has the following substantive changes:

o Although the book retains its emphasis on a “running example”
that is revisited in several chapters, the CyberPet examples have
been replaced with a collection of games and puzzle examples. The
CyberPet examples from earlier editions will be available on the
Companion Web Site.

iii

iv

Table 1: Table of Contents for the Third Edition.

Chapter Topic
Chapter 0 | Computers, Objects, and Java (revised)
Chapter 1 | Java Program Design and Development
Chapter 2 | Objects: Defining, Creating, and Using
Chapter 3 | Methods: Communicating with Objects (revised)
Chapter 4 | Input/Output: Designing the User Interface (new)
Chapter 5 | Java Data and Operators
Chapter 6 | Control Structures
Chapter 7 | Strings and String Processing
Chapter 8 | Inheritance and Polymorphism (new)
Chapter 9 | Arrays and Array Processing
Chapter 10 | Exceptions: When Things Go Wrong
Chapter 11 | Files and Streams
Chapter 12 | Recursive Problem Solving
Chapter 13 | Graphical User Interfaces
Chapter 14 | Threads and Concurrent Programming
Chapter 15 | Sockets and Networking (expanded)
Chapter 16 | Data Structures: Lists, Stacks, and
Queues (revised and expanded)

o Chapters 0 (Computers, Objects, and Java) and 1 (Java Program De-
sign and Development) have been substantially reorganized and
rewritten. The new presentation is designed to reduce the pace
with which new concepts are introduced. The treatment of object-
oriented (OO) and UML concepts has also been simplified, and some
of the more challenging OO topics, such as polymorphism, have
been moved to a new Chapter 8.

The new Java 1.5 Scanner class is introduced in Chapter 2 and is
used to perform simple input operations.

Chapter 4 (Input/Output: Designing the User Interface) has been
completely written. Rather than relying primarily on applet inter-
faces, as in the second edition, this new chapter provides indepen-
dent introductions to both a command-line interface and a graphi-
cal user interface (GUI). Instructors can choose the type of interface
that best suits their teaching style. The command-line interface is
based on the BufferedReader class and is used throughout the
rest of the text. The GUI is designed to work with either graphi-
cal applications or applets. Both approaches are carefully presented
to highlight the fundamentals of user-interface design. The chapter
concludes with an optional section that introduces file I/O using the
new Scanner class.

Much of the discussion of inheritance and polymorphism, which
was previously woven through the first five chapters in the second
edition, has been integrated into a new Chapter 8.

An optional graphics track is woven throughout the text. Beginning
with simple examples in Chapters 1 and 2, this track also includes

\%

some of the examples that were previously presented in Chapter 10
of the second edition.

e Chapter 15, on Sockets and Networking, is expanded to cover some
of the more advanced Java technologies that have emerged, includ-
ing servlets and Java Server Pages.

e Chapter 16, on Data Structures, has been refocused on how to use
data structures. It makes greater use of Java’s Collection Framework,
including the LinkedList and Stack classes and the List inter-
face. It has been expanded to cover some advanced data structures,
such as sets, maps, and binary search trees.

The Essentials Edition

An Essentials Edition of the third edition, which will include Chapters 0-
12, will be published as a separate title. The Essentials Edition will cover
those topics (Chapters 0-9) that are covered in almost all introductory
(CS1) courses, but it will also include topics (Exceptions, File I/O, and
Recursion) that many CS1 instructors have requested.

Why Start with Objects?

The Third Edition still takes an objects-early approach to teaching Java,
with the assumption that teaching beginners the “big picture” early gives
them more time to master the principles of object-oriented programming.
This approach seems now to have gained in popularity as more and more
instructors have begun to appreciate the advantages of the object-oriented
perspective.

Object Orientation (OO) is a fundamental problem solving and design
concept, not just another language detail that should be relegated to the
middle or the end of the book (or course). If OO concepts are introduced
late, it is much too easy to skip over them when push comes to shove in
the course.

The first time I taught Java in our CS1 course I followed the same ap-
proach I had been taking in teaching C and C++ — namely, start with the
basic language features and structured programming concepts and then,
somewhere around midterm, introduce object orientation. This approach
was familiar, for it was one taken in most of the textbooks then available
in both Java and C++.

One problem with this approach was that many students failed to get
the big picture. They could understand loops, if-else constructs, and arith-
metic expressions, but they had difficulty decomposing a programming
problem into a well-organized Java program. Also, it seemed that this
procedural approach failed to take advantage of the strengths of Java’s
object orientation. Why teach an object-oriented language if you're going
to treat it like C or Pascal?

I was reminded of a similar situation that existed when Pascal was the
predominant CS1 language. Back then the main hurdle for beginners was
procedural abstraction — learning the basic mechanisms of procedure call

Vi

and parameter passing and learning how to design programs as a collec-
tion of procedures. Oh! Pascal!, my favorite introductory text, was typical
of a “procedures early” approach. It covered procedures and parameters
in Chapter 2, right after covering the assignment and I/O constructs in
Chapter 1. It then covered program design and organization in Chap-
ter 3. It didn’t get into loops, if-else, and other structured programming
concepts until Chapter 4 and beyond.

Today, the main hurdle for beginners is the concept of object abstraction.
Beginning programmers must be able to see a program as a collection of
interacting objects and must learn how to decompose programming prob-
lems into well-designed objects. Object orientation subsumes both proce-
dural abstraction and structured programming concepts from the Pascal
days. Teaching objects-early takes a top-down approach to these three im-
portant concepts. The sooner you begin to introduce objects and classes,
the better the chances that students will master the important principles
of object orientation.

Java is a good language for introducing object orientation. Its object
model is better organized than C++. In C++ it is easy to “work around”
or completely ignore OO features and treat the language like C. In Java
there are good opportunities for motivating the discussion of object orien-
tation. For example, it’s almost impossible to discuss GUI-based Java ap-
plications without discussing inheritance and polymorphism. Thus rather
than using contrived examples of OO concepts, instructors can use some
of Java’s basic features — the class library, Swing and GUI components —
to motivate these discussions in a natural way.

Organization of the Text

The book is still organized into three main parts. Part I (Chapters 0-4) in-
troduces the basic concepts of object orientation and the basic features of
the Java language. Part II (Chapters 5-9) focuses on remaining language el-
ements, including data types, control structures, string and array process-
ing, and inheritance and polymorphism. Part III (Chapters 10-16) covers
advanced topics, including exceptions, file I/O, recursion, GUIs, threads
and concurrent programming, sockets and networking, data structures,
servlets, and Java Server Pages.

The first two parts make up the topics that are typically covered in an
introductory CS1 course. The chapters in Part III are self-contained and
can be selectively added to the end of a CS1 course if time permits.

The first part (Chapters 0 through 4) introduces the basic concepts of
object orientation, including objects, classes, methods, parameter passing,
information hiding, and a little taste of inheritance, and polymorphism.
The primary focus in these chapters is on introducing the basic idea that
an object-oriented program is a collection of objects that communicate and
cooperate with each other to solve problems. Java language elements are
introduced as needed to reinforce this idea. Students are given the basic
building blocks for constructing Java programs from scratch.

Although the programs in the first few chapters have limited function-
ality in terms of control structures and data types, the priority is placed

vii

Table 2: A one-semester course.

Weeks Topics Chapters

1 Object Orientation, UML Chapter 0
Program Design and Development Chapter 1

2-3 Objects and Class Definitions Chapter 2
Methods and Parameters Chapter 3
Selection structure (if-else)

4 User Interfaces and 1/0 Chapter 4

5 Data Types and Operators Chapter 5

67 Control Structures (Loops) Chapter 6
Structured Programming

8 String Processing (loops) Chapter 7

9 Inheritance and Polymorphism Chapter 8

10 Array Processing Chapter 9

11 Recursion Chapter 12

12 Advanced Topic (Exceptions) Chapter 10

13 Advanced Topic (GUISs) Chapter 11
Advanced Topic (Threads) Chapter 15

on how objects are constructed and how they interact with each other
through method calls and parameter passing.

The second part (Chapters 5 through 9) focuses on the remaining lan-
guage elements, including data types and operators (Chapter 5), control
structures (Chapter 6), strings (Chapter 7), and arrays (Chapter 9). It
also provides thorough coverage of inheritance and polymorphism, the
primary mechanisms of object orientation: (Chapter 8).

Part three (Chapters 10 through 16) covers a variety of advanced topics
(Table 1). Topics from these chapters can be used selectively depending
on instructor and student interest.

Throughout the book, key concepts are introduced through simple,
easy-to-grasp examples. Many of the concepts are used to create a set
of games, which are used as a running example throughout the text. Our
pedagogical approach focuses on design. Rather than starting of with lan-
guage details, programming examples are carefully developed with an
emphasis on the principles of object-oriented design.

Table2 provides an example syllabus from our one-semester CS1
course. Our semester is 13 weeks (plus one reading week during which
classes do not meet). We pick and choose from among the advanced topics
during the last two weeks of the course, depending on the interests and
skill levels of the students.

Ralph Morelli
June 25, 2017

viii

Contents

0 Computers, Objects, and Java 1
0.1 Welcome 2
0.2 WhatlsaComputer? 2
0.3 Networks, the Internet and the World Wide Web 4
0.4 Why Study Programming? 6
0.5 Programming Languages 7
0.6 WhyJava? 9
0.7 What Is Object-Oriented Programming? 11
1 Java Program Design and Development 23
1.1 Introduction 24
1.2 Designing Good Programs 24
1.3 Designing a Riddle Program 26
14 JavaLanguageElements 34
1.5 Editing, Compiling, and Running a Java Program 48

1.6 From the Java Library: System and
PrintStream o .. 52
2 Objects: Using, Creating, and Defining 61
21 Introduction 62
22 Using stringObjects 62
2.3 Drawing Shapes with a Graphics Object (Optional) 66
24 Class Definition 69
2.5 CASE STUDY: Simulating a Two-Person Game 76
2.6 From the Java Library: java.util.Scanner. 90
3 Methods: Communicating with Objects 101
31 Introduction 102
3.2 Passing Informationtoan Object 102
3.3 Constructor Methods 109
3.4 Retrieving Information from an Object 114
3.5 Passing a Value and Passing a Reference 118
3.6 Flow of Control: Control Structures 121
3.7 Testing an Improved OneRowNim 130
3.8 From the Java Library java.lang.Object 135

3.9 Object-Oriented Design: Inheritance and Polymorphism . . 136
3.10 Drawing Lines and Defining Graphical Methods (Optional) 138

4 Input/Output: Designing the User Interface 149
41 Introduction 150

ix

42 TheUserInterface
4.3 A Command-Line Interface
4.4 A Graphical User Interface (GUIL)
45 Case Study: The One Row Nim Game

4.6 From the Java Library: java.io.File

and File Input (Optional)

Java Data and Operators

51 Introduction
52 Boolean Data and Operators
5.3 Numeric Data and Operators
54 From the Java Library java.lang.Math
5.5 Numeric Processing Examples

5.6 From the Java Library

java.text .NumberFormat
5.7 Character Data and Operators
5.8 Example: Character Conversions
5.9 Problem Solving = Representation + Action . . .

Control Structures

6.1 Introduction
6.2 Flow of Control: Repetition Structures
6.3 CountingLoops
6.4 Example:CarLoan

6.5 Graphics Example: Drawing a Checkerboard

6.6 Conditional Loops
6.7 Example: Computing Averages
6.8 Example: Data Validation
6.9 Principles of Loop Design
6.10 The switch Multiway Selection Structure

6.11 OBJECT-ORIENTED DESIGN:

Structured Programming

Strings and String Processing

7.1 Introduction
72 StringBasics oo oL
7.3 Finding Things Within a String
74 Example: Keyword Search

7.5 From the Java Library: java.lang.StringBuffer

7.6 Retrieving Parts of Strings

7.7 Example: Processing Names and Passwords

7.8 Processing Each Characterina String
79 Comparing Strings

7.10 From the Java Library:

java.util.StringTokenizer

7.11 Handling Text in a Graphics Context

(Optional)

Inheritance and Polymorphism

8.1 Introduction
8.2 Java’s Inheritance Mechanism

CONTENTS

CONTENTS

10

11

12

8.3 Abstract Classes, Interfaces,

and Polymorphism
8.4 Example: A ToggleButton
8.5 Example: The Cipher Class Hierarchy
8.6 Case Study: A Two Player Game Hierarchy
8.7 Principles Of Object-Oriented Design

Arrays and Array Processing
91 Introduction
9.2 One-Dimensional Arrays
9.3 Simple Array Examples
9.4 Example: Counting Frequencies of Letters
9.5 Array Algorithms: Sorting
9.6 Array Algorithms: Searching
9.7 Two-Dimensional Arrays.
9.8 Multidimensional Arrays (Optional)
9.9 OBJECT-ORIENTED DESIGN:

Polymorphic Sorting (Optional)
9.10 From the Java Library: java.util.Vector
9.11 Case Study: An N-Player Computer Game
9.12 A GUI-Based Game (Optional Graphics)

Exceptions: When Things Go Wrong
10.1 Introduction Lo o
10.2 Handling Exceptional Conditions
10.3 Java’s Exception Hierarchy
10.4 Handling Exceptions Within a Program
10.5 Error Handling and Robust

Program Design
10.6 Creating and Throwing Your Own

Exceptions
10.7 From the Java Library: JOptionPane

Files and Streams: Input/Output Techniques
11.1 Introduction L L L Lo
11.2 Streamsand Files
11.3 CASE STUDY: Reading and Writing Text Files
114 TheFileClass
11.5 Example: Reading and Writing Binary Files
11.6 Object Serialization: Reading and Writing Objects
11.7 From the Java Library

javax.swing.JFileChooser
11.8 Using File Data in Programs

Recursive Problem Solving

12.1 Introduction L
12.2 Recursive Definition
12.3 Recursive String Methods
12.4 Recursive Array Processing
12.5 Example: Drawing (Recursive) Fractals

Xi

347
353
357
363
384

499
500
500
505
518
521
530

535
536

xii

13

14

15

16

CONTENTS

12.6 OBJECT-ORIENTED DESIGN:

Tail Recursion 573
12.7 OBJECT-ORIENTED DESIGN:

Recursion or Iteration? 574
12.8 From the Java Library:

javax.swing.JComboBox 577
Graphical User Interfaces 591
13.1 Introduction Lo L L oo 592
13.2 Java GUIs: From AWT toSwing 592
13.3 The Swing ComponentSet 595
13.4 OBJECT-ORIENTED DESIGN:

Model-View-Controller Architecture 596
13.5 TheJava EventModel 598
13.6 CASE STUDY: Designing a BasicGUL 602
13.7 Containers and Layout Managers 614
13.8 Checkboxes, Radio Buttons, and Borders 620
13.9 Menus and Scroll Panes 629
Threads and Concurrent Programming 643
14.1 Introduction L o oL 644
142 WhatIsaThread? 644
14.3 From the Java Library: java.lang.Thread 648
14.4 Thread Statesand LifeCycle. 654
14.5 Using Threads to Improve

Interface Responsiveness 656

14.6 CASE STUDY: Cooperating Threads 664
14.7 CASE STUDY: The GameofPong 679
Sockets and Networking 693
15.1 Introduction L L oL 694
15.2 AnOverview of Networks 694
15.3 Using Multimedia Network Resources for a Graphical Pro-

STAMN . o v o e e 700
15.4 From the Java Library: java.net .URL 701
15.5 The Slide Show Program 704
15.6 Adding Text Network Resources for an

Application L Lo 708
15.7 Client/Server Communication via Sockets. 719
15.8 CASE STUDY: Generic Client/Server Classes 724
15.9 Playing One Row Nim Over the Network 732
15.10Java Network Security Restrictions 741
15.11]Java Servlets and Java Server Pages 742
Data Structures: Lists, Stacks, and Queues 757
16.1 Introduction oo oo 758
16.2 The Linked List Data Structure 758
16.3 OBJECT-ORIENTED DESIGN:

The List Abstract Data Type (ADT) 770
164 TheStack ADT. 776

16,5 TheQueue ADT i 778

CONTENTS xiii

16.6 From the Java Library: The Java Collections Framework

and Generic Types 782

16.7 Using the Set and Map Interfaces 785
16.8 The Binary Search Tree Data Structure 789

A Coding Conventions 801
B The Java Development Kit 809
C The ASCII and Unicode Character Sets 819
D Java Keywords 821
E Operator Precedence Hierarchy 823
F Java Inner Classes 825
G Java Autoboxing and Enumeration 831

H Java and UML Resources 837

Xiv CONTENTS

Chapter 0

Computers, Objects, and
Java

OBJECTIVES
After studying this chapter, you will

Understand basic computer terminology that will be used throughout the book.
Become familiar with the notion of programming.

Understand why Java is a good introductory programming language.

Become familiar with Java objects and classes.

Know some of the principles of the object-oriented programming approach.

OUTLINE

0.1

Welcome

0.2 WhatIs a Computer?

0.3

Special Topic: Processors Then and Now
Networks, the Internet and the World Wide Web

0.4 Why Study Programming?

0.5

Programming Languages

0.6 Why Java?
0.7 What Is Object-Oriented Programming?

Chapter Summary

Exercises

Figure 1: A diagram of the main
functional components in a com-
puter system. The arrows indicate
the flow of information between
various components.

2 CHAPTER 0 o Computers, Objects, and Java
0.1 Welcome

Welcome to Java, Java, Java, a book that introduces you to object-oriented
programming using the Java language. When considering the purpose
of this text, three important questions might come to mind: Why study
programming? Why study Java? What is object-oriented programming?
This chapter will address these questions. First, we provide a brief in-
troduction to computers and the Internet and World Wide Web (WWW).
Then, we address why someone would study programming and we ex-
amine types of programming languages. We introduce the Java program-
ming language and conclude the chapter by exploring object-oriented pro-
gramming principles and how Java is an object-oriented programming
language.

0.2 WhatIs a Computer?

A computer is a machine that performs calculations and processes infor-
mation. A computer works under the control of a computer program, a
set of instructions that tell a computer what to do. Hardware refers to the
electronic and mechanical components of a computer. Software refers to
the programs that control the hardware.

A general-purpose computer of the sort that we will be programming can
store many different programs in its memory. That is what gives it the
ability to perform a wide variety of functions, from word processing to
browsing the Internet. This is in contrast to a special-purpose computer, such
as the one that resides in your microwave oven or the one that controls
your digital watch or calculator. These types of computers contain control
programs that are fixed and cannot be changed.

A computer’s hardware is organized into several main subsystems or
components (Fig. 1).

Central

Processin, .
Unit & Main Memory

(CPU)

Secondary
Storage
Disk Drive
Input Devices Output Devices CD-ROM
Keyboard Printer DVD
Mouse Monitor
Optical Audio
Scanner Speakers

o Output devices provide a means by which information held in the com-
puter can be displayed in some understandable or usable form. Com-
mon output devices include printers, monitors, and audio speakers.

SECTION 0.2 o What Is a Computer? 3

o Input devices bring data and information into the computer. Some of
the more common input devices are the keyboard, mouse, microphone,
and scanner.

o Primary memory or main memory of a computer is used to store both
data and programs. This type of memory, which is often called RAM,
short for Random Access Memory, is built entirely out of electronic
components—integrated circuit chips—which makes it extremely fast.
A computer’s main memory is volatile, which means that any informa-
tion stored in it is lost when the computer’s power is turned off. In a
sense, main memory acts as the computer’s scratch pad, storing both
programs and data temporarily while a program is running.

o Secondary storage devices are used for long-term or permanent stor-
age of relatively large amounts of information. These devices include
hard drives or magnetic disks, compact disks (CDs), digital video disks
(DVDs), and magnetic tapes. All of these devices are non-volatile, mean-
ing that they retain information when the computer’s power is turned
off. Compared to a computer’s primary memory, these devices are
relatively slow.

o The central processing unit (CPU) is the computer’s main engine. The
CPU is the computer’s microprocessor, such as the Intel Pentium pro-
cessor, which serves as the foundation for most Windows PCs, or the
Power-PC processor, which serves as the foundation for Macintosh
computers. The CPU is designed to perform the fetch-execute cycle,
whereby it repeatedly gets the next machine instruction from memory
and executes it. Under the direction of computer programs (software),
the CPU issues signals that control the other components that make up
the computer system. One portion of the CPU, known as the arithmetic-
logic unit (ALU), performs all calculations, such as addition and sub-
traction, and all logical comparisons, such as when one piece of data is
compared to another to determine if they are equal.

There are two main types of software:

o Application software refers to programs designed to provide a particular
task or service, such as word processors, computer games, spreadsheet
programs, and Web browsers.

o System software includes programs that perform the basic operations
that make a computer usable. For example, an important piece of
system software is the operating system, which contains programs that
manage the data stored on the computer’s disks.

An operating system assists application software in performing tasks
that are considered primitive or low-level, such as managing the com-
puter’s memory and its input and output devices.

Another important thing that the operating system does is to serve as
an interface between the user and the hardware. The operating system
determines how the user will interact with the system, or conversely, how
the system will look and feel to the user. For example, in command-line
systems, such as Unix and DOS (short for Disk Operating System), a pro-
gram is run by typing its name on the command line. By contrast, in

Fetch-execute cycle

Client/server computing

4 CHAPTER 0 o Computers, Objects, and Java

graphically based systems, such as Windows and Macintosh, a program
is run by clicking on its icon with the mouse. Thus, this “point-and-click”
interface has a totally different “look and feel” but does the same thing.

Special Topic: Processors Then and Now

To give you some idea of how rapidly computer hardware technology
has advanced, let’s compare the first digital processor with one of today’s
models.

The ENIAC (which stood for Electronic Numerical Integrator and Cal-
culator) was developed in 1946 at the University of Pennsylvania primar-
ily for calculating ballistic trajectories for the U.S. Army. ENIAC occupied
more than 640 square feet of floor space and weighed nearly 30 tons. In-
stead of the integrated circuits or chip technology used in today’s comput-
ers, ENIAC’s digital technology was based on over 17,000 vacuum tubes.
ENIAC, which could perform around 300 multiplications per second, ran
more than 500 times faster than other computing machines of that day and
age. To program the ENIAC, you would have to manipulate hundreds of
cables and switches. It took two or three days for a team of several pro-
grammers, most of whom were young women, to set up a single program
that would then run for a few seconds.

One of today’s most advanced and powerful processors for desktop
computers is Intel’s Pentium IV processor. This chip contains 42 million
transistors and runs at speeds over 3 GHz (3 gigahertz or 3 billion cycles
per second). The Pentium processor is small enough to fit in a space the
size of your pinky finger’s fingernail. Despite its size, it executes millions
of instructions per second, thereby enabling it to support a huge range of
multimedia applications, including three-dimensional graphics, stream-
ing audio and video, and speech recognition applications. To write pro-
grams for the Pentium, you can choose from a wide range of high-level
programming languages, including the Java language.

0.3 Networks, the Internet and the World Wide
Web

Most personal computers contain software that enables them to be con-
nected to various-sized networks of computers. Networks allow many in-
dividual users to share costly computer resources, such as a high-speed
printer or a large disk drive or application server that is used to store and
distribute both data and programs to the computers on the network. Net-
works can range in size from local area networks (LANs), which connect
computers and peripherals over a relatively small area, such as within a
lab or a building, through wide area networks (WANs), which can span large
geographic areas, such as cities and nations.

Application servers are just one example of client/server computing, a
computing approach made possible by networks. According to this ap-
proach, certain computers on the network are set up as servers, which pro-
vide certain well-defined services to client computers. For example, one
computer in a network may be set up as the email server, with the responsi-

SECTION 0.3 e Networks, the Internet and the World Wide Web 5

bility of sending, receiving, and storing mail for all users on the network.
To access their email on the email server, individual users employ client
application software that resides on their desktop computers, such as Out-
look Express or Eudora or Pine. Similarly, another server may be set up as
a Web server, with the responsibility of storing and serving up Web pages
for all the users on the network. Users can run Web browsers, another type
of client software, to access Web pages on the server. Java is particularly
well suited for these types of networked or distributed applications, where
part of the application software resides on a server and part resides on the
client computer.

The Internet (with a capital I) is a network of networks whose geo-
graphical area covers the entire globe. The World Wide Web (WWW) is
another example of distributed, client/server computing. The WWW is
not a separate physical network. Rather it is a subset of the Internet that
uses the HyperText Transfer Protocol (HTTP). A protocol is a set of rules
and conventions that govern how communication takes place between
two computers. HTTP is a multimedia protocol, which means that it
supports the transmission of text, graphics, sound, and other forms of
information. Certain computers within a network run special software
that enables them to play the role of HTTP (or Web) servers. They store
Web documents and are capable of handling requests for documents
from client browser applications. The servers and clients can be located
anywhere on the Internet.

The documents stored on Web servers are encoded in a special text-
based language known as HyperText Markup Language, or HTML. Web
browsers, such as Netscape’s Navigator and Microsoft’s Internet Explorer,
are designed to interpret documents coded in this language. The language
itself is very simple. Its basic elements are known as fags, which consist
of certain keywords or other text contained within angle brackets, < and
>. For example, if you wanted to italicize text on a Web page, you would
enclose it between the < 7 > and < /I > tags. Thus, the following HTML
code

e \
L$<I>$Italic font$</I>$ can be used for $<I>$emphasis$</l>$J

would be displayed by the Web browser as
Italic font can be used for emphasis.

When you use a Web browser to surf the Internet, you repeatedly instruct
your browser to go to a certain location and retrieve a page that is encoded
in HTML. For example, if you typed the following URL (Uniform Resource
Locator)

‘ http : //mww. prenhall .com/morelli/index . html J

into your browser, the browser would send a message to the Web server
www located in the prenhall.com domain—the prenhall portion of
this address specifies Prentice Hall and the com portion specifies the com-
mercial domain of the Internet—requesting that the document named
index.html in the morelli directory be retrieved and sent back to your

Figure 22 WWW: The client’s
browser requests a page from a
Web server. When the HTML doc-
ument is returned, it is interpreted

and displayed by the browser.

6 CHAPTER 0 o Computers, Objects, and Java

Display

Text

HTML HTTP
document software

Browser Server

software

Client

computer (Fig. 2). The beauty of the Web is that it is possible to embed
text, sound, video, and graphics within an HTML document, making it
possible to download a wide range of multimedia resources through this
(relatively) simple mechanism.

The Web has begun to change business, entertainment, commerce, and
education. The fact that it is possible to download computer games and
other application software from the Web is changing the way software and
other digital products are purchased and distributed. Similarly, as noted
earlier, many businesses have begun to organize their information systems
into intranets—private networks that implement the HTTP protocol. Cur-
rently, one of the biggest areas of development on the Web is commerce.
As consumers become more comfortable that credit-card information can
be securely transmitted over the Web (as it can over a telephone), the Web
will explode as a marketing medium as powerful, perhaps, as television
is today. Because Java has been designed to support secure, distributed,
networked applications, it is ideally suited to be used as the language for
these types of applications.

0.4 Why Study Programming?

A computer program is a set of instructions that directs the computer’s
behavior. Computer programming is the art and science of designing and
writing programs. Years ago it was widely believed that entrance into
the computer age would require practically everyone to learn how to pro-
gram. But this did not prove to be true. Today’s computers come with so
much easy-to-use software that knowing how to use a computer no longer
requires programming skills.

Another reason to study programming might be to enter into a career
as a computer scientist. However, although programming is one of its
primary tools, computer science is a broad and varied discipline, which
ranges from engineering subjects, such as processor design, to mathemat-
ical subjects, such as performance analysis. There are many computer sci-
entists who do little or no programming as part of their everyday work.
If you plan to major or minor in computer science, you will certainly
learn to program, but good careers in the computing field are available
to programmers and nonprogrammers alike.

SECTION 0.5 o Programming Languages 7

One of the best reasons to study programming is because it is a cre-
ative and enjoyable problem-solving activity. This book will teach you to
develop well-designed solutions to a range of interesting problems. One
of the best things about programming is that you can actually see and
experience your solutions as running programs. As many students have
indicated, there’s really nothing like the kick you get from seeing your
program solving a problem you’ve been struggling with. Designing and
building well-written programs provides a powerful sense of accomplish-
ment and satisfaction. What’s more, Java is a language that makes pro-
gramming even more fun, because once they’re finished, many Java pro-
grams can be posted on the World Wide Web (WWW) for all the world to
see!

0.5 Programming Languages

Most computer programs today are written in a high-level language, such
as Java, C, C++, or FORTRAN. A programming language is considered
high level if its statements resemble English-language statements. For
example, all of the languages just mentioned have some form of an “if”
statement, which says, “if some condition holds, then take some action.”

Computer scientists have invented hundreds of high-level program-
ming languages, although relatively few of these have been put to prac-
tical use. Some of the widely used languages have special features that
make them suitable for one type of programming application or another.
COBOL (COmmon Business-Oriented Language), for example, is still
widely used in commercial applications. FORTRAN (FORmula TRANsla-
tor) is still preferred by some engineers and scientists. C and C++ are still
the primary languages used by operating system programmers.

In addition to having features that make them suitable for certain types
of applications, high-level languages use symbols and notation that make
them easily readable by humans. For example, arithmetic operations in
Java make use of familiar operators such as “+” and “—" and “/”, so that
arithmetic expressions look more or less the way they do in algebra. So,
to take the average of two numbers, you might use the expression

[(+b) /2
a

o/

The problem is that computers cannot directly understand such expres-
sions. In order for a computer to run a program, the program must first
be translated into the computer’s machine language, which is the language
understood by its CPU or microprocessor. Each type of microprocessor
has its own particular machine language. That’s why when you buy soft-
ware it runs either on a Macintosh, which uses the Power-PC chip, or on a
Windows machine, which uses the Pentium chip, but not on both. When a
program can run on just one type of chip, it is known as platform dependent.

In general, machine languages are based on the binary code, a two-
valued system that is well suited for electronic devices. In a binary repre-
sentation scheme, everything is represented as a sequence of 1’s and 0’s,
which corresponds closely to the computer’s electronic “on” and “oft”
states. For example, in binary code, the number 13 would be repre-

Platform independence

8 CHAPTER 0 o Computers, Objects, and Java

sented as 1101. Similarly, a particular address in the computer’s memory
might be represented as 01100011, and an instruction in the computer’s
instruction set might be represented as 001100.

The instructions that make up a computer’s machine language are very
simple and basic. For example, a typical machine language might in-
clude instructions for ADD, SUBTRACT, DIVIDE, and MULTIPLY, but it
wouldn’t contain an instruction for AVERAGE. In most cases, a single in-
struction, called an opcode, carries out a single machine operation on one
or more pieces of data, called its operands. Therefore, the process of av-
eraging two numbers would have to be broken down into two or more
steps. A machine language instruction itself might have something sim-
ilar to the following format, in which an opcode is followed by several
operands, which refer to the locations in the computer’s primary memory
where the data are stored. The following instruction says ADD the num-
ber in LOCATIONT1 to the number in LOCATION2 and store the result in
LOCATIONS:

Opcode Operand 1 Operand 2 Operand 3

011110 110110 111100 111101
(ADD) (LOCATION 1) (LOCATION 2) (LOCATION 3)

Given the primitive nature of machine language, an expression like
(a+b)/2 would have to be translated into a sequence of several machine
language instructions that, in binary code, might look as follows:

‘ 011110110110111100111101
\ 000101000100010001001101
‘ 001000010001010101111011

-~

In the early days of computing, before high-level languages were de-
veloped, computers had to be programmed directly in their machine
languages, an extremely tedious and error-prone process. Imagine how
difficult it would be to detect an error that consisted of putting a 0 in the
preceding program where a 1 should occur!

Fortunately, we no longer have to worry about machine languages, be-
cause special programs can be used to translate a high-level or source
code program into machine language code or object code, which is the
only code that can be executed or run by the computer. In general, a pro-
gram that translates source code to object code is known as a translator
(Fig. 3). Thus, with suitable translation software for Java or C++ we can
write programs as if the computer could understand Java or C++ directly.

Source code translators come in two varieties. An interpreter trans-
lates a single line of source code directly into machine language and ex-
ecutes the code before going on to the next line of source code. A com-
piler translates the entire source code program into executable object code,
which means that the object code can then be run directly without further
translation.

There are advantages and disadvantages to both approaches. Inter-
preted programs generally run less efficiently than compiled programs,

SECTION 0.6 o Why Java? 9

High-level Machine
language language
000110101
(a + b)/2 Translator 101000110
software 101000110
Source Object
code code

because they must translate and execute each line of the program before
proceeding to the next line. If a line of code is repeated, an interpreter
would have to translate the line each time it is encountered. By contrast,
once compiled, an object program is just executed without any need for
further translation. It is also much easier to refine compiled code to make
it run more efficiently. But interpreters are generally quicker and easier
to develop and provide somewhat better error messages when things go
wrong. Some languages that you may have heard of, such as BASIC, LISP,
and Perl, are mostly used in interpreted form, although compilers are also
available for these languages. Programs written in COBOL, FORTRAN,
C, C++, and Pascal are compiled. As we will see in the next section,
Java programs use both compilation and interpretation in their translation
process.

0.6 Why Java?

Originally named “Oak” after a tree outside the office of its developer,
James Goslin, Java is a relatively young programming language. It was
initially designed by Sun Microsystems in 1991 as a language for em-
bedding programs into electronic consumer devices, such as microwave
ovens and home security systems. However, the tremendous popularity
of the Internet and the World Wide Web (WWW) led Sun to recast Java as
a language for embedding programs into Web-based applications. As you
recall, the Internet is a global computer network, and the WWW is that
portion of the network that provides multimedia access to a vast range of
information. Java has become one of the most important languages for
Web and Internet applications.

Java has also generated significant interest in the business community,
where it is has proved to have tremendous commercial potential. In addi-
tion to being a useful tool for helping businesses to promote their products
and services over the Internet, Java is also a good language for distribut-
ing software and providing services to employees and clients on private
corporate networks or intranets.

Because of its original intended role as a language for programming mi-
croprocessors embedded in consumer appliances, Java has been designed
with a number of interesting features:

e Java is object oriented. Object-oriented languages divide programs
into separate modules, called objects, that encapsulate the program’s
data and operations. Thus, object-oriented programming (OOP) and
object-oriented design (OOD) refer to a particular way of organizing pro-

Figure 3: Translator software
translates high-level source code to
machine language object code.

Object-oriented Languages

Platform independence

10 CHAPTER 0 o Computers, Objects, and Java

grams, one which is rapidly emerging as the preferred approach for
building complex software systems. Unlike the C++ language, in which
object-oriented features were grafted onto the C language, Java was
designed from scratch as an object-oriented language.

e Java is robust, meaning that errors in Java programs don’t cause system
crashes as often as errors in other programming languages. Certain
features of the language enable many potential errors to be detected
before a program is run.

e Java is platform independent. A platform, in this context, is just a particu-
lar kind of computer system, such as a Macintosh or Windows system.
Java’s trademark is “Write once, run anywhere.” This means that a Java
program can be run without changes on different kinds of computers.
This is not true for other high-level programming languages. This porta-
bility — the ability to run on virtually any platform — is one reason that
Java is well suited for WWW applications.

e Java is a distributed language, which means that its programs can be
designed to run on computer networks. In addition to the language it-
self, Java comes with an extensive collection of code libraries—software
that has been designed to be used directly for particular types of
applications—that make it particularly easy to build software systems
for the Internet and the WWW. This is one of the reasons why Java is so
well suited for supporting applications on corporate networks.

e Java is a secure language. Designed to be used on networks, Java con-
tains features that protect against untrusted code—code that might in-
troduce a virus or corrupt your system in some way. For example,
once they are downloaded into your browser, Web-based Java pro-
grams are prevented from reading and writing information from and
to your desktop computer.

Despite this list of attractive features, perhaps the best reason for choosing
Java as an introductory programming language is its potential for bring-
ing fun and excitement into learning how to program. There are few other
languages in which a beginning programmer can write a computer game
or a graphically based application that can be distributed on a Web page to
just about any computer in the world. The simplicity of Java’s design and
its easily accessible libraries bring such accomplishments within reach of
the most novice programmers.

For example, we will work on projects throughout the text that involve
games and puzzles. We start out in Chapter 2 by designing very simple
games that involve storing and retrieving data. As we learn more sophisti-
cated programming techniques, we gradually build more complexity into
the games and puzzles. For example, we learn how to create interactive,
two-person games in Chapter 4. In Chapter 8, we develop some games
and puzzles that are played on virtual game boards. Finally, in Chapter 14
we learn how to introduce games with multiple players on different com-
puters. To get a look at where we are headed you might want to visit the
authors’ companion Web site:

p
thttp://www.cs .trincoll .edu/"ram/jjj/

SECTION 0.7 o What Is Object-Oriented Programming? 11

0.7 What Is Object-Oriented Programming?

Java is an object-oriented (OO) language, and this book takes an object-
oriented approach to programming. So before beginning our discussion
of Java, it is important that we introduce some of the underlying con-
cepts involved in object-oriented programming. We need to talk about
what an object is, how objects are grouped into classes, how classes are

related to each other, and how objects use messages to interact with and -
communicate with each other. counter ': sink :' frig

0.7.1 Basic Object-Oriented Programming Metaphor:

Interacting Objects phove
A Java program, and any object-oriented program, is a collection of inter- counter doar
acting objects that models a collection of real-world =]

objects. Think of the model that a kitchen designer might use to layout

your new kitchen (Fig. 4). It will contain objects that represent the various
kitchen appliances and cabinets. Each object in the model is a simplified
version of the corresponding real object. For example, a rectangle might
be used to represent the refrigerator.

A kitchen model is mostly static. It doesn’t change. Once put into place,
its various objects just stand there in a certain relation to each other. By
contrast, a computer program is dynamic. It changes. It does things and
performs certain actions. The objects in a computer program communi-
cate with each other and they change over time. In this respect, the objects
that make up our computer programs are very anthropomorphic, a big word
that means “like people.” If we are eating together and I want you to pass
me the salt, I say, “Please pass me the salt,” and you invariably comply.
Similarly, when you (Student X) put your ATM card into an ATM machine,
the ATM object asks the bank’s database object “Give me Student X’s bank
account object” and the database invariably complies. If you tell the ATM
you want to withdraw $100 dollars it tells your bank account object to
deduct $100 from your current balance. And so it goes. Both you and
your bank account are changed objects as a result of the transaction.

0.7.2 What is an Object?

So what is an object? Just as in the real world, an object is any thing
whatsoever. An object can be a physical thing, such as a Car, or a mental
thing, such as an Idea. It can be a natural thing, such as an Animal, or
an artificial, human-made thing, such as a ATM. A program that manages
an ATM would involve BankAccounts and Customer objects. A chess
program would involve a Board object and ChessPiece objects.

Throughout this text, we will use the notation shown in Figure 5 to
depict objects and to illustrate object-oriented concepts. The notation is
known as the Unified Modeling Language, or UML for short, and it is a
standard in the object-oriented programming community. As the diagram
shows, an object is represented by a rectangle whose label consists of the
object’s (optional) id and its type. An object’s id is the name by which
it is referred to in the computer program. In this case we show a ATM
object, who's id is not given, and a ChessPiece object, named pawnl.
An object’s label is always underlined.

Figure 4: A model of a kitchen.

Figure 5: In UML, objects are rep-
resented by rectangles that are la-
beled with a two-part label of the
form id:Type. The object’s label is
always underlined.

Figure 6: A second partition of an
object diagram is used to display
the object’s attributes and their
values.

12 CHAPTER 0 o Computers, Objects, and Java

id:Type{+—Anobject’s label consists
of its & and its e

AT

pawnl1:iChessPiece

0.7.3 Attributes and Values

Just as with real objects, the objects in our programs have certain char-
acteristic attributes. For example, an ATM object would have a current
amount of cash that it could dispense. A ChessPiece object might
have a pair of row and column attributes that specify its position on the
chess board. Notice that an object’s attributes are themselves objects. The
ATM’s cash attribute and the chess piece’s row and column attributes
are Numbers.

Figure 6 shows two ATM objects and their respective attributes. As you
can see, an object’s attributes are listed in a second partition of the UML
diagram. Notice that each attribute has a value. So the 1obby:ATMhas a
$8650.0 in cash, while the drivethru:ATM has only $150.0 in cash.

lobbry s TM drivethru:ATM

cash = EIESD.DELth I(::*ash = 150,00

W

anobject’s attributes and
their walues are shown ina
second partititon.

We sometimes refer to the collection of an object’s attributes and values
as its state. For example, the current state of the lobby : ATM is $8650.0 in
cash. Of course, this is a gross simplification of an ATM’s state, which
would also include many other attributes. But, hopefully, you see the
point.

0.7.4 Actions and Messages

In addition to their attributes, objects also have characteristic actions or
behaviors. As we have already said, objects in programs are dynamic.
They do things or have things done to them. In fact, programming in
Java is largely a matter of getting objects to perform certain actions for
us. For example, in a chess program the ChessPieces have the ability to
moveTo () anew position on the chess board. Similarly, when a customer
pushes the “Current Balance” button on an ATM machine, this is telling
the ATM to report () the customer’s current bank balance. (Note how
we use parentheses to distinguish actions from objects and attributes.)
The actions that are associated with an object can be used to send mes-
sages to the objects and to retrieve information from objects. A message
is the passing of information or data from one object to another. Figure 7
illustrates how this works. In UML, messages are represented by arrows.

SECTION 0.7 o What Is Object-Oriented Programming? 13

pawnl:EhessHiece
- rOwW= ¢
column= 4

moveTol 3,40

In this example, we are telling pawnl:ChessPiece to moveTo (3,4).
The numbers 3 and 4 in this case are arguments that tell the pawn what
square to move to. (A chess board has 8 rows and 8 columns and each
square is identified by its row and column coordinates.) In general, an
argument is a data value that specializes the content of a message in some
way. In this example we are telling the pawn to move forward by 1 row.
If we wanted the pawn to move forward by 2 rows, we would send the
message moveTo (4, 4).

The diagram in Figure 8 depicts a sequence of messages representing
an idealized ATM transaction. First, an ATM customer asks the ATM ma-
chine to report his current balance. The ATM machine in turn asks the
customer’s bank account to report the customer’s balance. The ATM re-
ceives the value $528.52 from the bank account and passes it along to the
customer. In this case, the message does not involve an argument. But it
does involve a result. A result is information or data that is returned to
the object that sent the message.

lobby:ATM
cash = 8650.00

% reportBalance()
— >

528.52

customer

customer:Account

balance = 528.52

Obviously, in order to respond to a message, an object has to know
how to perform the action that is requested. The pawn has to know how
to move to a designated square. The ATM has to know how to find out
the customer’s current balance. Indeed, an object can only respond to
messages that are associated with its characteristic actions and behaviors.
You can’t tell an ATM to move forward 2 squares. And you can’t ask a
chess piece to tell you your current bank balance.

Responding to a message or performing an action sometimes causes
a change in an object’s state. For example, after performing moveTo (3,
4), the pawn will be on a different square. Its position will have changed.
On the other hand, some messages (or actions) leave the object’s state un-
changed. Reporting the customer’s bank account balance doesn’t change
the balance.

0.7.5 Whatis a Class?

A class is a template for an object. A class encapsulates the attributes and
actions that characterize a certain type of object. In an object-oriented pro-
gram, classes serve as blueprints or templates for the objects that the pro-

Figure 7: Messages in UML are
represented by labeled arrows. In
this example, we are telling a
pawn to move from its current po-
sition to row 3 column 4.

Figure 8: This UML diagram
illustrates an ATM transaction
in which a customer asks the
ATM machine for his current bal-
ance. The ATM gets this informa-
tion from an object representing
the customer’s bank account and
passes it to the customer.

Figure 9: A UML diagram of the
Rectangle class.

14 CHAPTER 0 o Computers, Objects, and Java

Rectangle Class name
length: int =:int :
_{ Attribut
width: int s int rine
calculatedreal): int
| Actions

drawi] 7

gram uses. We say that an object is an instance of a class. A good analogy
here is to think of a class as a cookie cutter and its objects, or instances, as
individual cookies. Just as we use the cookie cutter to stamp out cookies
of a certain type, in an object-oriented program, we use a definition of a
class to create objects of a certain type.

Writing an object-oriented program is largely a matter of designing
classes and writing definitions for those classes in Java. Designing a
class is a matter of specifying all of the attributes and behaviors that are
characteristic of that type of object.

For example, suppose we are writing a drawing program. One type
of object we would need for our program is a rectangle. A Rectangle
object has two fundamental attributes, a length and a width. Given
these attributes, we can define characteristic rectangle actions, such as the
ability to calculate its area and the ability to draw itself. Identifying an
object’s attributes and actions is the kind of design activity that goes into
developing an object-oriented program.

Figure 9 shows a UML diagram of our Rectangle class. Like the sym-
bol for an object, a UML class symbol has up to three partitions. Unlike the
UML object symbol, the label for a UML class gives just the class’s name
and it is not underlined. The second partition lists the class’s attributes
and the third partition lists the classes actions. Our rectangle has four
attributes. The first two, x and y, determine a rectangles position on a
two-dimensional graph. The second two, length and width, determine
a rectangle’s dimensions. Note that the attributes have no values. This is
because the class represents a general type of rectangle. It specifies what
all rectangles have in common, without representing any particular rect-
angle. Like a cookie cutter for a cookie, a class gives the general shape of
an object. The content is not included.

0.7.6 Variables and Methods

Up to this point we have been using the terms attribute and action to de-
scribe an object’s features. We will continue to use this terminology when
talking in general about objects or when talking about an object or class
represented by a UML diagram.

However, when talking about a programming language, the more com-
mon way to describe an object’s features are to talk about its variables
and methods. A variable, which corresponds to an attribute, is a named
memory location that can store a certain type of value. You can think of a
variable as a special container that can only hold objects of a certain type.
For example, as Figure 9 shows, Rectangle’s length and width are

SECTION 0.7 o What Is Object-Oriented Programming? 15

variables that can store a certain type of numeric value known as an int.
An int value is a whole number, such as 76 or -5.

A method, which corresponds to an action or a behavior, is a named
chunk of code that can be called upon or invoked to perform a certain
pre-defined set of actions. For example, in our Rectangle object, the
calculateArea () method can be called upon to calculate the rectan-
gle’s area. It would do this, of course, by multiplying the rectangle’s
length by its width. Similarly, the draw () method can be invoked to draw
a picture of the rectangle. It would take the actions necessary to draw a
rectangle on the console.

0.7.7 Instance versus Class Variables and Methods

Variables and methods can be associated either with objects or their
classes. An instance variable (or instance method) is a variable (or
method) that belongs to an object. By contrast, a class variable (or class
method) is a variable (or method) that is associated with the class itself.
An example will help make this distinction clear.

An instance variable will have different values for different instances.
For example, individual Rectangles will have different values for their
length, width, %, and y variables. So these are examples of instance
variables. The calculateArea () method is an example of an instance
method because it uses the instance’s current length and width values
in its calculation. Similarly, the draw () method is an instance method,
because it uses the object’s length and width to draw the object’s shape.

An example of a class variable would be a variable in the Rectangle
class that is used to keep track of how many individual Rectangles
have been created. (Our drawing program might need this information
to help manage its memory resources.) Suppose we name this variable
nRectangles and suppose we add 1 to it each time a new Rectangle
instance is created.

An example of a method that is associated with the class is a special
method known as a constructor. This is a method used to create an object.
It is used to create an instance of a class. Calling a constructor to create an
object is like pressing the cookie cutter into the cookie dough: the result is
an individual cookie (object).

Figure 10 illustrates these concepts. Note that class variables are un-
derlined in the UML diagram. We have modified the Rectangle class
to include its constructor method, which is named Rectangle (). Note
that it takes four arguments, representing the values that we want to give
as the rectangle’s x, y, length and width respectively. Note also how the
Rectangle class’s nRectangles variable has a value of 2, representing
that two Rectangle instances have been created. These are shown as
members of the Rectangle class.

It won’t be obvious to you at this point, but nRectangles is a value
that has to be associated with the Rectangle class, not with its instances.
To see this let’s imagine what happens when a new Rectangle instance
is created. Figure 11 illustrates the process. When the Rectangle ()
constructor is invoked, its arguments (100, 50, 25, 10) are used by the
Rectangle class to create a Rectangle object located at x=100, y=50 and
with a length of 25 and width of 10. The constructor method also increases

Figure 10: The Rectangle class
and two of its instances. Note that
the class variable, nRectangles,
is underlined to distinguish it
from length and width, the in-
stance variables.

Figure 11: Constructing a
Rectangle instance.

Superclass and subclass

16 CHAPTER 0 o Computers, Objects, and Java

Rectangle
nRectangles= 2
length: int weint
width: int weint

Rectangle(x:int peint, lint, weint)
calculatesireal): int
draw ()

rect1:Rectangle rects:Rectangle

x =100
v =50

length = 25
width = 10

® =125
w=775

length = 30
width = 20

the value of nRectangles by 1 as a way of keeping count of how many
objects it has created.

Rectangle
Rectangle{ 100,50,25,107 nRectangles= 1
®™ length: int wint
— width: int wiint
:Rectangle
Rectanglexcint wint,lint, wint)
length = 25 x =100 calculatedreal) int
width=10 v =50 draw ()

0.7.8 Class Hierarchy and Inheritance

How are classes related to each other? In Java, and in any other object-
oriented language, classes are organized in a class hierarchy. A class hier-
archy is like an upside-down tree. At the very top of the hierarchy is the
most general class. In Java, the most general class is the Ob ject class. The
classes below Ob ject in the hierarchy are known as its subclasses. Since
all of the objects we use in our programs belong to some class or other,
this is like saying that all objects are Objects.

Figure 12 illustrates the concept of a class hierarchy using the classes
that we have described in this section. Notice that the Object class oc-
curs at the top of the hierarchy. It is the most general class. It has fea-
tures that are common to all Java objects. As you move down the hierar-
chy, the classes become more and more specialized. A Rectangle is an
Object but it contains attributes — length and width — that are common
to all rectangles but not to other objects in the hierarchy. For example, an
ATM object does not necessarily have a length and a width. Notice that we
have added a Square class to the hierarchy. A Square is a special type
of Rectangle, namely one who’s length equals its width.

To introduce some important terminology associated with this kind of
hierarchy, we say that the Rectangle class is a subclass of the Object

rierarchy of Java

SECTION 0.7 o What Is Object-Oriented Programming? 17

Object

A
| |

ATHM Rectangle ChessPiece |

Square

class. The Square class is a subclass of both Rectangle and Object.
Classes that occur above a given class in the hierarchy are said to be its
superclasses. Thus Rectangle class is superclass of the Square class.
The Object class is also a superclass of Square. In general, we say that
a subclass extends a superclass, meaning that it adds additional elements
(attributes and / or methods) to those contained in its superclasses. We saw
this in the case of the Square class. It adds the feature that its length and
width are always equal.

Another important concept associated with a class hierarchy is the no-
tion of class inheritance, whereby a subclass inherits elements (attributes
and/or methods) from its superclasses. To take an example from the nat-
ural world, think of the sort of inheritance that occurs between a horse
and a mammal. A horse is a mammal. So horses inherit the characteristic
of being warm blooded by virtue of also being mammals. (This is dif-
ferent from the kind of individual inheritance whereby you inherit your
mother’s blue eyes and your father’s black hair.)

To illustrate how inheritance works, lets go back to our chess program.
There are several different types of ChessPieces. There are Pawns, and
Knights, and Queens and Kings. Figure 13 illustrates the chess piece
hierarchy. A pair of attributes that all chess pieces have in common is
their row and column position on the chess board. Because all chess
pieces have these attributes in common, they are located at the top of the
ChessPiece hierarchy and inherited by all ChessPiece subclasses. Of
course, the row and column attributes are given different values in each
ChessPiece object.

One of the actions that all chess pieces have in common is that they can
moveTo () a given square on the chess board. But different types of chess
pieces have different ways of moving. For example, a Bishop can only
move along diagonals on the chess board, whereas a Rook can only move
along a row or column on the chess board. So, clearly, we can’t describe
a moveTo () method that will work for all ChessPieces. This is why
we put the moveTo () method in all of the ChessPiece subclasses. The
ChessPiece class also has a moveTo () method, but note that its name is
italicized. This indicates that it cannot be completely defined at that level.

Finally, note that in chess, the king has certain special attributes and
actions. Thus only the king can be put in check. This means that the king is
under attack and in danger of being captured, thereby ending the game.
Similarly, only the king has the ability to castle. This is special move that

Class inheritance

Figure 13: The ChessPiece hier-
archy:.

18 CHAPTER 0 o Computers, Objects, and Java

: The row and column
ChessPiece .) .
The Ki lass h row attributes are inherited
€ King class has “ by all subclasses.
unique attributes column
and actions. moveTo(r,c) move() is customized
\ A /\in each subclass.
/
Bishop Queen / | Pawn
/ \
moveTo(r,c) moveTo(r,c) moveTo(r,c)
Knight King Rook
inCheck
moveTo(r,c) moveTo(r,c) moveTo(r,c)
castle()

a king can make together with one of its rooks under certain conditions.
Thus, the reason we show the inCheck attribute and castle () actionin
the King class is because these are characteristics that particular to Kings.

In this way, a class hierarchy represents a specialization of classes as you
move from top to bottom. The most general class, ChessPiece, is at the
top of the hierarchy. Its attributes and methods are passed on to (inher-
ited by) its subclasses. However, in addition to the attributes and methods
they inherit from their superclasses, the subclasses define their own spe-
cial attributes and methods. Each of the subclasses, Pawn, Bishop, and
so on, represents some kind of specialization of the superclass. In this ex-
ample, each of the subclasses have their own distinctive ways of moving.
And the King subclass has unique attributes and actions (inCheck and
castle ().

0.7.9 Principles of Object-Oriented Design

As we have discussed, an object-oriented program is composed of many
objects communicating with each other. The process of designing an
object-oriented program to solve some problem or other involves several
important principles:

e Divide-and-Conquer Principle. Generally, the first step in designing
a program is to divide the overall problem into a number of objects
that will interact with each other to solve the problem. Thus, an object-
oriented program employs a division of labor much as we do in organiz-
ing many of our real-world tasks. This divide-and-conquer approach is
an important problem-solving strategy.

e Encapsulation Principle. Once the objects are identified, the next step
involves deciding, for each object, what attributes it has and what ac-
tions it will take. The goal here is to encapsulate within each object

SECTION 0.7 o What Is Object-Oriented Programming? 19

the expertise needed to carry out its role in the program. Each object
is a self-contained module with a clear responsibility and the tools (at-
tributes and actions) necessary to carry out its role. Just as a dentist
encapsulates the expertise needed to diagnose and treat a tooth ache, a
well-designed object contains the information and methods needed to
perform its role.

o Interface Principle. In order for objects to work cooperatively and effi-
ciently, we have to clarify exactly how they should interact, or interface,
with one another. An object’s interface should be designed to limit the
way the object can be used by other objects. Think of how the different
interfaces presented by a digital and analog watch determine how the
watches are used. In a digital watch, time is displayed in discrete units,
and buttons are used to set the time in hours, minutes and seconds. In
an analog watch, the time is displayed by hands on a clock face, and
time is set, less precisely, by turning a small wheel.

o Information Hiding Principle. In order to enable objects to work to-
gether cooperatively, certain details of their individual design and per-
formance should be hidden from other objects. To use the watch anal-
ogy again, in order to use a watch we needn’t know how its time keep-
ing mechanism works. That level of detail is hidden from us. Hiding
such implementation details protects the watch’s mechanism, while not
limiting its usefulness.

o Generality Principle. To make objects as generally useful as possible,
we design them not for a particular task but rather for a particular kind
of task. This principle underlies the use of software libraries. As we will
see, Java comes with an extensive library of classes that specialize in
performing certain kinds of input and output operations. For example,
rather than having to write our own method to print a message on the
console, we can use a library object to handle our printing tasks.

o Extensibility Principle. One of the strengths of the object-oriented ap-
proach is the ability to extend an object’s behavior to handle new tasks.
This also has its analogue in the everyday world. If a company needs
sales agents to specialize in hardware orders, it would be more eco-
nomical to extend the skills of its current sales agents instead of train-
ing a novice from scratch. In the same way, in the object-oriented ap-
proach, an object whose role is to input data might be specialized to
input numeric data.

e Abstraction Principle. Abstraction is the ability to focus on the impor-
tant features of an object when trying to work with large amounts of
information. For example, if we are trying to design a floor plan for a
kitchen, we can focus on the shapes and relative sizes of the appliances
and ignore attributes such as color, style, and manufacturer. The ob-
jects we design in our Java programs will be abstractions in this sense
because they ignore many of the attributes that characterize the real
objects and focus only on those attributes that are essential for solving
a particular problem.

These, then, are the principles that will guide our discussion as we learn
how to design and write object-oriented Java programs.

CHAPTER SUMMARY

20

Technical Terms
action (behavior)

CHAPTER 0 o Computers, Objects, and Java

constructor

object oriented

argument high-level language result

attribute instance source code

class instance method subclass

class inheritance instance variable superclass

class hierarchy interpreter Unified Modeling
class method method Language (UML)
class variable message variable

compiler object

computer program

object code

Summary of Important Points

e A computer system generally consists of input/output devices, pri-

mary and secondary memory, and a central processing unit. A com-
puter can only run programs in its own machine language, which is
based on the binary code. Special programs known as compilers and in-
terpreters translate source code programs written in a high-level language,
such as Java, into machine language object code programs.

Application software refers to programs designed to provide a particu-
lar task or service; systems software assists the user in using application
software.

The client/server model is a form of distributed computing in which part
of the software for a task is stored on a server and part on client comput-
ers.

HyperText Markup Language (HTML) is the language used to encode
WWW documents.

A Java program is a set of interacting objects. This is the basic
metaphor of object-oriented programming.

An object in a Java program encapsulates the program’s attributes (or
variables) and actions (or methods). A variable is a named memory lo-
cation where data of appropriate type can be stored. A method is a
named section of code that can be called (or invoked) when needed.

e An object’s methods are used to pass messages to it.
o A class is an abstract template that defines the characteristics and be-

haviors of all objects of a certain type.

An object is an instance of a class. An object has instance methods and in-
stance variables. A class method (or class variable) is a method (or variable)
that is associated with the class itself, not with its instances.

o A constructor is a special method that is used to construct objects.
e Java classes are organized into a class hierarchy, with the Object class

at the top of the hierarchy. For a given class, classes that occur below it
in the hierarchy are called its subclasses, while classes that occur above
it are called its superclasses.

Classes inherit attributes and methods from their superclasses. This is
known as class inheritance.

The main principles of the object-oriented programming approach are
as follows:

e Divide and Conquer: Successful problem solving involves breaking

a complex problem into objects.

CHAPTER 0 o Exercises 21

e Encapsulation and Modularity: Each object should be assigned a
clear role.

Public Interface: Each object should present a clear public interface
that determines how other objects will use it.

Information Hiding: Each object should shield its users from unnec-
essary details of how it performs its role.

Generality: Objects should be designed to be as general as possible.
Extensibility: Objects should be designed so that their functionality
can be extended to carry out more specialized tasks.

Abstraction is the ability to group a large quantity of information into
a single chunk so it can be managed as a single entity.

EXERCISE 0.1 Fill in the blanks in each of the following statements. EXERCISES

a. Dividing a problem or a task into parts is an example of the
principle.

b. Designing a class so that it shields certain parts of an object from other objects
isanexampleofthe____ principle.

c. Java programs that can run without change on a wide variety of computers is
an example of

d. The fact that social security numbers are divided into three parts is an example
ofthe_ principle.

e. To say that a program is robust means that

f. An______ is a separate module that encapsulates a Java program’s
attributes and actions.

EXERCISE 0.2 Explain the difference between each of the following pairs of

concepts.

hardware and software

. systems and application software
compiler and interpreter

. machine language and high-level language
general-purpose and special-purpose computer
primary and secondary memory

. the CPU and the ALU

. the Internet and the WWW

a client and a server

HTTP and HTML

. source and object code

= ¢ R R R R o Y

EXERCISE 0.3 Fill in the blanks in each of the following statements.

A_____ isasetof instructions that directs a computer’s behavior.
. A disk drive would be an exampleofa__________ device.

A mouseisanexampleofan_______ device.

. A monitor is an exampleofan___________ device.
Thecomputer’'s_ functions like a scratch pad.
Javaisanexampleofa_ programming language.

® me o0 oD

. The Internet is a network of

22 CHAPTER 0 o Computers, Objects, and Java

h. The protocol used by the World Wide Webisthe _____ protocol.
i. Web documents are writtenin_________ code.
j A isanetworked computer that is used to store data for other

computers on the network.

EXERCISE 0.4 Identify the component of computer hardware that is responsi-
ble for the following functions.

executing the fetch-execute cycle

arithmetic operations

executing instructions

. storing programs while they are executing

storing programs and data when the computer is off

can o

EXERCISE 0.5 Explain why a typical piece of software, such as a word proces-
sor, cannot run on both a Macintosh and a Windows machine.

EXERCISE 0.6 What advantages do you see in platform independence? What
are the disadvantages?

EXERCISE 0.7 In what sense is a person’s name an abstraction? In what sense
is any word of the English language an abstraction?

EXERCISE 0.8 Analyze the process of writing a research paper in terms of the
divide-and-conquer and encapsulation principles.

EXERCISE 0.9 Analyze your car by using object-oriented design principles. In
other words, pick one of your car’s systems, such as the braking system, and ana-
lyze it in terms of the divide-and-conquer, encapsulation, information-hiding, and
interface principles.

EXERCISE 0.10 Make an object oriented analysis of the interaction between, a
student, librarian, and a library database when a student checks a book out of a
college library.

Chapter 1

Java Program Design and
Development

OBJECTIVES
After studying this chapter, you will

e Know the basic steps involved in program development.
o Understand some of the basic elements of the Java language.
o Know how to use simple output operations in a Java program.

e Be able to distinguish between different types of errors in a
program.

e Understand how a Java program is translated into machine language.
e Understand the difference between a Java console application and a Java
Swing application.

e Know how to edit, compile, and run Java programs.

OUTLINE

1.1 Introduction
12 Designing Good Programs
1.3 Designing a Riddle Program
Special Topic: Grace Hopper and the First Computer Bug
14 Java Language Elements
1.5 Editing, Compiling, and Running a Java Program
1.6 From the Java Library: System and PrintStream
1.7 From the Java Library: System and PrintStream
Chapter Summary
Solutions to Self-Study Exercises

Exercises

23

24 CHAPTER 1 e Java Program Design and Development
1.1 Introduction

This chapter introduces some of the basic concepts and techniques in-
volved in Java program design and development. We begin by identi-
fying the main steps in designing an object-oriented program. The steps
are illustrated by designing a program that “asks” and “answers” riddles.
As an example of a riddle, consider the question “What is black and white
and read all over?” The answer, of course, is a newspaper. Following
the design phase, we then focus on the steps involved in coding a Java
program, including the process of editing, compiling, and running a pro-
gram. Because Java programs can be text based applications or window
based graphical applications, we describe how the coding process differs
for these two varieties.

Next we begin to familiarize ourselves with Java’s extensive class li-
brary by studying its PrintStream and System classes. These classes
contain objects and methods that enable us to print output from a pro-
gram. By the end of the chapter you will be able to design and write a
Java application that “sings” your favorite song.

1.2 Designing Good Programs

Programming is not simply a question of typing Java code. Rather, it in-
volves a considerable amount of planning and careful designing. Badly
designed programs rarely work correctly. Even though it is tempting for
novice programmers to start entering code almost immediately, one of the
first rules of programming is

ANZZUHNOEI NI INNENBIE The sooner you begin to type code,
the longer the program will take to finish, because careful design of
the program must precede coding. This is particularly true of
object-oriented programs.

In other words, the more thought and care you put into designing a pro-
gram, the more likely you are to end up with one that works correctly. The
following subsections provide a brief overview of the program develop-
ment process.

1.2.1 The Software Engineering Life Cycle

Software engineering is the process of designing and writing software.
The software life cycle refers to the different phases involved in the design
and development of a computer program. Our presentation of examples
in the book will focus on four phases of the overall life cycle. In the spec-
ification phase we provide a statement of the problem and a detailed de-
scription of what the program will do. In the design phase we describe
the details of the various classes, methods, and data that will be used in
the program. The implementation phase refers to the actual coding of the
program into Java. In the testing phase we test the program’s performance
to make sure it is correct, recoding it or redesigning it as necessary.
Figure 1.1 gives a more detailed overview of the program development
process, focusing most of the attention on the design phase of the software

SECTION 1.2 o Designing Good Programs 25

life cycle. It shows that designing an object-oriented program is a matter
of asking the right questions about the classes, data, and methods that
make up the program.

Overall, the program development process can be viewed as one that
repeatedly applies the divide-and-conquer principle. That is, most pro-
gramming problems can be repeatedly divided until you have a collection
of relatively easy-to-solve subproblems, each of which can be handled by
an object. In this way the program is divided into a collection of interact-
ing objects. For each object we design a class. During class design, each
object is divided further into its variables and methods.

Problem Specification
What exactly is the problem? Program Development
How will the program be used? Process
How will the program behave?

Problem Decomposition

; - The problem is divided into
What objects will be used and how <————" ,pjecss. For each object we

will they interact with each other? design a class.
|
/ ¥ ~ N
Class Design
What role or roles will the object perform? The object's role
What variables (attributes) will it need? decomposes into
What methods (behaviors) will it use? tasks. Each task
What interface will it present? can be assigned to
What information will it hide? a method.
Data Design Method Design
What types of instance variables What task will the method perform?
are needed?)) What information will it need?
Should they be public or private? What algorithm will it use?
What result will it produce?
Algorithm Design Method design involves
What information is needed? / designing an algorithm.
What control structures are needed?
- /
Coding into Java
Stepwise refinement Errors may require
Fixing syntax errors recoding or
i redesigning.

Testing, Debugging, Revising

Designing test data and test cases
Fixing semantic errors

When should we stop subdividing? How much of a task should be
assigned to a single object or a single method? The answers to these and
similar questions are not easy. Good answers require the kind of judg-
ment that comes through experience, and frequently there is more than
one good way to design a solution. Here again, as we learn more about

Divide and conquer

Figure 1.1: An overview of the
program development process.

Divide and conquer

26 CHAPTER 1 e Java Program Design and Development

object-oriented programming, we’ll learn more about how to make these
design decisions.

1.3 Designing a Riddle Program

The first step in the program-development process is making sure you un-
derstand the problem (Fig. 1.1). Thus, we begin by developing a detailed
specification, which should address three basic questions:

e What exactly is the problem to be solved?
e How will the program be used?
e How should the program behave?

In the real world, the problem specification is often arrived at through
an extensive discussion between the customer and the developer. In an
introductory programming course, the specification is usually assigned
by the instructor.

To help make these ideas a little clearer, let's design an object-oriented
solution to a simple problem.

Problem Specification. Design a class that will represent a riddle with
a given question and answer. The definition of this class should make
it possible to store different riddles and to retrieve a riddle’s question
and answer independently.

1.3.1 Problem Decomposition

Most problems are too big and too complex to be tackled all at once. So
the next step in the design process is to divide the problem into parts that
make the solution more manageable. In the object-oriented approach, a
problem is divided into objects, where each object will handle one specific
aspect of the program’s overall job. In effect, each object will become an
expert or specialist in some aspect of the program’s overall behavior.

Note that there is some ambiguity here about how far we should go
in decomposing a given program. This ambiguity is part of the design
process. How much we should decompose the program before its parts
become “simple to solve” depends on the problem we’re trying to solve
and on the problem solver.

One useful design guideline for trying to decide what objects are
needed is the following;:

NS @A PBIERI(@N] [ooking for Nouns. Choosing a
program’s objects is often a matter of looking for nouns in the problem
specification.

Again, there’s some ambiguity involved in this guideline. For example,
the key noun in our current problem is riddle, so our solution will involve
an object that serves as a model for a riddle. The main task of this Java
object will be simply to represent a riddle. Two other nouns in the spec-
ification are question and answer. Fortunately, Java has built-in String

SECTION 1.3 e Designing a Riddle Program 27

objects that represent strings of characters such as words or sentences. We
can use two String objects for the riddle’s question and answer. Thus,
for this simple problem, we need only design one new type of object—a
riddle—whose primary role will be to represent a riddle’s question and
answer.

Don’t worry too much if our design decisions seem somewhat myste-
rious at this stage. A good understanding of object-oriented design can
come only after much design experience, but this is a good place to start.

1.3.2 Object Design

Once we have divided a problem into a set of cooperating objects, de-
signing a Java program is primarily a matter of designing and creating
the objects themselves. In our example, this means we must now design
the features of our riddle object. For each object, we must answer the
following basic design questions:

o What role will the object perform in the program?

e What data or information will it need?

o What actions will it take?

What interface will it present to other objects?

What information will it hide from other objects?

For our riddle object, the answers to these questions are shown in Fig-
ure 1.2. Note that although we talk about “designing an object,” we are
really talking about designing the object’s class. A class defines the col-
lection of objects that belong to it. The class can be considered the ob-
ject’s type. This is the same as for real-world objects. Thus, Seabiscuit is a
horse—that is, Seabiscuit is an object of type horse. Similarly, an individ-
ual riddle, such as the newspaper riddle, is a riddle. That is, it is an object
of type Riddle.

The following discussion shows how we arrived at the decisions for the
design specifications for the Riddle class, illustrated in Figure 1.2.

e Class Name: Riddle

Role: To store and retrieve a question and answer

e Attributes (Information)
e question: A variable to store a riddle’s question (private)
e answer: A variable to store a riddle’s answer (private)

e Behaviors
e Riddle(): A method to set a riddle’s question and answer
o getQuestion(): A method to return a riddle’s question
e getAnswer(): A method to return a riddle’s answer

The role of the Ridd1le object is to model an ordinary riddle. Because
a riddle is defined in terms of its question and answer, our Riddle ob-
ject will need some way to store these two pieces of information. As we
learned in Chapter 0, an instance variable is a named memory location that
belongs to an object. The fact that the memory location is named, makes
it easy to retrieve the data stored there by invoking the variable’s name.
For example, to print a riddle’s question we would say something like
“print question,” and whatever is stored in question would be retrieved
and printed.

Figure 1.2: Design specification
for the Riddle class.

What is the object’s role?

What information will the object

need?

[

What actions will the object take?

What interface will it present, and

what information will it hide?

28 CHAPTER 1 e Java Program Design and Development

In general, instance variables are used to store the information that an
object needs to perform its role. They correspond to what we have been
calling the object’s attributes. Deciding on these variables provides the
answer to the question, “What information does the object need?”

Next we decide what actions a Ridd1e object will take. A useful design
guideline for actions of objects is the following:

IPNZN G NASRRI(@N] Looking for Verbs. Choosing the
behavior of an object is often a matter of looking for verbs in the
problem specification.

For this problem, the key verbs are set and retrieve. As specified in Fig-
ure 1.2, each Riddle object should provide some means of setting the
values of its question and answer variables and a means of retrieving each
value separately.

Each of the actions we have identified will be encapsulated in a Java
method. As you recall from Chapter 0, a method is a named section of
code that can be invoked, or called upon, to perform a particular action.
In the object-oriented approach, calling a method (method invocation) is
the means by which interaction occurs among objects. Calling a method
is like sending a message between objects. For example, when we want to
get a riddle’s answer, we would invoke the getAnswer () method. This
is like sending the message “Give me your answer.” One special method,
known as a constructor, is invoked when an object is first created. We will
use the Riddle () constructor to give specific values to riddle’s question
and answer variables.

In designing an object, we must decide which methods should be made
available to other objects. This determines what interface the object should
present and what information it should hide from other objects. In gen-
eral, those methods that will be used to communicate with an object are
designated as part of the object’s interface. Except for its interface, all
other information maintained by each riddle should be kept “hidden”
from other objects. For example, it is not necessary for other objects to
know where a riddle object stores its question and answer. The fact that
they are stored in variables named question and answer, rather than
variables named ques and ans, is irrelevant to other objects.

ALV S GINNAERIECIE@N) Object Interface. An object’s interface
should consist of just those methods needed to communicate with or
to use the object.

AN P GIINAEEBIZSI@N]| Information Hiding. An object should
hide most of the details of its implementation.

l

SECTION 1.3 e Designing a Riddle Program 29

Taken together, these various design decisions lead to the specification
shown in Figure 1.3. As our discussion has illustrated, we arrived at the
decisions by asking and answering the right questions. In most classes the
attributes (variables) are private. This is represented by a minus sign (—).
In this example, the operations (methods) are public, which is represented
by the plus sign (+). The figure shows that the Riddle class has two
hidden (or private) variables for storing data and three visible (or public)
methods that represent the operations that it can perform.

1.3.3 Data, Methods, and Algorithms

Among the details that must be worked out in designing a riddle object is
deciding what type of data, methods, and algorithms we need. There are
two basic questions involved:

e What type of data will be used to represent the information needed by
the riddle?
e How will each method carry out its task?

Like other programming languages, Java supports a wide range of differ-
ent types of data, some simple and some complex. Obviously a riddle’s
question and answer should be represented by text. As we noted earlier,
Java has a String type, which is designed to store text, which can be
considered a string of characters.

In designing a method, you have to decide what the method will do. In
order to carry out its task, a method will need certain information, which
it may store in variables. Plus, it will have to carry out a sequence of
individual actions to perform the task. This is called its algorithm, which
is a step-by-step description of the solution to a problem. And, finally, you
must decide what result the method will produce. Thus, as in designing
objects, it is important to ask the right questions:

What specific task will the method perform?
What information will it need to perform its task?
What algorithm will the method use?

What result will the method produce?

Methods can be thought of as using an algorithm to complete a required
action. The algorithm required for the Riddle () constructor is very sim-
ple but also typical of constructors for many classes. It takes two strings
and assigns the first to the question instance variable and then assigns
the second to the answer instance variable. The algorithms for the other
two methods for the Riddle class are even simpler. They are referred to
as get methods that merely return or produce the value that is currently
stored in an instance variable.

Not all methods are so simple to design, and not all algorithms are so
simple. Even when programming a simple arithmetic problem, the steps
involved in the algorithm will not always be as obvious as they are when
doing the calculation by hand. For example, suppose the problem were
to calculate the sum of a list of numbers. If we were telling our classmate
how to do this problem, we might just say, “add up all the numbers and
report their total.” But this description is far too vague to be used in a
program. By contrast, here’s an algorithm that a program could use:

1. Set the initial value of the sum to 0.

Riddle
- question: Sthng
-answer: Sting

+ Riddle[q: String, a: String]
+ getlGuestion(): Sthing
+ getdnzwet]: Sthing

Figure 1.3: A UML class diagram
representing the Riddle class.

What type of data will be used?

How will each method carry out its
task?

Algorithm design

Pseudocode

Sum List of Numbers

0 543020
54 3020
84 20

104 -

Stepwise refinement

30 CHAPTER 1 e Java Program Design and Development

If there are no more numbers to total, go to step 5.
Add the next number to the sum.

Go to step 2.

Report the sum.

G WD

Note that each step in this algorithm is simple and easy to follow. It would
be relatively easy to translate it into Java. Because English is somewhat
imprecise as an algorithmic language, programmers frequently write al-
gorithms in the programming language itself or in pseudocode, a hy-
brid language that combines English and programming language struc-
tures without being too fussy about programming language syntax. For
example, the preceding algorithm might be expressed in pseudocode as
follows:

while (more numbers remain)
add next number to sum

4
' sum = 0
|
|
| print the sum
N

-

Of course, it is unlikely that an experienced programmer would take
the trouble to write out pseudocode for such a simple algorithm. But
many programming problems are quite complex and require careful de-
sign to minimize the number of errors that the program contains. In such
situations, pseudocode could be useful.

Another important part of designing an algorithm is to trace it—that is,
to step through it line by line—on some sample data. For example, we
might test the list-summing algorithm by tracing it on the list of numbers
shown in the margin.

Initially, the sum starts out at 0 and the list of numbers contains 54,
30, and 20. On each iteration through the algorithm, the sum increases
by the amount of the next number, and the list diminishes in size. The
algorithm stops with the correct total left under the sum column. While
this trace didn’t turn up any errors, it is frequently possible to find flaws
in an algorithm by tracing it in this way.

1.3.4 Coding into Java

Once a sufficiently detailed design has been developed, it is time to start
generating Java code. The wrong way to do this would be to type the en-
tire program and then compile and run it. This generally leads to dozens
of errors that can be both demoralizing and difficult to fix.

The right way to code is to use the principle of stepwise refinement.
The program is coded in small stages, and after each stage the code is
compiled and tested. For example, you could write the code for a single
method and test that method before moving on to another part of the pro-
gram. In this way, small errors are caught before moving on to the next
stage.

The code for the Riddle class is shown in Figure 1.4. Even though
we have not yet begun learning the details of the Java language, you
can easily pick out the key parts in this program: the instance variables
question and answer of type String, which are used to store the
riddle’s data; the Riddle () constructor and the getQuestion () and

SECTION 1.3 e Designing a Riddle Program 31

/ *
File: Riddle.java
Author: Java , Java , Java
#* Description: Defines a simple riddle.
*/
public class Riddle extends Object // Class header
{ // Begin class body
private String question; // Instance variables
private String answer;
public Riddle(String q, String a) // Constructor method
question = q;
answer = a;
} /7 Riddle ()
public String getQuestion () // Instance method
return question;
} // getQuestion ()
public String getAnswer() // Instance method
return answer;
} // getAnswer ()
} // Riddle «class // End class body

Figure 1.4: The Riddle class definition.

getAnswer () methods make up the interface. The specific language de-
tails needed to understand each of these elements will be covered in this
and the following chapter.

1.3.5 Syntax and Semantics

Writing Java code requires that you know its syntax and semantics. A
language’s syntax is the set of rules that determines whether a partic-
ular statement is correctly formulated. As an example of a syntax rule,
consider the following two English statements:

' The rain in Spain falls mainly on the plain. // valid
‘ Spain rain the mainly in on the falls plain. // Invalid

The first sentence follows the rules of English syntax (grammar), and it
means that it rains a lot on the Spanish plain. The second sentence does
not follow English syntax, and, as a result, it is rendered meaningless. An
example of a Java syntax rule is that a Java statement must end with a
semicolon.

However, unlike in English, where one can still be understood even
when one breaks a syntax rule, in a programming language the syntax
rules are very strict. If you break even the slightest syntax rule—for ex-

Syntax

Semantics

Syntax errors

Semantic errors

32 CHAPTER 1 e Java Program Design and Development

ample, if you forget just a single semicolon—the program won’t work at
all.

Similarly, the programmer must know the semantics of the language—
that is, the meaning of each statement. In a programming language, a
statement’s meaning is determined by what effect it will have on the pro-
gram. For example, to set the sum to 0 in the preceding algorithm, an as-
signment statement is used to store the value 0 into the memory location
named sum. Thus, we say that the statement

[sum = 0;

assigns 0 to the memory location sum, where it will be stored until some
other part of the program needs it.

Learning Java’s syntax and semantics is a major part of learning to
program. This aspect of learning to program is a lot like learning a for-
eign language. The more quickly you become fluent in the new language
(Java), the better you will be at expressing solutions to interesting pro-
gramming problems. The longer you struggle with Java’s rules and con-
ventions, the more difficult it will be to talk about problems in a common
language. Also, computers are a lot fussier about correct language than
humans, and even the smallest syntax or semantic error can cause tremen-
dous frustration. So, try to be very precise in learning Java’s syntax and
semantics.

1.3.6 Testing, Debugging, and Revising

Coding, testing, and revising a program is an repetitive process, one
that may require you to repeat the different program-development stages
shown in (Fig. 1.1). According to the stepwise-refinement principle, the
process of developing a program should proceed in small, incremental
steps, where the solution becomes more refined at each step. However,
no matter how much care you take, things can still go wrong during the
coding process.

A syntax error is an error that breaks one of Java’s syntax rules. Such er-
rors will be detected by the Java compiler. Syntax errors are relatively easy
to fix once you understand the error messages provided by the compiler.
Aslong as a program contains syntax errors, the programmer must correct
them and recompile the program. Once all the syntax errors are corrected,
the compiler will produce an executable version of the program, which
can then be run.

When a program is run, the computer carries out the steps specified
in the program and produces results. However, just because a program
runs does not mean that its actions and results are correct. A running
program can contain semantic errors, also called logic errors. A semantic
error is caused by an error in the logical design of the program causing it
to behave incorrectly, producing incorrect results.

Unlike syntax errors, semantic errors cannot be detected automatically.
For example, suppose that a program contains the following statement for
calculating the area of a rectangle:

| return length + width;
N

SECTION 1.3 e Designing a Riddle Program 33

Because we are adding length and width instead of multiplying them,
the area calculation will be incorrect. Because there is nothing syntacti-
cally wrong with the expression length + width, the compiler won't
detect an error in this statement. Thus, the computer will still execute this
statement and compute the incorrect area.

Semantic errors can only be discovered by testing the program and they
are sometimes very hard to detect. Just because a program appears to run
correctly on one test doesn’t guarantee that it contains no semantic errors.
It might just mean that it has not been adequately tested.

Fixing semantic errors is known as debugging a program, and when sub-
tle errors occur it can be the most frustrating part of the whole program
development process. The various examples presented will occasionally
provide hints and suggestions on how to track down bugs, or errors, in
your code. One point to remember when you are trying to find a very sub-
tle bug is that no matter how convinced you are that your code is correct
and that the bug must be caused by some kind of error in the computer,
the error is almost certainly caused by your code!

1.3.7 Writing Readable Programs

Becoming a proficient programmer goes beyond simply writing a pro-
gram that produces correct output. It also involves developing good pro-
gramming style, which includes how readable and understandable your
code is. Our goal is to help you develop a programming style that satisfies
the following principles:

e Readability. Programs should be easy to read and understand. Com-
ments should be used to document and explain the program’s code.

o Clarity. Programs should employ well-known constructs and standard
conventions and should avoid programming tricks and unnecessarily
obscure or complex code.

o Flexibility. Programs should be designed and written so that they are
easy to modify.

Special Topic: Grace Hopper and
the First Computer Bug

Rear Admiral Grace Murray Hopper (1906-1992) was a pioneer computer
programmer and one of the original developers of the COBOL program-
ming language, which stands for COmmon Business-Oriented Language.
Among her many achievements and distinctions, Admiral Hopper also
had a role in coining the term computer bug.

In August 1945, she and a group of other programmers were working
on the Mark I, an electro-mechanical computer developed at Harvard that
was one of the ancestors of today’s electronic computers. After several
hours of trying to figure out why the machine was malfunctioning, some-
one located and removed a two-inch moth from one of the computer’s
circuits. From then on whenever anything went wrong with a computer,
Admiral Hopper and others would say “it had bugs in it.” The first bug
itself is still taped to Admiral Hopper’s 1945 log book, which is now in the
collection of the Naval Surface Weapons Center.

Programming style

O O N ONUTk WN -

34 CHAPTER 1 e Java Program Design and Development

In 1991, Admiral Hopper was awarded the National Medal of Tech-
nology by President George Bush. To commemorate and honor Admiral
Hopper’s many contributions, the U.S. Navy recently named a warship
after her. For more information on Admiral Hopper, see the Web site at

-
thttp :/ /www. chips .navy.mil/

1.4 Java Language Elements

In this section we will introduce some of the key elements of the Java
language by describing the details of a small program. We will look at how
a program is organized and what the various parts do. Our intent is to
introduce important language elements, many of which will be explained
in greater detail in later sections.

The program we will study is a Java version of the traditional Hel-
loWorld program—"traditional” because practically every introductory
programming text begins with it. When it is run, the HelloWorld program
(Fig. 1.5) just displays the greeting “Hello, World!” on the console.

File: HelloWorld . java
Author: Java Java Java
Description: Prints Hello, World! greeting.
*/
public class HelloWorld extends Object // Class header
{ // Start class body
private String greeting = ;
public void greet () // Method definition
{ // Start method body
System.out.println(greeting); // Output statement

} // greet () // End method body
public static void main(String args[])// Method header
{

HelloWorld helloworld; // declare
helloworld = new HelloWorld (); // create
helloworld . greet (); // Method call

} // main ()

} // HelloWorld // End class body

Figure 1.5: The HelloWorld application program.

1.4.1 Comments

The first thing to notice about the He11oWor1ld program is the use of com-
ments. A comment is a non-executable portion of a program that is used
to document the program. Because comments are not executable instruc-
tions they are just ignored by the compiler. Their sole purpose is to make
the program easier for the programmer to read and understand.

The HelloWorld program contains examples of two types of Java
comments. Any text contained within /* and */ is considered a comment.

SECTION 1.4 o Java Language Elements 35

As you can see in HelloWorld, this kind of comment can extend over
several lines and is sometimes called a multiline comment. A second type
of comment is any text that follows double slashes (//) on a line. This is
known as a single-line comment because it cannot extend beyond a single
line.

When the compiler encounters the beginning marker (/*) of a multiline
comment, it skips over everything until it finds a matching end marker
(*/). One implication of this is that it is not possible to put one multiline
comment inside of another. That is, one comment cannot be nested, or con-
tained, within another comment. The following code segment illustrates
the rules that govern the use of /* and */:

/+* This first comment begins and ends on the same line. x/
/* A second comment starts on this line

and goes on

and this is the last line of the second comment.
*/
/+* A third comment starts on this line

/+* This is NOT a fourth comment. It is just

part of the third comment.

And this is the last line of the third comment.
*/
%/ This is an error because it is an unmatched end marker.

As you can see from this example, it is impossible to begin a new com-
ment inside an already-started comment because all text inside the first
comment, including /*, is ignored by the compiler.

ANADESNEOPNEERNOIRE Comments. Any text contained within
/* and */, which may span several lines, is considered a comment and
is ignored by the compiler. Inserting double slashes (/ /) into a line
turns the rest of the line into a comment.

Multiline comments are often used to create a comment block that pro-
vides useful documentation for the program. In HelloWorld, the pro-
gram begins with a comment block that identifies the name of file that
contains the program and its author and provides a brief description of
what the program does.

For single-line comments, double slashes (//) can be inserted any-
where on a line of code. The result is that the rest of the line is ignored by
the compiler. We use single-line comments throughout the HelloWorld
program to provide a running commentary of its language elements.

IANZANHNO@IRTNY W IIN@NNIEE Use of Comments. A well-written
program should begin with a comment block that provides the name
of the program, its author, and a description of what the program does.

Single-line comment

36 CHAPTER 1 e Java Program Design and Development

1.4.2 Program Layout

Another thing to notice about the program is how neatly it is arranged
on the page. This is done deliberately so that the program is easy to read
and understand. In Java, program expressions and statements may be ar-
ranged any way the programmer likes. They may occur one per line, sev-
eral per line, or one per several lines. But the fact that the rules governing
the layout of the program are so lax makes it all the more important that
we adopt a good programming style, one that will help make programs
easy to read.

So look at how things are presented in HelloWorld. Notice how
beginning and ending braces, and , are aligned, and note how we use
single-line comments to annotate ending braces. Braces are used to mark
the beginning and end of different blocks of code in a Java program and
it can sometimes be difficult to know which beginning and end braces
are matched up. Proper indentation and the use of single-line comments
make it easier to determine how the braces are matched up.

Similarly, notice how indentation is used to show when one element
of the program is contained within another element. Thus, the elements
of the HelloWorld class are indented inside of the braces that mark the
beginning and end of the class. And the statements in the main () method
are indented to indicate that they belong to that method. Use of indenta-
tion in this way, to identify the program’s structure, makes the program
easier to read and understand.

ANV TN WINENNIE Use of Indentation. Indent the code
within a block and align the block’s opening and closing braces. Use a
comment to mark the end of a block of code.

1.4.3 Keywords and Identifiers

The Java language contains 48 predefined keywords (Table 1.1). These
are words that have special meaning in the language and whose use is
reserved for special purposes. For example, the keywords used in the
HelloWorld program (Fig. 1.5) are: class, extends, private, public,
static,and void.

Table 1.1: Java keywords.

abstract default goto package this
boolean do if private throw
break double implements protected throws
byte enum import public transient
case elses instanceof return try

catch extend int short void

char final interface static volatile
class finally long super while
const float native switch

continue for new synchronized

SECTION 1.4 o Java Language Elements 37

Because their use is restricted, keywords cannot be used as the names
of methods, variables, or classes. However, the programmer can make up
his or her own names for the classes, methods, and variables that occur in
the program, provided that certain rules and conventions are followed.

The names for classes, methods, and variables are called identifiers,
which follow certain syntax rules:

PANLO TN [COPN@IOIBE [dentifier. An identifier must begin with
a capital or lowercase letter and may be followed by any number of
letters, digits, underscores (-), or dollar signs ($). An identifier may not
be identical to a Java keyword.

Names in Java are case sensitive, which means that two different identifiers
may contain the same letters in the same order. For example, thisvar
and ThisVar are two different identifiers.

In addition to the syntax rule that governs identifiers, Java program-
mers follow certain style conventions in making up names for classes,
variables, and methods. By convention, class names in Java begin with
a capital letter and use capital letters to distinguish the individual words
in the name—for example, HelloWorld and TextField. Variable and
method names begin with a lowercase letter but also use capital letters
to distinguish the words in the name—for example, main (), greeting,
greet (), getQuestion (), and getAnswer (). The advantage of this
convention is that it is easy to distinguish the different elements in a
program—classes, methods, variables—just by how they are written. (For
more on Java style conventions, see Appendix A.).

Another important style convention followed by Java programmers
is to choose descriptive identifiers when naming classes, variables, and
methods. This helps to make the program more readable.

A\ NG N[N IVINENNIEY Choice of Identifiers. To make your
program more readable, choose names that describe the purpose of the
class, variable, or method.

1.4.4 Data Types and Variables

A computer program wouldn’t be very useful if it couldn’t manipulate
different kinds of data, such as numbers and strings. The operations that
one can do on a piece of data depend on the data’s type. For example, you
can divide and multiply numbers, but you cannot do this with strings.
Thus, every piece of data in a Java program is classified according to its
data type.

Broadly speaking, there are two categories of data in Java: various
types of objects and eight different types of built-in primitive data types.
In addition to new types of objects that are created by programmers, Java
has many different types of built-in objects. Two types that we will en-
counter in this chapter are the String and Print St ream objects. Java’s
primitive types include three integer types, three real number types, a
character type, and a boolean type with values true and false. The names

Identifier syntax

Identifier style

Java naming conventions

Primitive types

num:| =
Cint)
3tr:| “hEllD”|
(String)

Figure 1.6: Variables are like typed
containers.

Executing a program

Declaration statement

38 CHAPTER 1 e Java Program Design and Development

of the primitive types are keywords like int for one integer type, double
for one real number type, and boolean.

As we noted in Chapter 0, a variable is a named storage location that
can store a value of a particular type. Practically speaking, you can think
of a variable as a special container into which you can place values, but
only values of a certain type (Fig. 1.6). For example, an int variable
can store values like 5 or -100. A String variable can store values like
“Hello”. (Actually, this is not the full story, which is a little more compli-
cated, but we will get to that in Chapter 2.)

In the HelloWorld class, the instance variable greeting (line 8)
stores a value of type String. In the main () method, the variable
helloworld is assigned a HelloWorld object (line 16).

A literal value is an actual value of some type that occurs in a program.
For example, a string enclosed in double quotes, such as "Hello, World!”,
isknown as a St ring literal. A number such as 45.2 would be an example
of a literal of type double, and -72 would be an example of a literal of
type int. Our HelloWorld program contains just a single literal value,
the "HelloWorld!” String.

1.4.5 Statements

A Java program is a collection of statements. A statement is a segment of
code that takes some action in the program. As a program runs, we say
it executes statements, meaning it carries out the actions specified by those
statements. In our HelloWorld program, statements of various types
occur on lines 8, 11, 15, 16, and 17. Notice that all of these lines end with a
semicolon. The rule in Java is that statements must end with a semicolon.
Forgetting to do so would cause a syntax error.

A declaration statement is a statement that declares a variable of a par-
ticular type. In Java, a variable must be declared before it can be used in a
program. Failure to do so would cause a syntax error. In its simplest form,
a declaration statement begins with the variable’s type, which is followed
by the variable’s name, and ends with a semicolon:

Type VariableName ;

A variable’s type is either one of the primitive types we mentioned, such
as int, double, or boolean, or for objects, it is the name of the object’s
class, such as String or HelloWorld. A variable’s name may be any
legal identifier, as defined earlier, although the convention in Java is to be-
gin variable names with a lowercase letter. In our HelloWorld program,
an example a simple declaration statement occurs on line 15:

e B
‘ HelloWorld helloworld; J
g

This example declares a variable for an object. The variable’s name is
helloworld and its type is HelloWorld, the name of the class that is
being defined in our example. To take another example the following
statements declare two int variables, named int1 and int?2:

‘ int intl; \
int int2; ‘
N

SECTION 1.4 e Java Language Elements 39

As we noted, an int is one of Java’s primitive types and the word int is a
Java keyword.

Without going into too much detail at this point, declaring a variable
causes the program to set aside enough memory for the type of data that
will be stored in that variable. So in this example, Java would reserve
enough space to store an int.

An assignment statement is a statement that stores (assigns) a value pumi:| 50 numz:
in a variable. An assignment statement uses the equal sign (=) as an as- int) int)
signment operator. In its simplest form, an assignment statement has a
variable on the left hand side of the equals sign and some type of value on
the right hand side. Like other statements, an assignment statement ends numi:| 50| numz: |23
with a semicolon: fint) Lint)

VariableName = Value ;

When -it executes an as.signment statement, Java Will first determine what pumi1-1 25| num?2- | 25 |
value is given on the right hand side and then assign (store) that value to

the state of the variables numl and
num2 changes over the course of
the three assignments, (a), (b), (c),
given in the text.

(in) the variable on the left hand side. Here are some simple examples: {int} {int}
(0
| greeting = ; \
| numl = 50; /7 (a) Assign 50 to numl ' Figure 1.7: This illustrates how
‘ num2 = 10 + 15,‘ // (b) Assign 2 to num?2 ‘
- numl |

5
num?2 ; // (c) Copy num2’s value (25) into numl

In the first case, the value on the right hand side is the string literal “Hello,
World!”, which gets stored in greeting. Of course, greeting has to be
the right type of container—in this case, a String variable. In the next
case, the value on the right hand side is 50. So that is the value that gets
stored in numl, assuming that numl is an int variable. The situation
after this assignment is shown in the top drawing in Figure 1.7. In the
third case, the value on the right hand side is 25, which is determined
by adding 10 and 15. So the value that gets assigned to num2 is 25. After
this assignment we have the situation shown in the middle drawing in the
figure. Of course, this assumes that num2 is an int variable. In the last
case, the value on the right hand side is 25, the value that we just stored in
the variable num2. So, 25 gets stored in num1. This is the bottom drawing
in the accompanying figure.
The last of these examples

(N
‘ numl = num2; // Copy num2’s value into numl ‘
.

can be confusing to beginning programmers, so it is worth some addi-
tional comment. In this case, there are variables on both the left and right
of the assignment operator. But they have very different meaning. The
variable on the right is treated as a value. If that variable is storing 25,
then that is its value. In fact, whatever occurs on the right hand side of an
assignment operator is treated as a value. The variable on the left hand
side is treated as a memory location. It is where the value 25 will be stored
as a result of executing this statement. The effect of this statement is to
copy the value stored in num2 into numi, as illustrated in Figure 1.8.

Java has many other kinds of statements and we will be learning pum1- | 5|:|J num2- I@J
about these in subsequent examples. The following examples from the Tint il
. 3l

Thewalue in nums is
copied into numT.

40 CHAPTER 1 e Java Program Design and Development

HelloWorld program are examples of statements in which a method is
called:

‘ System.out.println(greeting);//’ Call println () method ‘
‘ helloworld.greet(); // Call greet () method J

We will discuss these kinds of statements in greater detail as we go along.
One final type of statement that should be mentioned at this point is the
compound statement (or block), which is a sequence of statements con-
tained within braces (). We see three examples of this in the HelloWorld
program. The body of a class definition extends from lines 7 through 19.
The body of the greet () method is a block that extends from lines 10
through 12. The body of the main () method is a block that extends from
lines 14 to 19.

1.4.6 Expressions and Operators

The manipulation of data in a program is done by using some kind of ex-
pression that specifies the action. An expression is Java code that specifies
or produces a value in the program. For example, if you want to add two
numbers, you would use an arithmetic expression, such as num1 +num?2. If
you want to compare two numbers, you would use a relation expression
such as numl < num?2. As you can see, these and many other expressions
in Java involve the use of special symbols called operators. Here we see
the addition operator (+) and the less-than operator (<). We have already
talked about the assignment operator (=).

Java expressions and operators have a type that depends on the type
of data that is being manipulated. For example, when adding two int
values, such as 5+ 10, the expression itself produces an int result. When
comparing two numbers with the less than operator, numl < num?2, the
expression itself produces a boolean type, either true or false.

It is important to note that expressions cannot occur on their own.
Rather they occur as part of the program’s statements. Here are some
additional examples of expressions:

‘1’11,!11’12 7 // An assignment expression of type int ‘
‘num: square(7) // An method call expression of type int ‘
‘num =7 // An equality expression of type boolean J
-

The first of these is an assignment expression. It has a value of 7, because
it is assigning 7 to num. The second example is also an assignment expres-
sion, but this one has a method call, square (7), on its right hand side.
(We can assume that a method named square () has been appropriately
defined in the program.) A method call is just another kind of expression.
In this case, it has the value 49. Note that an assignment expression can
be turned into a stand-alone assignment statement by placing a semicolon
after it.

The third expression is an equality expression, which has the value
true, assuming that the variable on its left is storing the value 7. It is

SECTION 1.4 o Java Language Elements 41

important to note the difference between the assignment operator (=) and
the equality operator (==).

JVNZQ W N(COVNEPOIBE Equality and Assignment. Be careful not
to confuse = and ==. The symbol = is the assignment operator. It
assigns the value on its right-hand side to the variable on its left-hand
side. The symbol == is the equality operator. It evaluates whether the
expressions on its left- and right-hand sides have the same value and
returns either t rue or false.

SELF-STUDY EXERCISES

EXERCISE 1.1 ~ What is stored in the variable num after the following
two statements are executed?

int num = 11;

num = 23 - num;

EXERCISE 1.2 Write a statement that will declare a variable of type int
called num?2, and store in it the sum of 711 and 712.

1.4.7 C(Class Definition

A Java program consists of one or more class definitions. In the
HelloWorld example, we are defining the HelloWorld class, but there
are also three predefined classes involved in the program. These are the
Object, String, and System classes all of which are defined in the
Java class library. Predefined classes, such as these, can be used in any
program.

As the HelloWorld program’s comments indicate, a class definition
has two parts: a class header and a class body. In general, a class header
takes the following form, some parts of which are optional (opt):

ClassModifiers,,, class ClassName Pedigree,,,

The class header for the HelloWorld class is:

-
Lpublic class HelloWorld extends Object J

The purpose of the header is to give the class its name (HelloWorld),
identify its accessibility (public as opposed to private), and describe
where it fits into the Java class hierarchy (as an extension of the Object
class). In this case, the header begins with the optional access modi-
fier, public, which declares that this class can be accessed by any other
classes. The next part of the declaration identifies the name of the class,
HelloWorld. And the last part declares that HelloWorld is a subclass
of the Ob ject class. We call this part of the definition the class’s pedigree.

As you recall from Chapter 0, the Object class is the top class of the
entire Java hierarchy. By declaring that Hel1loWorld extends Object,
we are saying that HelloWorld is a direct subclass of Object. In fact, it
is not necessary to declare explicitly that HelloWorld extends Object
because that is Java’s default assumption. That is, if you omit the extends
clause in the class header, Java will automatically assume that the class is
a subclass of Object.

Class header

Information hiding

42 CHAPTER 1 e Java Program Design and Development

The class’s body, which is enclosed within curly brackets (), contains
the declaration and definition of the elements that make up the objects of
the class. This is where the object’s attributes and actions are defined.

1.4.8 Declaring an Instance Variable

There are generally two kinds of elements declared and defined in the
class body: variables and methods. As we described in Chapter 0, an
instance variable is a variable that belongs to each object, or instance, of
the class. That is, each instance of a class has its own copies of the class’s
instance variables. The HelloWorld class has a single instance variable,
(greeting), which is declared as follows:

-
| private String greeting = ;
.

In general, an instance variable declaration has the following syntax, some
parts of which are optional:

Modifiers,,, Type VariableName InitializerExpression,,,

Thus, a variable declaration begins with optional modifiers. In declaring
the greeting variable, we use the access modifier, private, to declare
that greeting, which belongs to the HelloWorld class, cannot be di-
rectly accessed by other objects. The next part of the declaration is the
variable’s type. In this case, the greeting variable is a String, which
means that it can store a string object. The type is followed by the name
of the variable, in this case (greeting). This is the name that is used to
refer to this memory location throughout the class. For example, notice
that the variable is referred to on line 11 where itis used in a println ()
statement.

The last part of the declaration is an optional initializer expression. In
this example, we use it to assign an initial value, “Hello, World!,” to the
greeting variable.

1.4.9 Defining an Instance Method

Recall that a method is a named section of code that can be called or in-
voked to carry out an action or operation. In a Java class, the methods
correspond to the object’s behaviors or actions. The HelloWorld pro-
gram has two method definitions: the greet () method and the main ()
method.

A method definition consists of two parts: the method header and the
method body. In general, a method header takes the following form,
including some parts which are optional:

Modifiers,,, ReturnType MethodName (ParameterListop)

As with a variable declaration, a method definition begins with optional
modifiers. For example, the definition of the greet () method on line
9 uses the access modifier, public, to declare that this method can be
accessed or referred to by other classes. The main () method, whose def-
inition begins on line 13, is a special method, and is explained in the next
section.

Class body,

SECTION 1.4 e Java Language Elements 43

The next part of the method header is the method’s return type. This
is the type of value, if any, that the method returns. Both of the methods
in HelloWorld have a return type of void. This means that they don’t
return any kind of value. Void methods just execute the sequence of state-
ments given in their bodies. For an example of a method that does return a
value, take a look again at the declaration of the getQuestion () method
in the Riddle class, which returns a String (Fig. 1.4).

The method’s name follows the method’s return type. This is the name
that is used when the method is called. For example, the greet () method
is called on line 17.

Following the method’s name is the method’s parameter list. A param-
eter is a variable that temporarily stores data values that are being passed
to the method when the method is called. Some methods, such as the
greet () method, do not have parameters, because they are not passed
any information. For an example of a method that does have parameters,
see the Riddle () constructor, which contains parameters for the riddle’s
question and answer (Fig. 1.4).

The last part of method definition is its body, which contains a sequence
of executable statements. An executable statement is a Java statement
that takes some kind of action when the program is run. For example, the
statement in the greet () method,

4
‘System.out.println(greeting); // Output statement
N

N

prints a greeting on the console.

1.4.10 Java Application Programs

The HelloWorld program is an example of a Java application program,
or a Java application, for short. An application program is a stand-alone
program, “stand-alone” in the sense that it does not depend on any other
program, like a Web browser, for its execution. Every Java application pro-
gram must contain amain () method, which is where the program begins
execution when it is run. For a program that contains several classes, it is
up to the programmer to decide which class should contain the main ()
method. We don’t have to worry about that decision for the HelloWorld,
because it contains just a single class.

Because of its unique role as the starting point for every Java applica-
tion program, it is very important that the header for the main method be
declared exactly as shown in the HelloWorld class:

tpublic static void main(String args|[])

o

It must be declared public so it can be accessed from outside the class
that contains it. The static modifier is used to designate main () as
a class method. As you might recall from Chapter 0, a class method is
a method that is associated directly with the class that contains it rather
than with the objects of the class. A class method is not part of the class’s
objects. Unlike instance methods, which are invoked through a class’s ob-
jects, a class method is called through the class itself. Thus, a class method
can be called even before the program has created objects of that class.

Class method

Default constructor

Interacting objects

44 CHAPTER 1 e Java Program Design and Development

Because of main () s special role as the program’s starting point, it is nec-
essary for main () to be a class method because it is called, by the Java
runtime system, before the program has created any objects.

The main () method has a void return type, which means it does not
return any kind of value. Finally, notice that main () ’s parameter list con-
tains a declaration of some kind of St ring parameter named args. This is
actually an array that can be used to pass string arguments to the program
when it is started up. We won’t worry about this feature until our chapter
on arrays.

1.4.11 Creating and Using Objects

The body of the main () method is where the HelloWorld program cre-
ates its one and only object. Recall that when it is run the HelloWorld
program just prints the “Hello World!” greeting. As we noted earlier,
this action happens in the greet () method. So in order to make this ac-
tion happen, we need to call the greet () method. However, because the
greet () method is an instance method that belongs to a HelloWorld
object, we first need to create a HelloWorld instance. This is what
happens in the body of the main () method (Fig. 1.5).
The main () method contains three statements:

‘ HelloWorld helloworld; // Variable declaration ‘
' helloworld = new HelloWorld (); // Object instantiation ‘
khelloworld.greet(); // Method invocation J

The first statement declares a variable of type HelloWorld, which is
then assigned a HelloWorld object. The second statement creates a
HelloWorld object. This is done by invoking the HelloWorld () con-
structor method. Creating an object is called object instantiation because
you are creating an instance of the object. Once a HelloWorld instance
is created, we can use one of its instance methods to perform some task
or operation. Thus, in the third statement, we call the greet () method,
which will print “Hello World!” on the console.

If you look back at the HelloWorld program in Figure 1.5 you won't
find a definition of a constructor method. This is not an error because Java
will provide a default constructor if a class does not contain a constructor
definition. The default constructor is a trivial constructor method, “triv-
ial” because its body contains no statements. Here is what the default
HelloWorld () constructor would look like:

-
Lpubllc HellOWOI‘ld() { } // Default constructor

—

For most of the classes we design, we will design our own constructors,
just as we did in the Riddle class (Fig. 1.4). We will use constructors to
assign initial values to an object’s instance variables or to perform other
kinds of tasks that are needed when an object is created. Because the
HelloWorld object doesn’t require any startup tasks, we can make do
with the default constructor.

The HelloWorld program illustrates the idea that an object-oriented
program is a collection of interacting objects. Although we create just a
single HelloWorld object in the main () method, there are two other ob-

SECTION 1.4 e Java Language Elements 45

jects used in the program. One is the greeting, which is a String ob-
ject consisting of the string “Hello, World!”. The other is the System. out
object, which is a special Java system object used for printing.

1.4.12 Java JFrames

Java cann run a program in a JFrame so that the output and interaction
occurs in a Window (or Frame). Figure 1.9 shows a Java program named
HelloWorldSwing. This program does more or less the same thing as
the HelloWorld application—it displays the “Hello, World!” greeting.

/%% File: HelloWorldSwing program x/
import javax.swing.]Frame; // Import class names
import java.awt.Graphics;
import java.awt.Canvas;
public class HelloWorldCanvas extends Canvas // Class head¢qr
{
// Start of body
public void paint(Graphics g)
// The paint method
{
g.drawString (, 10, 10);
} // End of paint
public static void main(String[] args){
HelloWorldCanvas ¢ = new HelloWorldCanvas ();
JFrame f = new JFrame ();
f.add(c);
f.setSize (150,50);
f.setVisible (true);
}
} // End of HelloWorldCanvas

Figure 1.9: HelloWorldCanvas program.

The difference is that it displays the greeting within a Window rather than
directly on the console.

As in the case of the HelloWorld console application program,
HelloWorldCanvas consists of a class definition. It contains a single
method definition, the paint () method, which contains a single exe-
cutable statement:

Lg.drawString(,10,10);

/

This statement displays the “Hello, World!” message directly in a Win-
dow. The drawString () method is one of the many drawing and paint-
ing methods defined in the Graphics class. Every Java Canvas comes
with its own Graphics object, which is referred to here simply as g.
Thus, we are using that object’s drawString () method to draw on the
window. Don’t worry if this seems a bit mysterious now. We'll explain it
more fully when we take up graphics examples again.

46 CHAPTER 1 e Java Program Design and Development

The HelloWorldSwing also contains some elements, such as the
import statements, that we did not find in the HelloWorld application.
We will now discuss those features.

1.4.13 Java Library Packages

Recall that the HelloWorld application program used two pre-defined
classes, the String and the System classes. Both of these classes are
basic language classes in Java. The HelloWorldSwing program also uses
pre-defined classes, such as JFrame and Graphics. However, these two
classes are not part of Java’s basic language classes. To understand the
difference between these classes, it will be necessary to talk briefly about
how the Java class library is organized.

A package is a collection a inter-related classes in the Java class library.
For example, the java.lang package contains classes, such as Object,
String, and System, that are central to the Java language. Just about
all Java programs use classes in this package. The java.awt package
provides classes, such as Button, TextField, and Graphics, that are
used in graphical user interfaces (GUIs). The java.net package provides
classes used for networking tasks, and the java.io package provides
classes used for input and output operations.

All Java classes belong to some package, including those that are pro-
grammer defined. To assign a class to a package, you would provide a
package statement as the first statement in the file that contains the class
definition. For example, the files containing the definitions of the classes
in the java.lang package all begin with the following statement.

e .)
tpackage java.lang; J

If you omit package statement, as we do for the programs in this book,
Java places such classes into an unnamed default package.

Thus, for any Java class, its full name includes the name of the
package that contains it. For example, the full name for the System
class is java.lang.System and the full name for the String class is
java.lang.String. Similarly, the full name for the Graphics class is
java.awt.Graphics. In short, the full name for a Java class takes the
following form:

package.class

In other words, the full name of any class provides its package name as a
prefix.

Of all the packages in the Java library, the java.lang package is the
only one whose classes are available by their shorthand names to all
Java programs. This means that when a program uses a class from the
java.lang package, it can refer to it simply by its class name. For exam-
ple, in the HelloWorld program we referred directly to the St ring class
rather than to java.lang.String.

1.4.14 The import Statement

The import statement makes Java classes available to programs under
their abbreviated names. Any public class in the Java class library is avail-
able to a program by its fully qualified name. Thus, if a program was using

SECTION 1.4 e Java Language Elements 47

the Graphics class, it could always refer to it as java.awt .Graphics.
However, being able to refer to Graphics by its shorthand name, makes
the program a bit shorter and more readable.

The import statement doesn’t actually load classes into the program.
It just makes their abbreviated names available. For example, the im-
port statements in HelloWorldSwing allow us to refer to the JFrame,
Canvas, and Graphics classes by their abbreviated names (Fig. 1.9).

The import statement takes two possible forms:

import package.class

import package.*

The first form allows a specific class to be known by its abbreviated name.
The second form, which uses the asterisk as a wildcard characters ("*'),
allows all the classes in the specified package to be known by their short
names. The import statements in HelloWorldSwing are examples of
the first form. The following example,

(
- import java.lang.x;

—

allows all classes in the java. lang package to be referred to by their class
names alone. In fact, this particular import statement is implicit in every
Java program.

1.4.15 Qualified Names in Java

In the previous subsections we have seen several examples of names in
Java programs that used dot notation. A qualified name is a name that is
separated into parts using Java’s dot notation. Examples include package
names, such as java.awt, class names, such as javax.swing.JFrame,
and even method names, such as helloworld.greet ().

Just as in our natural language, the meaning of a name within a
Java program depends on the context. For example, the expression
helloworld.greet () refers to the greet () method, which belongs to
the HelloWorld class. If we were using this expression from within that
class, you wouldn’t need to qualify the name in this way. You could just
refer to greet () and it would be clear from the context which method
you meant.

This is no different than using someone’s first name (“Kim”) when
there’s only one Kim around, but using a full name (“Kim Smith”) when
the first name alone would be too vague or ambiguous.

One thing that complicates the use of qualified names is that they are
used to refer to different kinds of things within a Java program. But
this is no different, really, than in our natural language, where names
(“George Washington”) can refer to people, bridges, universities, and so
on. Here again, just as in our natural language, Java uses the context
to understand the meaning of the name. For example, the expression
java.lang.System refers to the System class in the java.lang pack-
age, whereas the expression System.out.print () refers to a method
in the System. out object.

How can you tell these apart? Java can tell them apart because the
first one occurs as part of an import statement, so it must be referring

48 CHAPTER 1 e Java Program Design and Development

to something that belongs to a package. The second expression would
only be valid in a context where a method invocation is allowed. You
will have to learn a bit more about the Java language before you’ll be able
to completely understand these names, but the following provide some
naming rules to get you started.

PN EANEIOPN@ZRNOINE Library Class Names. By convention,
class names in Java begin with an uppercase letter. When referenced as
part of a package, the class name is the last part of the name. For
example, java.lang.Systemrefers to the System class in the
java.lang package.

PANADTAN[CEPNEEOIBE Dot Notation. Names expressed in Java’s
dot notation depend for their meaning on the context in which they are
used. In qualified names—that is, names of the form X.Y.Z—the last
item in the name (Z) is the referent—that is, the element being referred
to. The items that precede it (X.Y.) are used to qualify or clarify the
referent.

The fact that names are context dependent in this way certainly compli-
cates the task of learning what’s what in a Java program. Part of learn-
ing to use Java’s built-in classes is learning where a particular object or
method is defined. It is a syntax error if the Java compiler can’t find the
object or method that you are referencing.

ANZAORIE D@ @ N [@NNIE Not Found Error. If Java cannot find the
item you are referring to, it will report an “X not found” error, where X
is the class, method, variable, or package being referred to.

1.5 Editing, Compiling, and Running a Java Pro-
gram

In this section we discuss the nuts and bolts of how to compile and run
a Java program. Because we are exploring two different varieties of Java
programs, console applications and Swing applications, the process dif-
fers slightly for each variety. We have already discussed some of the main
language features of console and Swing applications, so in this section we
focus more on features of the programming environment itself. Because
we do not assume any particular programming environment in this book,
our discussion will be somewhat generic. However, we do begin with
a brief overview of the types of programming environments one might
encounter.

liting, compiling,
|l loWorld. java.

SECTION 1.5 o Editing, Compiling, and Running a Java Program 49

User types program into a file
using a standard text editor.

}

Correct the syntax errors

text editor

Editor creates the source
program in a disk file.

HelloWorld.java

Jjavac generates
a list of error
messages

syntax
errors

——— — _— javac creates the bytecode
HelloWorld.class in a disk file.

S ———
; Hello.html
appletviewer \—ﬁ _
or Web Applets require
browser an HTML file.

Applet Programming

[

The Java Virtual Machine
loads the class file into
memory and interprets and
runs the bytecode.

1.5.1 Java Development Environments

A Java programming environment typically consists of several pro-
grams that perform different tasks required to edit, compile, and run
a Java program. The following description will be based on the
software development environment provided by Oracle, the company
that owns and maintains Java. It is currently known as the Java
Platform, Standard Edition 8.0 (Java SE 8). Versions of Java SE are
available for various platforms, including Linux, Windows, and ma-
cOS computers. Free downloads are available at Sun’s Web site at
http://www.oracle.com/technetwork/java/. (For more details
about the Java SE, see Appendix B.)

In some cases, the individual programs that make up the Java SE are
available in a single program development environment, known as an
integrated development environment (IDE). Some examples include Eclipse,
jGrasp, and Oracle’s own NetBeans IDE. Each of these provides a com-
plete development package for editing, compiling, and running Java ap-
plications on a variety of platforms, including Linux, macOS, and Win-
dows.

Figure 1.10 illustrates the process involved in creating and running a
Java program. The discussion that follows here assumes that you are us-

50 CHAPTER 1 e Java Program Design and Development

ing the Java SE as your development environment to edit, compile and run
the example program. If you are using some other environment, you will
need to read the documentation provided with the software to determine
exactly how to edit, compile, and run Java programs in that environment.

1.5.2 Editing a Program

Any text editor may be used to edit the program by merely typing the
program and making corrections as needed. Popular Unix and Linux
editors include vim and emacs. These editors are also available on ma-
cOS and Windows. However, free macOS editors include TextMate and
TextWrangler, and Windows has Notepad++ for free.

As we have seen, a Java program consists of one or more class def-
initions. We will follow the convention of placing each class definition
in its own file. (The rule in Java is that a source file may contain only
one public class definition.) The files containing these classes’ defini-
tions must be named ClassName.java where ClassName is the name of the
public Java class contained in the file.

ANAS AN @ OFN@ RinE File Names. A file that defines a public
Java class named ClassName must be saved in a text file named
ClassName. java. Otherwise an error will result.

For example, in the case of our HelloWorld application program, the file
must be named HelloWorld. java, and for HelloWorldSwing, it must
be named HelloWorldSwing. java. Because Java is case sensitive, which
means that Java pays attention to whether a letter is typed uppercase or
lowercase, it would be an error if the file containing the HelloWorld
class were named helloworld. java or Helloworld. java. The er-
ror in this case would be a semantic error. Java would not be able to
find the HelloWorld class because it will be looking for a file named
HelloWorld. java.

PAZLOEANEOPN@ N0 Case Sensitivity. Java is case sensitive,
which means that it treats helloWorld and Helloworld as different
names.

1.5.3 Compiling a Program

Recall that before you can run a Java source program you have to com-
pile it into the Java bytecode, the intermediate code understood by the
Java Virtual Machine (JVM). Source code for both applets and applica-
tions must be compiled. To run a Java program, whether an applet or an
application, the JVM is then used to interpret and execute the bytecode.
The Java SE comes in two parts, a runtime program, called the Java
Runtime Environment (JRE) and a development package, called the Software
Development Kit (SDK). If you are just going to run Java programs, you
need only install the JRE on your computer. In order to run Java applets,
browsers, such as Internet Explorer and Netscape Navigator, must contain
a plugin version of the JRE. On the other hand, if you are going to be
developing Java programs, you will need to install the SDK as well.

SECTION 1.5 e Editing, Compiling, and Running a Java Program 51

The Java SDK compiler is named javac. In some environments—
such as within Linux or at the Windows command prompt —
HelloWorld. java would be compiled by typing the following com-
mand at the system prompt:

-
' javac HelloWorld.java
N

As Figure 1.10 illustrates, if the HelloWorld. java program does not
contain errors, the result of this command is the creation of a Java bytecode
file named HelloWorld.class—a file that has the same prefix as the
source file but with the suffix .class rather than . java. By default,
the bytecode file will be placed in the same directory as the source file.
If javac detects errors in the Java code, a list of error messages will be
printed.

1.5.4 Running a Java Application Program

In order to run (or execute) a program on any computer, the program’s
executable code must be loaded into the computer’s main memory. For
Java environments, this means that the program’s .class file must be
loaded into the computer’s memory, where it is then interpreted by the
Java Virtual Machine. To run a Java program on Linux systems or at the
Windows command prompt, type

)

-
Ljava HelloWorld

)

on the command line. This command loads the JVM, which will then
load and interpret the application’s bytecode (HelloWorld.class). The
“HelloWorld” string will be displayed on the command line.

On Macintosh systems, or within an IDE, which do not typically have a
command line interface, you would select the compile and run commands
from a menu. Once the code is compiled, the run command will cause the
JVM to be loaded and the bytecode to be interpreted. The “Hello, World!”
output would appear in a text-based window that automatically pops
up on your computer screen. In any case, regardless of the system you
use, running the HelloWorld console application program will cause the
“Hello, World!” message to be displayed on some kind of standard output
device (Fig. 1.11).

1.5.5 Running a Java Swing Program

When you run a Java Swing Program, there is typically no console output.
You only see your output in the Window (JFrame) that your Graphics are
displayed in. This makes automated testing more difficult since you need
to visually inspect that the program is working correctly.

When you run

' java HelloWorldSwing

]
J

A window will open, and you won't be able to type in the console until
you close the window, quit the program, or type ctl-c to send a kill signal
to the Swing program. The result of running, as shown in Figure 1.12,

® O @ 7 dcooper — bash — 38x7

[bash-3.2$ javac HelloWorld.java 1
[bash-3.2§ java HelloWorld 1
Hello World!
bash-3.2$ I

Figure 1.11: Compiling and Run-
ning the HelloWorld. java con-
sole application program.

java.sun.com/j2se/1.5.0/docs/api/

| NN

Hello, World!
Figure 1.12: Running
HelloWorldSwing. java
graphical program.

PrintStream

+ print(in data : String)

+ print(in data : boolean)
+ print(in data : int)

+ println(in data : String)
+ println(in data : boolean)
+ println(in data : int)

Figure 1.13: A UML class diagram
of the Print Stream class.

52 CHAPTER 1 e Java Program Design and Development

is that the “Hello, World!” message will be displayed within it's own
window.

1.6 From the Java Library: System and
PrintStream

Java comes with a library of classes that can be used to perform common
tasks. The Java class library is organized into a set of packages, where each
package contains a collection of related classes. Throughout the book we
will identify library classes and explain how to use them. In this section
we introduce the System and Print St ream classes, which are used for
printing a program’s output.

Java programs need to be able to accept input and to display output.
Deciding how a program will handle input and output (I/0O) is part of
designing its user interface, a topic we take up in detail in Chapter 4. The
simplest type of user interface is a command-line interface, in which input
is taken from the command line through the keyboard, and output is dis-
played on the console. Some Java applications use this type of interface.
Another type of user interface is a Graphical User Interface (GUI), which
uses buttons, text fields, and other graphical components for input and
output. Java applets use GUIs as do many Java applications. Because we
want to be able to write programs that generate output, this

section describes how Java handles simple console output.

In Java, any source or destination for I/O is considered a stream of bytes
or characters. To perform output, we insert bytes or characters into the
stream. To perform input, we extract bytes or characters from the stream.
Even characters entered at a keyboard, if considered as a sequence of
keystrokes, can be represented as a stream.

There are no I/0O statements in the Java language. Instead, I/O is han-
dled through methods that belong to classes contained in the java.io
package. We have already seen how the output method println ()
is used to output a string to the console. For example, the following
println () statement

(N
LSystem.out.println(); J

prints the message “Hello, World” on the Java console. Let’s now exam-
ine this statement more carefully to see how it makes use of the Java I/O
classes.

The java.io.PrintStream class is Java’'s printing expert, so to
speak. It contains a variety of print () and println() methods that
can be used to print all of the various types of data we find in a Java pro-
gram. A partial definition of Print St reamis shown in Figure 1.13. Note
that in this case the Print St ream class has no attributes, just operations
or methods.

Because the various print () and println () methods are instance
methods of a PrintStream object, we can only use them by finding a

SECTION 1.6 e From the Java Library: System and PrintStream 53

PrintStream object and “telling” it to print data for us. As shown in
Figure 1.15, Java’s java.lang.System class contains three predefined
streams, including two PrintStream objects. This class has public (+)
attributes. None of its public methods are shown here.

Both the System.out and System.err objects can be used to write
output to the console. As its name suggests, the err stream is used
primarily for error messages, whereas the out stream is used for other
printed output. Similarly, as its name suggests, the System. in object can
be used to handle input, which will be covered in Chapter 2.

The only difference between the print () and println () methods
is that println () will also print a carriage return and line feed after
printing its data, thereby allowing subsequent output to be printed on a
new line. For example, the following statements

| System.out.print();
| System.out. println ();
' System.out. println ();

would produce the following output:

| hellohello again
| g
- goodbye

Now that we know how to use Java’s printing expert, let’s use it to “sing”
a version of “Old MacDonald Had a Farm.” As you might guess, this
program will simply consist of a sequence of System.out.println()
statements each of which prints a line of the verse. The complete Java
application program is shown in Figure 1.15.

public class OldMacDonald

{
public static void main(String args[])
// Main method
{
System . out. println ();
System.out. println ();
System.out. println ();
System.out. println ();
System . out. println ();
System.out. println ();
System . out. println ();
System.out. println ();
System.out. println ();
System . out. println ();
} // End of main
} // End of OldMacDonald

Figure 1.15: The 01dMacDonald. java class.

This example illustrates the importance of using the Java class library.
If there’s a particular task we want to perform, one of the first things we

System

+ out : PrintStream
+ err : PrintStream
+ in : InputStream

Figure 1.14: The System class.

KKk kK Kk kKK kK
* Kk k * Kk Kk
* * % *
* x * ok
* * kK Kk *

* Kk ok ok ok ok ok ok ok ok

CHAPTER SUMMARY

54 CHAPTER 1 e Java Program Design and Development

should ask is whether there is already an “expert” in Java’s class library
that performs that task. If so, we can use methods provided by the expert
to perform that particular task.

AN SHEGIINAEBIESI@N]| Using the Java Library. Learning how to
use classes and objects from the Java class library is an important part

of object-oriented programming in Java.

SELF-STUDY EXERCISES

EXERCISE 1.3 One good way to learn how to write programs is to
modify existing programs. Modify the OldMacDonald class to “sing”
one more verse of the song.

EXERCISE 1.4 Write a Java class that prints the design shown on the
left.

Technical Terms

algorithm declaration statement ~ parameter

applet default constructor primitive data type

application program executable statement pseudocode

assignment expression qualified name
statement identifier semantics

comment literal value statement

compound statement object instantiation stepwise refinement
(block) operator syntax

data type package

Summary of Important Points

e Good program design requires that each object and method have a
well-defined role and clear definition of what information is needed
for the task and what results will be produced.

e Good program design is important; the sooner you start coding, the
longer the program will take to finish. Good program design strives
for readability, clarity, and flexibility.

o Testing a program is very important and must be done with care, but it
can only reveal the presence of bugs, not their absence.

e An algorithm is a step-by-step process that solves some problem. Al-
gorithms are often described in pseudocode, a hybrid language that
combines English and programming language constructs.

e A syntax error occurs when a statement breaks a Java syntax rules. Syn-
tax errors are detected by the compiler. A semantic error is an error in
the program’s design and cannot be detected by the compiler.

e Writing Java code should follow the stepwise refinement process.

CHAPTER 1 o Chapter Summary 55

Double slashes (//) are used to make a single-line comment. Com-
ments that extend over several lines must begin with /* and end with
>(-/ .

An identifier must begin with a letter of the alphabet and may consist
of any number of letters, digits, and the special characters _and $. An
identifier cannot be identical to a Java keyword. Identifiers are case
sensitive.

A keyword is a term that has special meaning in the Java language
(Table 1.1).

Examples of Java’s primitive data types include the int, boolean, and
double types.

A variable is a named storage location. In Java, a variable must be
declared before it can be used.

A literal value is an actual value of some type, such as a String
("Hello”) or an int (5).

o A declaration statement has the form: Type VariableName ;
e An assignment statement has the form:VariableName = Expression ;

When it is executed it determines the value of the Expression on the
right of the assignment operator (=) and stores the value in the variable
named on the left.

Java’s operators are type dependent, where the type is dependent on
the data being manipulated. When adding two int values (7 +8), the
+ operation produces an int result.

A class definition has two parts: a class header and a class body. A
class header takes the form of optional modifiers followed by the word
class followed by an identifier naming the class followed, optionally,
by the keyword extends and the name of the class’s superclass.
There are generally two kinds of elements declared and defined in the
class body: variables and methods.

Object instantiation is the process of creating an instance of a class using
the new operator in conjunction with one of the class’s constructors.
Dot notation takes the form qualifiers.elementName. The expression
System.out.print ("hello") uses Java dot notation to invoke the
print () method of the System. out object.

A Java application program runs in stand-alone mode. A Java applet is
a program that runs within the context of a Java-enabled browser. Java
applets are identified in HTML documents by using the <applet> tag.
A Java source program must be stored in a file that has a . java exten-
sion. A Java bytecode file has the same name as the source file but a
.class extension. It is an error in Java if the name of the source file is
not identical to the name of the public Java class defined within the file.
Java programs are first compiled into bytecode and then interpreted by
the Java Virtual Machine (JVM).

SOLUTIONS TO
SELF-STUDY EXERCISES

56 CHAPTER 1 e Java Program Design and Development

SOLUTION 1.1
SOLUTION 1.2

The value 12 is stored in num.

int num2 = 711 + 712;

SOLUTION 1.3 The definition of the 01dMacDonald class is:

public class OldMacDonald

{
public static void main(String args[])
// Main method
{
System.out. println ("Old MacDonald had a farm”);
System.out. println("E I E 1 O.”);
System.out. println ("And on his farm he had a duck.”);
System.out. println("E I E I O.”);
System.out. println ("With a quack quack here.”);
System.out. println ("And a quack quack there.”);
System.out. println ("Here a quack, there a quack,”);
System.out. println ("Everywhere a quack quack.”);

System.out. println ("Old MacDonald had a farm”);
System.out. println("E I E I O.”);

System.out. println ("Old MacDonald had a farm”);
System.out. println("E I E I O.”);

System.out. println ("And on his farm he had a pig.”);
System.out.println("E I E I O.7);

System.out. println ("With an oink oink here.”);
System.out. println ("And an oink oink there.”);
System.out. println ("Here an oink, there an oink,”);
System.out. println ("Everywhere an oink oink.”);
System.out. println (”Old MacDonald had a farm”);
System.out. println("E I E I O.7);
} // End of main
} // End of OldMacDonald

SOLUTION 1.4 The definition of the Pattern class is:

public class Pattern

{

public static void main(String args[])// Main method

{
System.out. println (7 sssssswrss”);
System.out. println (7 ==
System.out. println ("= ok)
System.out. println (" = « ")
System.out. println (7 #xxx +7)
System . out. println (7 ssssswns”)

} // End of main

} // End of Pattern

CHAPTER 1 o Exercises 57

EXERCISE 1.1 Fill in the blanks in each of the following statements. EXERCISES
a. AJava class definition contains an object’s and .
b. A method definition contains two parts, a and a

EXERCISE 1.2 Explain the difference between each of the following pairs of
concepts.

Application and applet.

. Single-line and multiline comment.
Compiling and running a program.

. Source code file and bytecode file.
Syntax and semantics.
Syntax error and semantic error.

. Data and methods.

. Variable and method.

Algorithm and method.

Pseudocode and Java code.

. Method definition and method invocation.

TR T RO AN O

EXERCISE 1.3 For each of the following, identify it as either a syntax error or a
semantic error. Justify your answers.

Write a class header as public Class MyClass.
. Define the init () headeraspublic vid init ().
Print a string of five asterisks by System.out.println ("*+");
. Forget the semicolon at the end of a println () statement.
Calculate the sum of two numbers asN — M.

o Q0o

EXERCISE 1.4 Suppose you have a Java program stored in a file named
Test.java. Describe the compilation and execution process for this program,
naming any other files that would be created.

EXERCISE 1.5 Suppose N is 15. What numbers would be output by the fol-
lowing pseudocode algorithm? Suppose N is 6. What would be output by the
algorithm in that case?

Print N. ‘
If N equals 1, stop. \
If N is even, divide it by 2. \
If N is odd, triple it and add 1. ‘
Go to step 0. |

= W nN = o

EXERCISE 1.6 Suppose N is 5 and M is 3. What value would be reported by the
following pseudocode algorithm? In general, what quantity does this algorithm

e~

calculate?

‘ 0. Write 0 on a piece of paper. \
' 1. If M equals 0, report what’'s on the paper and stop. \
| 2. Add N to the quantity written on the paper. ‘
‘ 3. Subtract 1 from M. ‘

Go to step 1.

58 CHAPTER 1 e Java Program Design and Development

EXERCISE 1.7 Puzzle Problem: You are given two different length ropes that
have the characteristic that they both take exactly one hour to burn. However,
neither rope burns at a constant rate. Some sections of the ropes burn very fast;
other sections burn very slowly. All you have to work with is a box of matches
and the two ropes. Describe an algorithm that uses the ropes and the matches to
calculate when exactly 45 minutes have elapsed.

EXERCISE 1.8 Puzzle Problem: A polar bear that lives right at the North Pole

can walk due south for one hour, due east for one hour, and due north for one
hour, and end up right back where it started. Is it possible to do this anywhere
else on earth? Explain.

EXERCISE 1.9 Puzzle Problem: Lewis Carroll, the author of Alice in Wonder-
land, used the following puzzle to entertain his guests: A captive queen weighing
195 pounds, her son weighing 90 pounds, and her daughter weighing 165 pounds,
were trapped in a very high tower. Outside their window was a pulley and rope
with a basket fastened on each end. They managed to escape by using the baskets
and a 75-pound weight they found in the tower. How did they do it? The problem
is that anytime the difference in weight between the two baskets is more than 15
pounds, someone might get hurt. Describe an algorithm that gets them down
safely.

EXERCISE 1.10 Puzzle Problem: Here’s another Carroll favorite: A farmer
needs to cross a river with his fox, goose, and a bag of corn. There’s a rowboat
that will hold the farmer and one other passenger. The problem is that the fox will
eat the goose if they are left alone on the river bank, and the goose will eat the corn
if they are left alone on the river bank. Write an algorithm that describes how he
got across without losing any of his possessions.

EXERCISE 1.11 Puzzle Problem: Have you heard this one? A farmer lent the
mechanic next door a 40-pound weight. Unfortunately, the mechanic dropped
the weight and it broke into four pieces. The good news is that, according to the
mechanic, it is still possible to use the four pieces to weigh any quantity between
one and 40 pounds on a balance scale. How much did each of the four pieces
weigh? (Hint: You can weigh a 4-pound object on a balance by putting a 5-pound
weight on one side and a 1-pound weight on the other.)

EXERCISE 1.12 Suppose your little sister asks you to show her how to use a
pocket calculator so that she can calculate her homework average in her science
course. Describe an algorithm that she can use to find the average of 10 homework
grades.

EXERCISE 1.13 A Caesar cipher is a secret code in which each letter of the al-
phabet is shifted by N letters to the right, with the letters at the end of the alphabet
wrapping around to the beginning. For example, if N is 1, when we shift each
letter to the right, the word daze would be written as ebaf. Note that the z has
wrapped around to the beginning of the alphabet. Describe an algorithm that can
be used to create a Caesar encoded message with a shift of 5.

EXERCISE 1.14 Suppose you received the message, “sxccohv duh ixq,” which
you know to be a Caesar cipher. Figure out what it says and then describe an
algorithm that will always find what the message said regardless of the size of the
shift that was used.

EXERCISE 1.15 Suppose you're talking to your little brother on the phone and
he wants you to calculate his homework average. All you have to work with is
a piece of chalk and a very small chalkboard—big enough to write one four-digit
number. What’s more, although your little brother knows how to read numbers,
he doesn’t know how to count very well so he can’t tell you how many grades
there are. All he can do is read the numbers to you. Describe an algorithm that
will calculate the correct average under these conditions.

CHAPTER 1 o Exercises 59

EXERCISE 1.16 Write a header for a public applet named SampleApplet.
EXERCISE 1.17 Write a header for a public method named getName.

EXERCISE 1.18 Design a class to represent a geometric rectangle with a given
length and width, such that it is capable of calculating the area and the perimeter
of the rectangle.

EXERCISE 1.19 Modify the 01dMacDonald class to “sing” either “Mary Had a
Little Lamb” or your favorite nursery rhyme.

EXERCISE 1.20 Define a Java class, called Patterns, modeled after 01dMac—
Donald, that will print the following patterns of asterisks, one after the other
heading down the page:

ok ok ok Kok ok ok —— ‘
okok * * k% ‘
* %k * * — ‘
*ok * * x k% ‘

* Hokokok — ‘

EXERCISE 1.21 Write a Java class that prints your initials as block letters, as
shown in the example in the margin.

EXERCISE 1.22 Challenge: Define a class that represents a Temperature ob-
ject. It should store the current temperature in an instance variable of type
double, and it should have two public methods, set Temp (double t),which
assigns t to the instance variable, and get Temp (), which returns the value of
the instance variable. Use the Riddle class as a model.

EXERCISE 1.23 Challenge: Define a class named TaxWhiz that computes the
sales tax for a purchase. It should store the current tax rate as an instance
variable. Following the model of the Riddle class, you can initialize the rate
using a TaxWhiz () method. This class should have one public method,
calcTax (double purchase), which returns a double, whose value is
purchases times the tax rate. For example, if the tax rate is 4 percent, 0.04, and
the purchase is $100, then calcTax () should return 4.0.

EXERCISE 1.24 What is stored in the variables numl and num?2 after the follow-
ing statements are executed?

int numl = 5;

int num2 = 8;

numl = numl + num2;

num?2 = nmml + num2;

EXERCISE 1.25 Write a series of statements that will declare a variable
of type int called num and store in it the difference between 61 and 51.

UML EXERCISES

EXERCISE 1.26 Modify the UML diagram of the Riddle class to con-
tain a method named getRiddle () that would return both the riddle’s
question and answer.

EXERCISE 1.27 Draw a UML class diagram representing the follow-
ing class: The name of the class is Circle. It has one attribute, a
radius that is represented by a double value. It has one operation,
calculateArea (), which returns a double. Its attributes should be
designated as private and its method as public.

* ok Kk ok ok k
* *
* *
* ok Kk ok ok k
* x

* K

* *

* *

% ok X ok X % X

Person

— name : String
— phone : String

+ printName()
+ printPhone()

Figure 1.16: The Person class.

60 CHAPTER 1 e Java Program Design and Development

EXERCISE 1.28 To represent a triangle we need attributes for each of
its three sides and operations to create a triangle, calculate its area, and
calculate its perimeter. Draw a UML diagram to represent this triangle.

EXERCISE 1.29 Try to give the Java class definition for the class de-
scribed in
the UML diagram shown in Figure 1.17.

Chapter 2

Objects: Using, Creating,
and Defining

OBJECTIVES
After studying this chapter, you will

Be familiar with using variables to store and manipulate simple data.

Be familiar with creating and using objects.

Understand the relationship between classes and objects.

Understand the difference between objects and data of primitive type.
Understand the difference between static and and instance elements of a class.
Be able to understand and design a simple class in Java.

Understand some of the basic principles of object-oriented programming.

OUTLINE

21

Introduction

2.2 Using String Objects

2.3 Drawing Shapes with the Graphics Object (Optional)
2.4 Class Definition

2.5 Case Study: Simulating a Two-Person Game

2.6 From the Java Library: java.util.Scanner

Special Topic: Alan Kay and the Smalltalk Language
Chapter Summary
Solutions to Self-Study Exercises

Exercises

61

Sknng
-valle
-caunk

+ Stringl]

+ Stringlin s Sthng)
+[enghh(]: int

+ concalin s: Sthing): Sthing

+ equalsins: Sthing): boolean

Figure 2.1: A partial representa-
tion of the String class.

62 CHAPTER 2 o Objects: Using, Creating, and Defining
2.1 Introduction

This chapter introduces some more of the basic principles of object-
oriented programming. We begin by looking at some examples of creat-
ing and using objects of type String and Graphics. Then, we examine
how user defined classes are used by doing a detailed walk-through of the
Riddle class we saw in Chapter 1. We focus on the basic Java language
elements involved. By the end of these sections, you should know how to
identify the key elements that make up a Java program.

We then present a detailed example of the programming development
process by designing a class that models a certain two person game and
implements the class. The design is represented using UML notation.

2.2 Using String Objects

As we know, a Java program is a collection of interacting objects, where
each object is a module that encapsulates a portion of the program’s at-
tributes and actions. Objects belong to classes, which serve as templates
or blueprints for creating objects. Think again of the cookie cutter analogy.
A class is like a cookie cutter. Just as a cookie cutter is used to shape and
create individual cookies, a class definition is used to shape and create
individual objects.

Programming in Java is primarily a matter of designing and defining
class definitions, which are then used to construct objects. The objects
perform the program’s desired actions. To push the cookie cutter analogy
a little further, designing and defining a class is like building the cookie
cutter. Obviously, very few of us would bake cookies if we first had to
design and build the cookie cutters. We’d be better off using a pre-built
cookie cutter. By the same token, rather than designing our own classes,
it will be easier to get into “baking” programs if we begin by using some
predefined Java classes.

The Java library contains many pre-defined classes that we will use in
our programs. So let’s begin our study of programming by using two of
these classes, the St ring and Graphics classes.

221 Creating and Combining Strings

Strings are very useful objects in Java and in all computer programs. They
are used for inputting and outputting all types of data. Therefore, it
essential that we learn how to create and use String objects.

Figure 2.1 provides an overview of a very small part of Java’s String
class. In addition to the two String () constructor methods, which are
used to create strings, it lists several useful instance methods that can
be used to manipulate strings. The String class also has two instance
variables. One stores the String’s value, which is a string of characters
such as “Hello98”, and the other stores the St ring’s count, which is the
number of characters in its string value.

Recall from Chapter 0 that in order to get things done in a program we
send messages to objects. The messages must correspond to the object’s
instance methods. Sending a message to an object is a matter of calling
one of its instance methods. In effect, we use an object’s methods to get the

SECTION 2.2 e Using String Objects 63

object to perform certain actions for us. For example, if we havea String,
named str and we want to find out how many characters it contains, we
can call its length () method, using the expression str.length (). If
we want to print str’s length, we can embed this expression in a print
statement:

(N
kSystem.out.println(str.length()); // Print str’s length J

In general, to use an object’s instance method, we refer to the method in Dot notation
dot notation by first naming the object and then the method:

objectName.methodName() ;

The objectName refers to a particular object, and the methodName () refers
to one of its instance methods.

As this example makes clear, instance methods belong to objects, and in
order to use a method, you must first have an object that has that method.
So, to use one of the St ring methods in a program, we must first create
a String object.

To create a String object in a program, we first declare a String strString
variable.
| ‘ value = “Hello™
LString str, // Declare a String variable named str J |:|:||_||'|‘t =5
We then create a St ring object by using

the new keyword in conjunction with one of the String () construc-
tors. We assign the new object to the variable we declared:

‘ - Figure 2.2: A St ring object stores
Lstr = new String(),' // Create a String object J a sequence of characters and a

count giving the number of char-
This example will create a String that contains, as its value, the word acters.

“Hello” that is passed in by the constructor. The St ring object that this
creates is shown in Figure 2.2.

We can also use a constructor with an empty parameter list. Note that
in this case we combine the variable declaration and the object creation into
one statement:

B -
LString str2 = new Stl‘il‘lg(); // Create a String J m‘;
This example will create a St ring object that contains the empty string value = “™
as its value. The empty string has the literal value ”” — that is, a pair of count = 0
double quotes that contain no characters. Because the empty string has no
characters, the count variable stores a zero (Fig. 2.3).

Note that we use a constructor to assign an initial value to a variable of
type String (or of a type equal to any other class). This differs from how
we assign an initial value to variables of primitive type, for which we use
a simple assignment operator. This difference is related to an important
difference in the way Java treats these two types of variables. Variables
of primitive type are names for memory locations where values of prim-
itive type are stored. As soon as they are declared they are assigned a
default value of that primitive type. The default value for int is 0 and

Figure 2.3: The empty string has a
value of ”” and a its length is 0.

64 CHAPTER 2 o Objects: Using, Creating, and Defining

the default value for boolean is false. On the other hand, variables
that are declared to be of a type equal to a class name are designed to store
a reference to an object of that type. (A reference is also called a pointer
because it points to the memory address where the object itself is stored.)
A constructor creates an object somewhere in memory and supplies a ref-
erence to it that is stored in the variable. For that reason, variables that
are declared as a type equal to a class name are said to be variables of
reference type or reference variables. Reference variables have a special
default value called null after they are declared and before they are as-
signed a reference. It is possible to check whether or not a reference vari-
able contains a reference to an actual object by checking whether or not it
contains this null pointer.

Once you have constructed a String object, you can use any of the
methods shown in Figure 2.1 on it. As we already saw, we use dot no-
tation to call one of the methods. Thus, we first mention the name of the
object followed by a period (dot), followed by the name of the method. For
example, the following statements print the lengths of our two strings:

| System.out.println(str.length ());
‘ System.out. println (str2.length ()); ‘

Another useful String method is the concat (String) method,
which can be used to concatenate two strings. This method takes a String
argument. It returns a St ring that combines the St ring argument to the
String that the method is called on. Consider this example:

String sl = new String() |
String s2 = new String () ‘

p
|
‘ System.out. println(sl.concat(s2)); ‘

In this case, the concat () method adds the String s2 to the end of the
String s1. The result, which gets printed, will be the String "George
Washington”.

Because strings are so important, Java allows a number of shortcuts
to be used when creating and concatenating strings. For example, you
don’t have to use new String () when creating a new string object. The
following code will also work:

‘ String sl = ;
‘ String s2 = ;

\
l

Similarly, an easier way to concatenate two St ring objects is to use the
plus sign (+), which serves as a concatenation operator in Java:

e ‘
| System.out.println (sl + s2); J
N

Another useful String method is the equals () method. This is
a boolean method, which is used to compare two Strings. If both
Strings have the same characters, in the same order, it will return true.

SECTION 2.2 e Using String Objects 65

Otherwise it will return false. For example, consider the following code
segment:

‘ String sl = ; ‘
| String s2 = ; \
‘ String s3 = : ‘

In this case, the expression s1.equals (s2) will be true,but s1.equals (s3)
will be false.

It is important to note that the empty string is not the same asa St ring
variable that contains null. Executing the statements:

‘ String s1; ‘
| String s2 = ; \
tSystem.out.println(sl.equals(sZ)); J

will not only not print out t rue; it will cause the the program to terminate
abnormally. It is an error to use the method of a St ring variable, or any
other variable whose type is a class, before it has been assigned an object.
When the above code is executed, it will report a null pointer exception,
one of the most common runtime errors. When you see that error mes-
sage, it means that some method was executed on a variable that does not
refer to an object. On the other hand, the empty string is a perfectly good
St ring object which just happens to contain zero characters.

Figure 2.4 shows a program that uses string concatenation to create

public class StringPuns
{
public static void main(String args[])
{ String s = new String();
String sl = s.concat();
System.out. println (+ s1);
String s2 = ;
String s3 = s + ;
System.out. println(s2 + s3);
System.out. println (+

String s4 new String ();
String s5 = ;
System.out. print(s4.length ());
System.out. println(s5 + s +);
System.out. print();
System.out. print(s.equals());
System.out. println (+ s +);
String s6 = ;
System.out. println (+ s + s6);
} // main ()
} // StringPuns class

Figure 2.4: A program that prints silly string puns.

66 CHAPTER 2 o Objects: Using, Creating, and Defining

some silly sentences. The programs declares a number of string variables,
named s, s1, and so on, and it instantiates a St ring object for each vari-
able to refer to. It then prints out a top-five list using the concatenation
operator to combine strings. Can you figure out what it prints without
running it?

SELF-STUDY EXERCISES

EXERCISE 2.1 What is the output to the console window when the
following Java code fragment is executed:

String s = ; ‘
System.out. println (+ s + s + + s +

2.3 Drawing Shapes with a Graphics Object
(Optional)

All of the instance methods of the St ring class that we examined return
values. The length () method return an int value, and the concat ()
method returned a String. It is also very common for classes to define
instance methods that perform actions but do not return a value. The
Graphics object, g, that appears in Chapter 1’s HelloWorldSwing is
one example. The program is reproduced in Figure 2.5

/** File: HelloWorldSwing program x/
import javax.swing.JFrame; // Import class names
import java.awt.Graphics;
import java.awt.Canvas;
public class HelloWorldCanvas extends Canvas // Class header
// Start of body
public void paint(Graphics g)
// The paint method
g.drawString (, 10, 10);
} // End of paint

public static void main(String[] args){
HelloWorldCanvas ¢ = new HelloWorldCanvas ();
JFrame f = new JFrame ();
f.add(c);
f.setSize (150,50);
f.setVisible (true);

}

} // End

of HelloWorldCanvas

Figure 2.5: HelloWorldCanvas program source code.

SECTION 2.3 o Drawing Shapes with a Graphics Object (Optional) 67

At this point we will not worry about the language features that en-
able the paint () method to draw on the Java Swing window. We
will focus instead on the information needed to make good use of the
g.drawString () method. The first thing you should know is that, when
the paint () method is executed, its parameter, g, refers to an instance of
the Graphics class. Unlike our other examples involving variables that
refer to objects, in this case there is no need to use a constructor to create
an object of type Graphics. We can assume g already refers to such an
object.

We already know that the statement

' g.drawString (,10,10); J
N

displays the st ring “Hello, World!” in the program window. More gen-
erally, if str is a literal String value or a reference to a String object
and x and y are literal int values or int variables then

‘ g.drawString (str ,x,y) J
N

displays the String str from left to right in the program window be-
ginning at a point which is x pixels from the left edge of the window and
y pixels down from the top edge of the window. In a graphics window,
the point with coordinates (0,0) is at the top-left corner. The horizontal
axis grows positively from left to right. The vertical axis grows positively
from top to bottom (Fig. 2.6).

(A pixel is a dot on the console window that can be set to a certain
color.) Notice that increasing the value of y will cause st r to be displayed
lower. This is the opposite of the usual x and y coordinate system used in
mathematics where increasing the y value designates a higher point.

With this information about g.drawString(), we can calculate
where to display any message in the program window. For example, if
we wish to display the message “Welcome to Java” 25 pixels below where
“Hello, World!” is displayed we could use the statements

r R
| g.drawString (,10,10); |

' g.drawString (,10,35); |

in the body of HelloWorldCanvas’s paint () method. The result of
these statements would appear as shown in Figure 2.7.

2.3.1 Graphics Drawing Methods

The Graphics class discussed in the previous section also has methods
that can be used to draw geometric shapes in different colors. These meth-
ods can be used to create graphical user interfaces that are more interest-
ing or to give a visual representation of data, such as a pie chart or a bar
graph.

There are two Graphics methods for drawing rectangles, fillRect ()
and drawRect () (Fig. 2.8). The first draws a rectangle and fills it with the
current drawing color and the second just draws the outline of the rectan-
gle. Using the Graphics object, g, each of these is called in the same way

0,0 80,0

0,60 a0,60

s

Figure 2.6: Coordinate system of a
Java window.

Graphics

+ draw Rect{x yw w bl

+ fillRect{x v w h)

+ setColor{Color)

+ drawlinetxl w1 2 w2
+ drawOval {x w b

+ fillQval {x v w b

Figure 2.8: Some of the drawing
methods in the Graphics class.

68 CHAPTER 2 o Objects: Using, Creating, and Defining

® O O Drawstring Applet - Mozilla D |

§-
4.2 .3 @3

Back Forward Reload Stap

E_’:‘[Hnme Wi Bookmarks mozillaorg »

Hello Waorld

Welcome 1o Java

as the drawString () method from the previous example. Each of these
methods takes four int arguments, which specify the rectangle’s location
and size. Thus, a call to fi11Rect () would take the form

tg.fillRect(x,y,width,height); J

where x and y arguments specify the location of the upper left corner of
the rectangle as being x pixels from the left edge of the window and y
pixels down from the top edge of the window. The width and height
arguments specify the width and height of the rectangle in pixels. The
drawRect () method also takes the same four arguments.

A Graphics object stores a single color for use in drawing shapes or
displaying strings with drawString () . If we wish to draw an interesting
scene in the JFrame, we need to understand how to use colors.

For a given Graphics object, such as g, the setColor () method will
set its color for all subsequent drawing commands. The setColor ()
method takes, as an argument, an object of type Color. All we need
to know about the Color class is that it is contained in the java.awt
package and that it contains 13 constant Color objects corresponding to
13 common colors. Table 2.1 lists the 13 Color constants. Each name
corresponds to the color it will represent in the program.

Color.black Color.green Color.red
Color.blue Color.lightGreen | Color.white
Color.cyan Color.magenta Color.yellow
Color.darkGray | Color.orange

Color.gray Color.pink

Table 2.1: Predefined color constants in the Color class.

To demonstrate how the new Graphics methods can be used for cre-
ating more interesting graphical programs, let’s develop a plan for dis-
playing the two messages, “Hello, World!” and “Welcome to Java.”, on
an JFrame, but this time we will draw the first inside a colored rectan-
gle and the second inside a colored oval. For the rectangle, let’s use the

Figure 2.
drawn at
“Welcom
the JFram

SECTION 2.4 e C(lass Definition 69

drawRect () method to create its border. We can choose some arbitrary
colors, say, cyan for filling the rectangle, blue for its border, and black
for the string itself. In order to have the message visible we should fill a
rectangle with the color cyan first, then draw the border of the rectangle
in blue and, finally, display the message in black.

Drawing and filling a Graphics oval is very similar to drawing
and filling a rectangle. Notice in Figure 2.8 that the fill0Oval () and
drawOval () methods take the same four arguments as the correspond-
ing rectangle methods. An oval is inscribed within an enclosing rectangle.
The x and y arguments give the coordinates of the enclosing rectangle’s
top left point. And the width and height arguments give the enclosing
rectangles dimensions.

All that remains is to choose the location and dimensions of the rect-
angles. We could specify one rectangle as having its upper left corner 25
pixels to the right of the left edge of the JFrame and 25 pixels down from
the top edge. A medium sized rectangle could have a width of 140 pixels
and a height of 40 pixels. The statement

N
Lg.fillRect(ZS, 25, 140, 40); J

will fill this rectangle with whatever color happens to be g’s current color.
A location 25 pixels to the right of the left edge of the rectangle and 25
pixels down from the top edge of the rectangle would have coordinates
x = 50andy = 50. Thus, the statement

N
Lg.drawString(, 50, 50); J

will display “Hello, World!” inside the rectangle. We can use similar
planning to locate the oval and its enclosed message.

Thus, we now have sufficient information to finish the paint ()
method for accomplishing our plan. The completed program is displayed
in Figure 2.9. Note how we repeatedly use the g. setColor () method to
change g’s current color before drawing each element of our picture.

Figure 2.10 shows what this program looks like. To experiment with
this Java Swing application, download its sourcecode from the book’s Web
site and compile and run it on your computer. Additional drawing capa-
bilities will be explored throughout the text in sections that can either be
covered or skipped.

2.4 Class Definition

To program in Java the main thing you do is write class definitions for the
various objects that will make up the program. A class definition encapsu-
lates its objects’ data and behavior. Once a class has been defined, it serves
as a template, or blueprint, for creating individual objects or instances of the
class.

A class definition contains two types of elements: variables and meth-
ods. Variables are used to store the object’s information. Methods are used

The class as template

Variables and methods

70 CHAPTER 2 o Objects: Using, Creating, and Defining

import java.awt.x;
import javax.swing.]JFrame;

public class HelloWorldGraphic extends Canvas
{

// called after setVisible (true)

public void paint(Graphics g) {

g.setColor (Color.cyan); // Set color

g.fillRECt(ZS, 25, 140, 40); // Fill rectangle

g.setColor(Color.blue); // Set color

g.drawRect(25, 25, 140, 40); // Outline rectangle

g.setColor (Color.black); // Set color

g.drawString(, 50, 50); // Display dtring

g.setColor (Color. yellow);

g.fillOval(ZS, 75, 140, 40); // Fill oval

g.setColor (Color.red);

g.drawOval (25, 75, 140, 40); // Outline oval

g.setColor (Color.black);

g.drawString (, 50, 100);
},//pnint(;)

// the program

public static void main(String[] args){
HelloWorldCanvas ¢ = new HelloWorldCanvas ();
JFrame f = new JFrame();
f.add(c);
f.setSize (150,50);
f.setVisible (true);

}

} // HelloWorldGraphic

Riddle

- question: String
- answer: String

+ Riddleiq: String, a: String)
+ getQuestiont): String
+ geténswery) String

Figure 2.11: The Riddle class.

Figure 2.9: The HelloWorldGraphic class is a Java Swing program that
shows how to use color and drawing methods.

to process the information. To design an object you need to answer five
basic questions:

1. What role will the object perform in the program?
What data or information will it need?

What actions will it take?

What interface will it present to other objects?
What information will it hide from other objects?

24.1 The Riddle Class

Recall our definition of the Riddle class from Chapter 1, which is sum-
marized in the UML diagram in Figure 2.11. A Riddle has two attributes,
question and answer. Each of these variables stores a string of charac-
ters, which Java treats as data of type St ring. The Riddle class contains
three methods. The Riddle () constructor method assigns initial values
(g and a) to its question and answer variables. The getQuestion ()
and getAnswer () methods return the data stored in question ands
answer respectively.

G LN

SECTION 2.4 e Class Definition 71
‘his is how the

aphic program | ® O O Hello Graphic- ... O |
un.
4. % .3
¢ Back Forward Reload 5
EﬂHnmE i Bookmarks »

el World ‘

Welcome tolava k.
s

(& : AR

The instance variables question and answer are designated as
private (=), but the Riddle (), getQuestion () and getAnswer ()
methods are designated as public (4). These designations follow two
important object-oriented design conventions, whose justification will be-
come apparent as we discuss the Riddle class:

PANLSIIE@INNAERIERIEN)| Private Variables. Instance variables are %
usually declared private so that they cannot be directly accessed by /1
other objects.

VAN GUAPBIERI(@N] Public Methods. An object’s public %
methods can be used by other objects to interact with the object. The /1
public methods and variables of an object make up its interface.

Figure 2.12 shows the Java class definition that corresponds to the de-
sign given in the UML diagram. It contains the two private instance
variables and defines the three public methods listed in the UML dia-
gram. In a Java class definition, access to a class element, such as a vari-
able or a method, is controlled by labeling it with either the private, or
public access modifier. An access modifier is a declaration that controls Access modifier
access to a class or one of its elements. Note also that the Riddle class
itself is declared public. This lets other classes have access to the class
and to its public variables and methods.
Recall that a class is like a blueprint or a cookie cutter. The Riddle class
defines the type of information (attributes) that each individual Riddle
has, but it doesn’t contain any actual values. It defines the methods (op-
erations) that each Riddle can perform, but it doesn’t actually perform
the methods. In short, a class serves as a template, providing a detailed
blueprint of the objects (or instances) of that class. Class as blueprint

User interface

User
I nterface

Hzer

Lomputational
Object

Figure 2.13: The user interfaces
handles interaction between the
user and the rest of the program.

72 CHAPTER 2 o Objects: Using, Creating, and Defining

public class Riddle
{ private String question; //Instance
private String answer;

variables

public Riddle(String q, String a) // Constructor
{ question = q;

answer = a;
Yo/

Riddle constructor

Instance method

public String getQuestion() //
{ return question;

/7
}o/

public String getAnswer() //
{ return answer;
} // getAnswer ()

} //Riddle

getQuestion ()

Instance method

class

Figure 2.12: Definition of the Riddle class.

2.4.2 The RiddleUser Class

Now that we have defined the Riddle class, we can test that it works
correctly by creating Riddle objects and “asking” them to tell us their
riddles. To do this we need to define a main () method, which can be
defined either within the Riddle class itself or in a second class named
something like RiddleUser.

One advantage of using a second class is that it gets us in the habit of
thinking about the need for a separate class to serve as a user interface,
with a separate set of tasks from the Riddle class. A user interface is an
object or class that handles the interaction between a program’s user and
the rest of the program’s computational tasks. This concept is illustrated
in Figure 2.13. Note that we use the general term computational object to
distinguish the rest of the program’s computations from the user interface.
Obviously, the exact nature of the computation will vary from program to
program, just as will the details of the user interface. The computation
done by our Riddle class is just the storing and displaying of a riddle’s
question and answer.

By separating user interface tasks from riddle tasks this design em-
ploys the divide-and-conquer principle: the RiddleUser class will cre-
ate Riddle objects and handle interactions with the user, and the Riddle
class will handle the storing and transmission of riddle information. Thus,
as shown in Figure 2.14, this particular Java program will involve inter-
action between two types of objects: a RiddleUser and one or more
Riddles. Note that we characterize the relationship between Riddle
and RiddleUser with a one-way arrow labeled “Uses.” This is because
the RiddleUser will create an instance of Riddle and use its methods
to display (for the user) a riddle.

Because almost all of our programs will involve some form of a user in-
terface, we can generalize this design approach and follow it throughout
the book. One way to think about this approach is as a division of labor

is UML class di-
ts an association
iddleUser and

The Riddle-
use one or more
ddle class.

SECTION 2.4 e C(lass Definition 73

Riddlelser
- riddle; Riddle

+ maini)

Uzes

Riddle

- question: 3tring
- answer: 3tring

+ Riddle{q: String, a: String)
+ getQuestiont) : String
+ getdnswer(): String

between a user interface class and a second computational class, which per-
forms whatever computations are needed by the particular program. In
this case the computations are the simple Riddle methods that we have
defined. In subsequent programs the computations will become more
complex, which will make all the more clear that they should be separated
from the user interface.

2.4.3 Object Instantiation: Creating Riddle Instances

Figure 2.15 shows the complete definition of the RiddleUser class,
which serves as a very simple user interface. It creates two Riddle ob-
jects, named riddlel and riddle2. It then asks each object to request
each riddle’s question and answer and displays them on the console.

public class RiddleUser

{
public static void main(String argv[])
{ Riddle riddlel = new Riddle(

);
Riddle riddle2 = new Riddle

);
System.out. println ();
System.out. println (riddlel. getQuestion ());
System.out. println (riddle2. getQuestion ());
System.out. println ();
System.out. println (riddlel.getAnswer());
System.out. println ();
System.out. println (riddle2.getAnswer ());
} // main ()
} // RiddleUser

Figure 2.15: The RiddleUser class.

Method call

74 CHAPTER 2 o Objects: Using, Creating, and Defining

Let’s now discuss the statements that make up RiddleUser’s main ()
method. The following statements use the Riddle () constructor to cre-
ate, or instantiate, two instances of the Riddle class:

| Riddle riddlel = new Riddle(|
‘ "What is black and white and red all over?”, ‘
‘ “An embarrassed zebra.”); ‘
' Riddle riddle2 = new Riddle(\
‘ "What is black and white and read all over?”, ‘
‘ “A newspaper.”); ‘

Note how the constructor gives each object a pair of Strings that serve
as the values of their two instance variables. Each object has its own
question and its own answer, and each object has its own unique name,
riddlel and riddle2.

2.4.4 Interacting with Riddles

Once we have created Riddle instances with values assigned to their
question and answer instance variables, we can ask each riddle to tell
us either of its values. The following expression is an example of a method
call:

-
triddlel . getQuestion () J

Calling (or invoking) a method is a means of executing its code. The above
method call just gets the St ring value that is stored in the question
instance variable of riddlel.

IE\Z:NGNO/ERVAV I INENNIE Method Call versus Method
Definition. Don’t confuse method calls with method definitions. The
definition specifies the method’s actions. The method call takes those
actions.

If we want to display the value of riddlel’s question, we can embed
this method call within a println () statement

-
tSystem .out.println(riddlel. getQuestion ()); J

This tells the System.out object to execute its println () method,
which displays the string given to it by riddlel on the console. Thus,
the output produced by this statement will be

-
t What is black and white and red all over? J

2.4.5 Define, Create, Use

As our Riddle example illustrates, writing a Java program is a matter of
three basic steps:

e Define one or more classes (class definition).

SECTION 2.4 e C(lass Definition 75

o Create objects as instances of the classes (object instantiation).
o Use the objects to do tasks (object use).

The Java class definition determines what information will be stored in
each object and what methods each object can perform. Instantiation cre-
ates an instance and associates a name with it in the program. The ob-
ject’s methods can then be called as a way of getting the object to perform
certain tasks.

76 CHAPTER 2 o Objects: Using, Creating, and Defining

SELFE-STUDY EXERCISES

EXERCISE 2.2 Identify the following elements in the Riddle class
(Fig. 2.12):

e The name of the class.
e The names of two instance variables.

e The names of three methods.

EXERCISE 2.3 Identify the following elements in the RiddleUser
class (Fig. 2.15):

e The names of two Riddle instances.
o All six method calls of the Ridd1le objects in the program.

e Two examples of qualified names.

2.5 CASE STUDY: Simulating a Two-Person
Game

In this section, we will design and write the definition for a class that keeps
track of the details of a well known, two-person game. We will focus on
details of designing the definition of a class in the Java language. Our
objective is to understand what the program is doing and how it works
without necessarily understanding why it works the way it does. We will
get to “why” later in the book.

The game we will consider is played by two persons with a row of
sticks or coins or other objects. The players alternate turns. A player must
remove one, two, or three sticks from the row on his or her turn. The
player who removes the last stick from the row loses. The game can be
played with any number of sticks but starting with twenty one sticks is
quite common. This game is sometimes referred to as the game of "Nim”,
but there is a similar game involving multiple rows of sticks that is more
frequently given that name. Thus we will refer to this game as “One Row
Nim”.

2.5.1 Designing a OneRowNim class

Problem Specification

Let’s design a class named OneRowNim that simulates the game of One
Row Nim with a row of sticks. An object constructed with this class
should manage data that corresponds to having some specified number
of sticks when the game begins. It should keep track of whose turn it is
and it should allow a player to diminish the number of sticks remaining by
one, two, or three. Finally, a OneRowNim object should be able to decide
when the game is over and which player has won.

Problem Decomposition

Let’s design OneRowNim so that it can be used in with different kinds of
user interfaces. One user interface could manage a game played by two
persons who alternately designate their moves to the computer. Another
user interface could let a human player play against moves made by the

SECTION 2.5 o CASE STUDY: Simulating a Two-Person Game 77

computer. In either of these cases we could have a human player desig-
nate a move by typing from the keyboard after being prompted in a con-
sole window or, alternatively, by inputting a number into a text field or se-
lecting a radio button on a window. In this chapter, we will be concerned
only with designing an object for managing the game. We will design user
interfaces for the game in subsequent chapters.

Class Design: OneRowNim

As we saw in the Ridd1le example, class definitions can usually be broken
down into two parts: (1) the information or attributes that the object needs
which must be stored in variables, and (2) the behavior or actions the ob-
ject can take which are defined in methods. In this chapter, we will focus
on choosing appropriate instance variables and on designing methods as
blocks of reusable code. Recall that a parameter is a variable that tem-
porarily stores data values that are being passed to a method when that
method is called. In this chapter, we will restrict our design to methods
that do not have parameters and do not return values. We will return to
the problem of designing changes to this class in the next chapter after an
in-depth discussion of method parameters and return values.

The OneRowNim object should manage two pieces of information that
vary as the game is played. One is the number of sticks remaining in the
row and the other is which player has the next turn. Clearly, the number
of sticks remaining corresponds to a positive integer that can be stored in
a variable of type int. One suitable name for such a variable is nSt icks.
For this chapter, let us assume that the game starts with 7 sticks, rather
than 21, to simplify discussion of the program.

Data designating which player takes the next turn could be stored in
different ways. One way to do this is to think of the players as player one
and player two and store a 1 or 2 in an int variable. Let’s use player as
the name for such a variable and assume that player one has the first turn.

The values of these two variable for a particular OneRowNim object at a
particular time describes the object’s state. An object’s state at the begin-
ning of a game is a 7 stored in nSticks and 1 stored in player. After
player one removes, say, two sticks on the first turn, the values 5 and 2
will be stored in the two variables.

Method Decomposition

Now that we have decided what information the OneRowNim object
should manage, we need to decide what actions it should be able to per-
form. We should think of methods that would be needed to communicate
with a user interface that is both prompting some human players as well
as receiving moves from them. Clearly, methods are needed for taking a
turn in the game. If a message to a OneRowNim object has no argument
to indicate the number of sticks taken, there will need to be three meth-
ods corresponding to taking one, two, or three sticks. The method names
takeOne (), takeTwo (), and takeThree () are descriptive of this ac-
tion. Each of these methods will be responsible for reducing the value of
nSticks as well as changing the value of player.

What data do we need?

What methods do we need?

One R Mim
- n5ticks: int=7
- player:int =1
+ takeOner)
+ takeTwol)

+ takeThree()
+ repart()

Figure 2.16: A UML class diagram
for OneRowNim.

Object

OneRowMim

Figure 2.17: By default,
OneRowNim 1is a subclass of
Object.

Variables and methods

Class-level vs. local variables

78 CHAPTER 2 o Objects: Using, Creating, and Defining

We should also have a method that gives the information that a user
needs when considering a move. Reporting the number of sticks remain-
ing and whose turn it is to the console window would be an appropriate
action. We can use report () as a name for this action.

Figure 2.16 is a UML class diagram that summarizes this design of the
OneRowNim class. Note that the methods are declared public (+) and
will thereby form the interface for a OneRowNim object. These will be the
methods that other objects will use to interact with it. Similarly, we have
followed the convention of designating an object’s instance variables—the
OneRowNim’s instance variables—be kept hidden from other objects, and
so we have designated them as private(—).

2.5.2 Defining the OneRowNim Class

Given our design of the OneRowNim class as described in Figure 2.16,
the next step in building our simulation is to begin writing the Java class
definition.

The Class Header

We need a class header, which will give the class a name and will spec-
ify its relationship to other classes. Like all classes that are designed to
create objects that could be used by other objects or classes, the class
OneRowNim should be preceded by the public modifier. Because the
class OneRowNim has not been described as having any relationship to
any other Java class, its header can omit the extends clause so it will
be a direct subclass of Object (Figure 2.17). Thus, the class header for
OneRowNim will look like:

public class OneRowNim // Class header

‘/
‘{ // Beginning of class body

-

k} // End of class body

The Class’s Instance Variables

The body of a class definition consists of two parts: the class-level vari-
ables and the method definitions. A class-level variable is a variable
whose definition applies to the entire class in which it is defined. Instance
variables, which were introduced in Chapter 1, are one kind of class-level
variable.

In general, a class definition will take the form shown in Figure 2.18.

Although Java does not impose any particular order on variable and
method declarations, in this book we’ll define the class’s class-level vari-
ables at the beginning of the class definition, followed by method defini-
tions. Class-level variables are distinguished from local variables. A local
variable is a variable that is defined within a method. Examples would
be the variables g and a that were defined in the Riddle (String q,
String a) constructor (Fig. 2.12). As we will see better in Chapter 3,
Java handles each type of variable differently.

A declaration for a variable at class level must follow the rules for
declaring variables that were described in Section 1.4.8 with the added

SECTION 2.5 o CASE STUDY: Simulating a Two-Person Game 79

public class ClassName

{ // Instance and «class variables
VariableDeclarationl
VariableDeclaration?2

// Instance and class methods
MethodDefinition1
MethodDefinition2

} // End of class

Figure 2.18: A template for constructing a Java class definition.

restriction that they should be modified by one of the access modifiers
public, private, or protected. The rules associated with these access
modifiers are:

e A private class-level variable cannot be accessed outside the class
in which it is declared.

e A public class-level variable can be referenced and, hence, modi-
fied by any other class.

e A protected class-level variable can only be accessed by sub-
classes of the class in which it is declared or by other classes that
belong to the same package.

When a class, instance variable, or method is defined, you can declare it
public, protected, or private. Or you can leave its access unspeci-
fied, in which case Java’s default accessibility will apply.

Java determines accessibility in a top-down manner. Instance vari-
ables and methods are contained in classes, which are contained in pack-
ages. To determine whether a instance variable or method is accessible,
Java starts by determining whether its containing package is accessible,
and then whether its containing class is accessible. Access to classes, in-
stance variables, and methods is defined according to the rules shown in
Table 2.2.

TABLE 2.2 Java’s accessibility rules.

Element Modifier Rule

Class public Accessible if its package is accessible.
by default Accessible only within its package.

Instance variable public Accessible to all other objects.
or protected Accessible to its subclasses and to
instance method other classes in its package.
private Accessible only within the class.

by default Accessible only within the package.

Recall the distinction we made in Chapter 0 between class variables
and instance variables. A class variable is associated with the class it-

80 CHAPTER 2 o Objects: Using, Creating, and Defining

self, whereas an instance variable is associated with each of the class’s in-
stances. In other words, each object contains its own copy of the class’s in-
stance variables, but only the class itself contains the single copy of a class
variable. To designate a variable as a class variable it must be declared
static.

The Riddle class that we considered earlier has the following two
examples of valid declarations of instance variables:

‘ private String question;
tprivate String answer;

Class Level Variables for OneRowNim

Let’'s now consider how to declare the class level variables for the
OneRowNim class. The UML class diagram for OneRowNim in Figure 2.16
contains all the information we need. The variablesnSticks and player
will store data for playing one game of One Row Nim, so they should
clearly be private instance variables. They both will store integer values,
so they should be declared as variables of type int. Because we wish
to start a game of One Row Nim using 7 sticks with player one making
the first move, we will assign 7 as the initial value for nSticks and 1 as
the initial value for player. If we add the declarations for our instance
variable declarations to the class header for the OneRowNim class, we get
the following:

public class OneRowNim
{

private int nSticks = 7;
private int player = 1;

//Method definitions go here

} // OneRowNim

To summarize, despite its apparent simplicity, a class level variable
declaration actually accomplishes five tasks:

1. Sets aside a portion of the object’s memory that can be used to store a
certain type of data.

Specifies the type of data that can be stored in that location.
Associates an identifier (or name) with that location.

Determines which objects have access to the variable’s name.

Assigns an initial value to the location.

G LN

OneRowNim’s Methods

Designing and defining methods is a form of abstraction. By defining a
certain sequence of actions as a method, you encapsulate those actions
under a single name that can be invoked whenever needed. Instead of
having to list the entire sequence again each time you want it performed,
you simply call it by name. As you recall from Chapter 1, a method def-
inition consists of two parts, the method header and the method body.

SECTION 2.5 o CASE STUDY: Simulating a Two-Person Game 81

The method header declares the name of the method and other general
information about the method. The method body contains the executable
statements that the method performs.

‘ public void methodName () // Method header
‘ { // Beginning of method body
‘ } // End of method body

The Method Header

The method header follows a general format that consists of one or
more MethodModifiers, the method’s ResultType, the MethodName, and the
method’s FormalParameterList, which is enclosed in parentheses. The fol-
lowing table illustrates the method header form, and includes several ex-
amples of method headers that we have already encountered. The method
body follows the method header.

MethodModifiers,,; ResultType MethodName (FormalParameterList)

public static void main (String argv([])
public void paint (Graphics g)

public Riddle (String g, String a)
public String getQuestion ()

public String getAnswer ()

The rules on method access are the same as the rules on instance vari-
able access: private methods are accessible only within the class it-
self, protected methods are accessible only to subclasses of the class
in which the method is defined and to other classes in the same package,
and public methods are accessible to all other classes.

A\ SIS @I NAVAERB) BRI (@) Public versus Private Methods. If a
method is used to communicate with an object, or if it passes
information to or from an object, it should be declared public. Ifa
method is intended to be used solely for internal operations within the
object, it should be declared private. These methods are sometimes
called utility methods or helper methods.

Recall the distinction from Chapter 0 between instance methods and
class methods. Methods declared at the class level are assumed to be in-
stance methods unless they are also declared static. The static modifier
is used to declare that a class method or variable is associated with the
class itself, rather than with its instances. Just as for static variables,
methods that are declared static are associated with the class and are
therefore called class methods. As its name implies, an instance method can
only be used in association with an object (or instance) of a class. Most
of the class-level methods we declare will be instance methods. Class
methods are used only rarely in Java and mainly in situations where it

Designing a method is an application
of the encapsulation principle.

82 CHAPTER 2 o Objects: Using, Creating, and Defining

is necessary to perform some kind calculation before objects of the class
are created. We will see examples of class methods when we discuss the
Math class, which has such methods as sqgrt (N) to calculate the square
root of N.

IE\ZN SNV IN(€QNIE Class versus Instance Methods. If a
method is designed to be used by an object, it is referred to as an
instance method. No modifier is needed to designate an instance
method. Class methods, which are used infrequently compared to
instance methods, must be declared static.

All four of the methods in the OneRowNim class are instance methods
(Fig. 2.19). They all perform actions associated with a particular instance

public class OneRowNim

{ private int nSticks = 7; // Start with 7 sticks.
private int player = 1; // Player 1 plays first.
public void takeOne(){ } // Method bodies need
public void takeTwo(){ } // to be defined.
public void takeThree(){ }

public void report(){ }
} //OneRowNim class

Figure 2.19: The Instance variables and method headers for the
OneRowNim class.

of OneRowNim. That is, they are all used to manage a particular One Row
Nim game. Moreover, all four methods should be declared public, be-
cause they are designed for communicating with other objects rather than
for performing internal calculations. Three of the methods are described
as changing the values of the instance variables nSticks and player
and the fourth, report (), writes information to the console. All four
methods will receive no data when being called and will not return any
values. Thus they should all have void as a return type and should all
have empty parameter lists.

Given these design decisions, we now can add method headers to our
class definition of OneRowNim, in Figure 2.19. The figure displays the class
header, instance variable declarations, and method headers.

The Method Body

The body of a method definition is a block of Java statements enclosed
by braces, , which are executed in sequence when the method is called.
The description of the action required of the takeOne () method is typ-
ical of many methods that change the state of an object. The body of
the takeOne () method should use a series of assignment statements
to reduce the value stored in nSticks by one and change the value in

SECTION 2.5 o CASE STUDY: Simulating a Two-Person Game 83

player from 2 to 1 or from 1 to 2. The first change is accomplished in a
straightforward way by the assignment:

LnSticks = nSticks — 1;

PN

This statement says subtract 1 from the value stored in nSticks and
assign the new value back to nSticks.

Deciding how to change the value in player is more difficult because
we do not know whether its current value is 1 or 2. If its current valueis 1,
its new value should be 2; if its current value is 2, its new value should be
1. Notice, however, that in both cases the current value plus the desired
new value are equal to 3. Therefore, the new value of player is equal to
3 minus its current value. Writing this as an assignment we have:

o/

Lplayer = 3 — player;

One can easily verify that this clever assignment assigns 2 to player if its
current value is 1 and assigns 1 to it if its current value is 2. In effect, this
assignment will toggle the value off player between 1 and 2 each time
it is executed. In the next chapter we will introduce the i f-else control
structure that would allow us to accomplish this same toggling action in
a more straightforward manner. The complete definition of takeOne ()
method becomes:

public void takeOne ()
{

‘ nSticks = nSticks — 1; // Take one stick
‘ player =3 - player; // Change to other player

~.

The takeTwo () and takeThree () methods are completely analogous
to the takeOne () method with the only difference being the amount
subtracted from nSticks.

The body of the report () method must merely print the cur-
rent values of the instance variables to the console window with
System.out.println(). To be understandable to someone using a
OneRowNim object, the values should be clearly labeled. Thus the body
of report () could contain:

System.out. println (+ nSticks);
y P
‘ System.out. println (+ player);

This completes the method bodies of the OneRowNim class. The com-
pleted class definition is shown in Figure 2.20. We will discuss alterna-
tive methods for this class in the next chapter. In Chapter 4, we will de-
velop several One Row Nim user interface classes that will facilitate a user
indicating certain moves to make.

84 CHAPTER 2 o Objects: Using, Creating, and Defining

public class OneRowNim
{ private int nSticks = 7; // Start with 7 sticks .
private int player = 1; //Player 1 plays first.

public void takeOne ()

{ nSticks = nSticks — 1;
player = 3 — player;

} // takeOne ()

public void takeTwo ()

{ nSticks = nSticks — 2;
player = 3 — player;

} // takeTwo ()

public void takeThree ()

{ nSticks = nSticks — 3;
player = 3 — player;

} // takeThree ()

public void report()

{ System.out.println (+ nSticks);
System.out. println (+ player);
} // report ()

} // OneRowNiml class

Figure 2.20: The OneRowNim class definition.

2.5.3 Testing the OneRowNim Class

Recall our define, create, and use mantra from Section 2.4.5. Now that we
have defined the OneRowNim class, we can test whether it works correctly
by creating OneRowNim objects and using them to perform the actions as-
sociated with the game. At this point, we can test OneRowNim by defining
amain () method. Following the design we used in the riddle example,
we will locate the main () method in separate, user interface class, named
OneRowNimTester.

The body of main () should declare a variable of type OneRowNim and
create an object for it to refer to. The variable can have any name, but a
name like game would be consistent with it recording moves in a single
game. To test the OneRowNim class, we should make a typical series of
moves. For example, three moves taking 3, 3, and 1 sticks respectively
would be one way that the 7 sticks could be removed. Also, executing
the report () method before the first move and after each move should
display the current state of the game in the console window so that we can
determine whether it is working correctly.

The following pseudocode outlines an appropriate sequence of state-
ments in amain () method:

SECTION 2.5 o CASE STUDY: Simulating a Two-Person Game 85

Declare a variable of type OneRowNim named game.
Instantiate a OneRowNim object to which game refers.
Command game to report.

Command game to remove three sticks.

Command game to report.

Command game to remove three sticks.

Command game to report.

Command game to remove one stick.

Command game to report.

0P NG LN

It is now an easy task to convert the steps in the pseudocode outline
into Java statements. The resulting main () method is shown with the
complete definition of the OneRowNimTester class:

public class OneRowNimTester
{ public static void main(String args|[])
{ OneRowNiml game = new OneRowNim () ;
game.report ();
game. takeThree ();
game.report ();
game. takeThree ();
game.report ();
game. takeOne () ;
game.report ();
} // main ()

}

When it is run, OneRowNimTester produces the following output:

Number of sticks left: 7
Next turn by player 1
Number of sticks left: 4
Next turn by player 2
Number of sticks left: 1
Next turn by player 1
Number of sticks left: 0
Next turn by player 2

This output indicates that player 1 removed the final stick and so player 2
is the winner of this game.

SELE-STUDY EXERCISES

EXERCISE 2.4 Add a new declaration to the Riddle class for a
private String instance variable named hint. Assign the variable
an initial value of "This riddle is too easy for a hint".

EXERCISE 2.5 Write a header for a new method definition for Riddle

named getHint (). Assume that this method requires no parameters
and that it simply returns the St ring value stored in the hint instance
variable. Should this method be declared public or private?

Figure 2.21: The method call and
return control structure. It’s im-
portant to realize thatmethodl ()
and method2 () may be con-
tained in different classes.

Default returns

86 CHAPTER 2 o Objects: Using, Creating, and Defining

EXERCISE 2.6 Write a header for the definition of a new public
method for Riddle named setHint () which sets the value of the hint
instance variable to whatever String value it receives as a parameter.
What should the result type be for this method?

EXERCISE 2.7 Create a partial definition of a Student class. Create
instance variables for the first name, last name, and an integer student
identification number. Write the headers for three methods. One method
uses three parameters to set values for the three instance variables. One
method returns the student identification number. The last method re-
turns a String containing the student’s first name and last name. Write
only the headers for these methods.

2.5.4 Flow of Control: Method Call and Return

A program’s flow of control is the order in which its statements are ex-
ecuted. In an object-oriented program, control passes from one object to
another during the program’s execution. It's important to have a clear
understanding of this process.

In order to understand a Java program, it is necessary to understand the
method call and return mechanism. We will encounter it repeatedly. A
method call causes a program to transfer control to a statement located in
another method. Figure 2.21 shows the method call and return structure.

method1() method2()
l I—» statementl;
method2(); —=—
nextstatementl;
' return;

In this example, we have two methods. We make no assumptions about
where these methods are in relation to each other. They could be defined
in the same class or in different classes. The methodl () method executes
sequentially until it calls method2 (). This transfers control to the first
statement in method2 (). Execution continues sequentially through the
statements in method2 () until the return statement is executed.

N WAW(C{OYN@MNEINE Return Statement. The return
statement causes a method to return control to the calling
statement—that is, to the statement that called the method in the first
place.

Recall that if a void method does not contain a return statement, then
control will automatically return to the calling statement after the invoked
method executes its last statement.

2.5.5 Tracing the OneRowNim Program

To help us understand the flow of control in OneRowNim, we will perform
a trace of its execution. Figure 2.22 shows all of the Java code involved in
the program. In order to simplify our trace, we have moved the main ()
method from OneRowNimTester to the OneRowNim class. This does not

SECTION 2.5 e

CASE STUDY: Simulating a Two-Person Game

2 { private int nSticks = 7; // Start with 7 sticks .
3 private int player = 1; //Player 1 plays first.
public void takeOne ()
20 { nSticks = nSticks — 1;
21 player = 3 — player;
} // takeOne ()
public void takeTwo ()
{ nSticks = nSticks — 2;
player = 3 — player;
} // takeTwo ()
public void takeThree ()
8,14 { ~nSticks = nSticks — 3;
9,15 player = 3 — player;
} // takeThree ()
public void report()
5,11,17,23 { System.out.println(
6,12,18,24 System . out. println (
} // report ()
public static void main(String args[])
1 { OneRowNiml game = new OneRowNiml ();
4 game.report ();
7 game. takeThree ();
10 game.report ();
13 game. takeThree ();
16 game.report ();
19 game . takeOne () ;
22 game.report ();
23 } // main ()

public class OneRowNim

+ nSticks);
+ player);

} //OneRowNiml

class

Figure 2.22: A trace of the OneRowNim program.

affect the program’s order of execution in any way. But keep in mind that
the code in the main () method could just as well appear

in the OneRowNimTester class. The listing in Figure 2.22 also adds
line numbers to the program to show the order in which its statements are
executed.

Execution of the OneRowNim program begins with the first statement
in the main () method, labeled with line number 1. This statement de-
clares a variable of type OneRowNim named game and calls a constructor
OneRowNim () to create and initialize it. The constructor, which in this
case is a default constructor, causes control to shift to the declaration of
the instance variables nSt icks and player in statements 2 and 3, and as-
signs them initial values of 7 and 1 respectively. Control then shifts back to
the second statement inmain (), which has the label 4. At this point, game
refers to an instance of the OneRowNim class with an initial state shown in
Figure 2.23. Executing statement 4 causes control to shift to the report ()

game : OneRowNim
nSticks :int = 7
player :int = 1

Figure 2.23: The initial state of
game, a OneRowNim object.

game : OneRowNim
nSticks :int = 4
player :int = 2

Figure 2.24: The state of game af-
ter line 9 is executed.

88 CHAPTER 2 o Objects: Using, Creating, and Defining

method where statements 5 and 6 use System.out .println () to write
the following statements to the console.

‘ Number of sticks left: 7
| Next turn by player 1

- ____

Control shifts back to statement 7 in the main () method, which calls
the takeThree () method, sending control to the first statement of that
method. Executing statement 8 causes 3 to be subtracted from the int
value stored in the instance variable nSticks of game, leaving the value
of 4. Executing statement 9 subtracts the value stored in the player vari-
able, which is 1, from 3 and assigns the result (the value 2) back toplayer.
The state of the object game, at this point, is shown in Figure 2.24. Tracing
the remainder of the program follows in a similar manner. Notice that
the main () method calls game.report () four different times so that
the two statements in the report () method are both executed on four
different occasions. Note also that there is no call of game.takeTwo ()
in main (). As a result, the two statements in that method are never
executed.

2.5.6 Object-Oriented Design: Basic Principles

We complete our discussion of the design and this first implementation
of the OneRowNim class with a brief review of some of the object-oriented
design principles that were employed in this example.

e Encapsulation. The OneRowNim class was designed to encapsulate a
certain state and a certain set of actions. It was designed to simulate
playing the One Row Nim game. In addition, OneRowNim’s methods
were designed to encapsulate the actions that make up their particular
tasks.

e Information Hiding. OneRowNim's instance variables, nSticks and
player are declared private so other objects can only change the
values of these variables with the public methods of a OneRowNim in-
stance. The bodies of the public methods are also hidden from users
of OneRowNim instances. An instance and its methods can be used
without any knowledge of method definitions.

e Clearly Designed Interface. OneRowNim’s interface is defined in terms
of the public methods. These methods constrain the way users can in-
teract with OneRowNim objects and ensures that OneRowNim instances
remain in a valid state. Those are the main purposes of a good interface.

o Generality and Extensibility. There is little in our design of
OneRowNim that limits its use and its extensibility. Moreover, as we
will see later, we can create several different kinds of user interfaces
which interact with OneRowNim objects.

The OneRowNim class has some obvious shortcomings that are a result
of our decision to limit methods to those without parameters or return
values. These shortcomings include:

e A OneRowNimobject cannot communicate to another object the number
of remaining sticks, which player makes the next turn, or whether the
game is over. It can only communicate by writing a report to the console
window.

SECTION 2.5 o CASE STUDY: Simulating a Two-Person Game 89

e The takeOne (), takeTwo () and takeThree () methods all have
similar definitions. It would be a better design if a single method could
take away a specified number of sticks.

o There is no way to play a OneRowNim game starting with a different
number of sticks than 7. It would be nice to have a way of playing a
game that starts with any number of sticks.

e In order to for a user to play a OneRowNim game, a user interface
class would need to be developed that would allow the user to receive
information about the state of the game and to input moves to make.

As we study other features of Java in the next two chapters, we will
modify the OneRowNim class to address these identified shortcomings.

Special Topic: Alan Kay and
the Smalltalk Language

Although Simula was the first programming language to use the con-
cept of an object, the first pure object-oriented language was Smalltalk.
Smalltalk was first started by Alan Kay in the late 1960s. Kay is an
innovative thinker who has had a hand in the development of several
advances, including windowing interfaces, laser printing, and the clien-
t/server model, all of which are now commonplace today.

One of the abiding themes throughout Kay’s career has been the idea
that computers should be easy enough for kids to use. In the late 1960s,
while still in graduate school, Kay designed a computer model that con-
sisted of a notebook-sized portable computer with a keyboard, screen,
mouse, and high-quality graphics interface. He had become convinced
that graphics and icons were a far better way to communicate with a
computer than the command-line interfaces that were prevalent at the
time.

In the early 1970s Kay went to work at the Xerox Palo Alto Research
Center (PARC), where he developed a prototype of his system known as
the Dynabook. Smalltalk was the computer language Kay developed for
this project. Smalltalk was designed along a biological model, in which
individual entities or “objects” communicate with each other by passing
messages back and forth. Another goal of Smalltalk was to enable children
to invent their own concepts and build programs with them—hence, the
name Smalltalk.

Xerox’s management was unable to see the potential in Kay’s innova-
tions. However, during a visit to Xerox in 1979, Steve Jobs, the founder
of Apple Computer, was so impressed by Kay’s work that he made it the
inspiration of the Macintosh computer, which was first released in 1984.

Kay left Xerox in 1983 and became an Apple Fellow in 1984. In ad-
dition to working for Apple, Kay spent considerable time teaching kids
how to use computers at his Open School in West Hollywood. In 1996
Kay became a Fellow (an “Imagineer”) at the Walt Disney Imagineering’s
Research and Development Organization, where he continues to explore
innovative ways to enhance the educational and entertainment value of
computers.

Scanner

+Scannein InputStreanm st)

+hext[]: String

+hext Int[]: ink

+hextbouble(]: double
+uselelimitein Stking pat): Scanner

Figure 2.25: The Scanner class,
with a partial list of its public
methods.

90 CHAPTER 2 o Objects: Using, Creating, and Defining

2.6 From theJavaLibrary: java.util.Scanner.

If we wish to write useful interactive programs, we must be able to re-
ceive information from the user as well as send information to him or
her. We saw, in the previous chapter, that output from a program can be
sent to the console window by simply using the System.out.print ()
and System.out.println() statements. In this section we describe
two simple ways that Java can handle keyboard input. Receiving input
from the keyboard, together with sending output to the console window,
creates one of the standard user interfaces for programs.

Recall, that in Java, any source or destination for I/O is considered a
stream of bytes or characters. To perform keyboard input, we will extract
characters from System. in, the input stream connected to the keyboard.
Getting keyboard input from System. in involves two complications that
are not present in dealing with System.out.println (). First, normal
keyboard input data requested of a user consists of a sequence of char-
acters or digits which represent a word, phrase, integer, or real number.
Normally, an entire sequence of characters typed by the user will repre-
sent data to be stored in a single variable with the user hitting the return
or enter key to signal the end of a piece of requested data. Java has a spe-
cial class, Buf feredReader, that uses an input stream and has a method
that collects characters until it reads the character or characters that corre-
spond to hitting the return or enter key. A second complication for reading
input involves the problem of how to handle receiving data that is not in
the same format as expected. The BufferedReader class handles this
problem by using certain exceptions, a special kind of error message, that
must be handled by the programmer. Chapter 11 is devoted to exceptions
and we will avoid their use, as far as possible, until that time.

There is an alternate way to handle keyboard input in the Java 2 Plat-
form Standard Edition 5.0 (Java SE 5.0). A Scanner class has been added
to the java.util package which permits keyboard input without forc-
ing the programmer to handle exceptions. We introduce the Scanner
class in the next subsection and then describe how a user defined class
introduced in Chapter 4 can function in an equivalent fashion to permit
simple keyboard input.

2.6.1 Keyboard Input with the Scanner Class

A partial definition of Scanner is shown in Figure 2.25. Note that the
Scanner methods listed are but a small subset of the public methods of
this class. The Scanner class is in the java.util package so classes that
use it should import it with the following statement:

\ import java.util.Scanner; \
L |

The Scanner class is designed to be a very flexible way to recognize
chunks of data that fit specified patterns from any input stream. To use
the Scanner class for keyboard input, we must create a Scanner in-

SECTION 2.6 o From the Java Library: java.util.Scanner. 91

stance and associate it with System. in. The class has a constructor for
this purpose, so the statement

~
LScanner sc = new Scanner (System.in); J

declares and instantiates an object that can be used for keyboard input.
After we create a Scanner object, we can make a call to nextInt (),
nextDouble (), or next () to read, respectively, an integer, real number,
or string from the keyboard. The program in Figure 2.26 demonstrates
how an integer would be read and used. When the nextInt () method

import java.util.Scanner;

public class TestScanner
{
public static void main(String[] args)
{ // Create Scanner object
Scanner sc = new Scanner (System.in);
System.out. print(); // Prompt
int num = sc.nextInt(); // Read an integer
System.out. println (num + + numnum) ;
} // main ()
} // TestScanner «class

Figure 2.26: A very brief program with a Scanner object used for keyboard
input

is executed, no further statements are executed until an int value is re-
turned by the method. Normally this does not happen until the user has
typed in the digits of an integer and hit the return or enter key. Thus ex-
ecuting the main () method of the TestScanner class will result in the
output

klnput an integer: }

to the console window and the program will wait for the user to type in
an integer and hit the return or enter key. After this has been done the
output will look something like:

‘ Input an integer:123 \
| 123 squared = 15129 |

Keyboard input of real numbers and strings are handled in a similar
manner.

92 CHAPTER 2 o Objects: Using, Creating, and Defining

Keyboard input will allow us to create examples of command line
interfaces for interactive programs. For example, the code

Scanner sc = new Scanner (System.in);
Riddle riddle = new Riddle(

);

System.out. println ();
System.out. println (riddle . getQuestion ());
System.out. print(); // Prompt
System.out. println ();
String str = sc.next(); // Wait for input

System.out. println (riddle.getAnswer ());

will display a riddle question and prompt the user to type a letter and to
hit the enter key to see the answer. In the next chapter, we will develop
new methods for the OneRowNim class that will be able to use int values
input from the keyboard for the next move.

We must mention that, since the Scanner class is designed as a flexi-
ble tool for recognizing chunks of data from any input stream, it has some
properties that may be unexpected and not totally compatible with sim-
ple keyboard input. A Scanner object has a set of character strings that
separate or delimit the chunks of data that it is looking for. By default,
this set of delimiters consists of any non-empty sequence of white space
characters, that is, the space, tab, return, and newline characters. This will
allow a user to input several integers separated by spaces before hitting
the enter key. This might be handled by code like:

| System.out.print(); \
| int numl = sc.nextInt (); \
Lint num2 = sc.nextInt (); J

White space as delimiters also means that the next () method cannot re-
turn an empty string nor can it return a string that contains any spaces.
For example, consider the code:

‘ A
' System.out. print();

| String str = sc.next(); ‘

If one types "George Washington” and hits the enter key, the string str
will store only “George”. In order to get a Scanner object to read strings
that contain spaces, we must use the useDelimiter () method to de-
fine the set of delimiters as just that character string generated by hitting
the enter key. For example, for some Windows operating systems, the
statement

-
tsc = sc.useDelimiter ();

N

SECTION 2.6 o From the Java Library: java.util.Scanner. 93

will result in the next () method returning the entire string of charac-
ters input from the keyboard up to but not including those generated by
hitting the enter key.

You should also be aware that just because we can use a Scanner object
to write Java code that ignores exceptions does not mean that exceptions
will not be generated by keyboard input. If the user enters letters rather
than digits for the nextInt () method to process, the program will be
terminated with an error message.

It must be stressed that the strategy for handling keyboard input out-
lined above is a temporary strategy until the topic of exceptions is cov-
ered in Chapter 11. Real software applications that use keyboard input
should carefully handle the possibility that a user will enter something
unexpected. In Java, this can only be done by handling exceptions.

2.6.2 Keyboard Input with the KeyboardReader Class

If you are using an older version of Java that does not have the Scanner
class, a user-defined class can be used instead. A KeyboardReader
class that uses the BufferedReader class will be developed in Chap-
ter 4. It has methods that read data from the keyboard in a manner very
similar to those of the Scanner class. A partial list of its public meth-
ods is given in the UML class diagram shown in Figure 2.27. To use
the KeyboardReader class for keyboard input, copy the source code
KeyboardReader. java from Chapter 4 into the same directory as the
source code of your current Java class (and add it to your current project
if you are using a integrated development environment).

To use a KeyboardReader object, we need to create an instance of
the class with a constructor. Then calling one of the three methods will
returnan int, double, or St ring when data is input from the keyboard.
Any of the three methods of a KeyboardReader object will attempt to
process the entire string input from the keyboard up to the point that the
enter key is hit. That is, the character or characters generated by hitting
the return or enter key is the delimiter used by KeyboardReader. The
TestKeyboardReader class definition in Figure 2.28 reads an integer

-

public class TestKeyboardReader
{
public static void main(String[] args)
{ // Create KeyboardReader object
KeyboardReader kb = new KeyboardReader ();
System.out. print (); // Prompt
int num = kb.getKeyboardInteger (); // Read an integer
System.out. println (num + + numsnum) ;
} // main ()
} // TestKeyboardReader class

Figure 2.28: A very brief program with a KeyboardReader object used for
keyboard input.

from the keyboard and squares it just like the Test Scanner class. In the
remainder of the text, any time the Scanner class is used for keyboard

K.evboardReader

+ KevboardReader)

+ getKevboardinputl]: Sthing

+ getkevboardinteger(]: int

+ getkevboardDoublel): double

Figure 2.27: A UML class diagram
of the KeyboardReader class.

94 CHAPTER 2 o Objects: Using, Creating, and Defining

input, the same program can be run using the KeyboardReader class
after making the obvious substitutions.

SELF-STUDY EXERCISES

EXERCISE 2.8 Modify the main () method of the TestScanner class
so that it reads a real number from the keyboard rather than an integer.

CHAPTER SUMMARY Technical Terms
access modifier local variable reference
class-level variable method call and reference variable
default value return static modifier
delimiter null pointer user interface
empty string null pointer
flow of control exception
interface pointer

Summary of Important Points

e Dot notation is used to refer to an object’s public elements.

e Designing a class is a matter of deciding what role it will play and what
information and actions it will have.

e Writing a Java program is a matter of defining one or more classes. A
class definition serves as a template for creating instance of the class.

o Classes typically contain two kinds of elements, variables and meth-
ods. An object’s state is defined by its instance variables.

e (lass elements that are declared public can be accessed by other
objects. Elements that are declared private are hidden from other
objects.

o A class’s instance variables are usually declared private so they can-
not be accessed directly by other objects.

e An object’s public instance methods can be called by other objects.
Thus, they make up the object’s interface with other objects.

o Object instantiation is the process of creating an object, using the new
operator in conjunction with a constructor method.

o A class definition consists of a header and a body. The header gives
the class a name, specifies its accessibility (public), and its place in
the Java class hierarchy (extends Object). The class body contains
declarations of the class’s variables and definitions of its methods.

o By default, a newly defined class is consider a subclass of Object.

o (lass elements that are declared static, such as the main () method,
are associated with the class (not with its instances).

e A Java application program must contain a main () method, which is
where it begins execution.

e Methods that are used solely for the internal operations of the class
should be declared private.

e An instance variable declaration reserves memory for the instance
variable within the object, associates a name and a type with the lo-
cation, and specifies its accessibility.

CHAPTER 2 o Solutions to Self-Study Exercises 95

e A method definition consists of two parts: a header, which names the
method and provides other general information about it, and a body,
which contains its executable statements.

e Declaring a variable creates a name for an object but does not create
the object itself. An object is created by using the new operator and a
constructor method.

SOLUTION 2.1 The Java code fragment prints out the following;:

LThe singing king. }

SOLUTION 2.2 For the Ridd1le class (Fig. 2.12),

e The name of the class: Riddle

e The names of two instance variables: question, answer

e The names of three methods: Riddle (), getQuestion (), getAnswer ()

SOLUTION 2.3 For RiddleUser class (Fig. 2.15),
e The names of two Riddle instances: riddlel, riddle2
e All six method calls of the Ridd1e objects in the program:

Riddle (“"What is black and white and red all over?”,
"An embarrassed zebra.”)
Riddle (”“What is black and white and read all over?”,
”"A newspaper.”)
riddlel . getQuestion ()
riddlel . getAnswer ()
riddle2 . getQuestion ()
riddle2 . getAnswer ()

e Qualified names: riddlel.getQuestion () and riddlel.getAnswer ()

SOLUTION 2.4 Definition of new instance variable in the Riddle class:

~
[private String hint = ”"This riddle is to easy for a hint”;J

SOLUTION 2.5 The header for a getHint () method of the Riddle class,
which should be a public method, is:

N
Lpublic String getHint (); J

SOLUTION 2.6 The header for a setHint () method of the Riddle class is:

N
[public void setHint(String aHint); J

The result type is void. Although the identifier used for the parameter is arbitrary,
it is a good practice to make it descriptive, by referring in some way to the hint
instance variable.

SOLUTIONS TO
SELF-STUDY EXERCISES

EXERCISES

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

96 CHAPTER 2 o Objects: Using, Creating, and Defining

SOLUTION 2.7 The partial definition of the Student class is given below.

public class Student

{ private String firstName;
private String lastName;
private int studentID;

public void setStudent(String fName, String IName,
int anID);

public int getStudentID ();

public String getStudentName ();

SOLUTION 2.8 A main method that reads and squares a real number is given
below.

public static void main(String[] args)

{ // Create Scanner object
Scanner sc = Scanner.create(System.in);
System.out. print(”“Input a real number:”); // Prompt
double realNum= sc.nextDouble (); // Read a double
System.out. println (num + 7 squared = ” + realNums*realNum);
} // main ()

EXERCISE 2.1 Consider the transaction of asking your professor for your grade
in your computer science course. Identify the objects in this transaction and the
types of messages that would be passed among them.

EXERCISE 2.2 Now suppose the professor in the previous exercise decides to
automate the transaction of looking up a student’s grade and has asked you to
design a program to perform this task. The program should let a student type in
his or her name and ID number and the program then should display his or her
grades for the semester, with a final average. Suppose there are five quiz grades,
three exams, and two programming exercise grades. Identify the objects in this
program and the type of messages that would be passed among them. (Hint: The
grades themselves are just data values, not objects.)

EXERCISE 2.3 Inthe RiddleUser class (Fig. 2.15), give two examples of object
instantiation and explain what is being done.

EXERCISE 2.4 Explain the difference between a method definition and a
method call. Give an example of each from the Riddle and RiddleUser ex-
amples discussed in this chapter.

EXERCISE 2.5 In the RiddleUser class (Fig. 2.15), identify three examples of
method calls and explain what is being done.

EXERCISE 2.6 Describe how the slogan “define, create, manipulate” applies to
the Riddle example.

EXERCISE 2.7 An identifier is the name for a , ,ora

CHAPTER 2 o Exercises 97

EXERCISE 2.8 Which of the following would be valid identifiers?

int 74ElmStreet Big N L$&%# boolean Boolean \
_number \
Int public Private Joe il 2xK \
big numb |

EXERCISE 2.9 Explain the difference between a class variable and an
instance variable.

EXERCISE 2.10 Identify the syntax error (if any) in each declaration. Remember
that some parts of an instance variable declaration are optional.

public boolean isEven ;

. Private boolean isEven ;
private boolean isOdd

. public boolean is 0Odd ;
string S ;
public String boolean ;

. private boolean even = 0;

. private String s = helloWorld ;

S R0 AN o

EXERCISE 2.11 Write declarations for each of the following instance variables.

a. Aprivate boolean variable named bool that has an initial value of t rue.

b. A public String variable named str that has an initial value of “hello”.

c. Aprivate int variable named nEmployees that is not assigned an initial
value.

EXERCISE 2.12 Identify the syntax error (if any) in each method header:

public String boolean|()
. private void String ()
private void myMethod
. private myMethod/()
public static void Main (String argv([])

o Q0o

EXERCISE 2.13 Identify the syntax error (if any) in each assignment statement.
Assume that the following variables have been declared:

public int m; \
public boolean b; \
public String s; ‘

a. m = "86" ; e. s = "1295"
b.m = 86 ; f. b = "true"
c. m = true ; g b = false
d. s = 1295 ;

EXERCISE 2.14 Given the following definition of the NumberAdder class, add
statements to its main () method to create two instances of this class, named
adderl and adder2. Then add statements to set adder1’s numbers to 10 and

98 CHAPTER 2 o Objects: Using, Creating, and Defining

15, and adder2’s numbers to 100 and 200. Then add statements to print their
respective sums.

public class NumberAdder
{

private int numl;
private int num2;

public void setNums(int nl, int n2)

{
numl = nl;
num2 = n2;
}
public int getSum/()
{

return numl + num2 ;

}

public static void main(String args|[])

{
}

EXERCISE 2.15 For the NumberAdder class in the previous exercise, what are
the names of its instance variables and instance methods? Identify three expres-
sions that occur in the program and explain what they do. Identify two assignment
statements and explain what they do.

EXERCISE 2.16 Explain the difference between each of the following pairs of
concepts.

a. A method definition and a method call.
b. Declaring a variable of reference type and creating an instance.
c. A variable of reference type and a variable of primitive type.

EXERCISE 2.17 Define a Java class named NumberCruncher that has a single
int variable as its only instance variable. Then define methods that perform the
following operations on its number: get, double, triple, square, and cube. Set
the initial value of the number with a constructor as was done with the instance
variables in the Riddle class.

EXERCISE 2.18 Write a main () method and add it to the NumberCruncher
class defined in the previous problem. Use it to create a NumberCruncher in-
stance, with a certain initial value, and then get it to report its double, triple,
square, and cube.

EXERCISE 2.19 Write a Java class definition for a Cube object, that has an inte-
ger attribute for the length of its side. The object should be capable of reporting
its surface area and volume. The surface area of a cube is six times the area of any
side. The volume is calculated by cubing the side.

EXERCISE 2.20 Write a Java class definition for a CubeUser object that will use
the Cube object defined in the previous exercise. This class should create three
Cube instances, each with a different side, and then report their respective surface
areas and volumes.

EXERCISE 2.21 Challenge: Modify your solution to the previous exercise so
that it lets the user input the side of the cube. Follow the example shown in this
chapter’s “From the Java Library” section.

CHAPTER 2 o Exercises 99

EXERCISE 2.22 Challenge: Define a Java class that represents an address book
entry, Entry, which consists of a name, address, and phone number, all repre-
sented as Strings. For the class’s interface, define methods to set and get the
values of each of its instance variables. Thus, for the name variable, it should have
a setName () and a getName () method.

UML EXERCISES

EXERCISE 2.23 Draw a UML class diagram to represent the following class hi-
erarchy: There are two types of languages, natural languages and programming
languages. The natural languages include Chinese, English, French, and German.
The programming languages include Java, Smalltalk and C++, which are object-
oriented languages, FORTRAN, COBOL, Pascal, and C, which are imperative lan-
guages, Lisp and ML, which are functional languages, and Prolog, which is a logic
language.

EXERCISE 2.24 Draw a UML class diagram to represent different kinds of au-
tomobiles, including trucks, sedans, wagons, SUVs, and the names and manufac-
turers of some popular models in each category.

EXERCISE 2.25 Draw a UML object diagram of a triangle with attributes for
three sides, containing the values 3, 4, and 5.

EXERCISE 2.26 Suppose you are writing a Java program to implement an elec-
tronic address book. Your design is to have two classes, one to represent the user
interface and one to represent the address book. Draw a UML diagram to depict
this relationship. See Figure 2.14.

EXERCISE 2.27 Draw an UML object diagram to depict the relationship be-
tween an applet, which serves as a user interface, and three Triangles, named
tl,t2,and t3.

100 CHAPTER 2 o Objects: Using, Creating, and Defining

Chapter 3

Methods: Communicating
with Objects

OBJECTIVES
After studying this chapter, you will

Understand the role that methods play in an object-oriented program.

Know how to use parameters and arguments to pass data to an object.
Understand how constructor methods are used to instantiate objects.

Know the difference between passing a value and passing a reference to an object.
Be able to design your own methods.

Know how to use the i f-else and while control structures.

OUTLINE

3.1

Introduction

3.2 Passing Information to an Object

3.3

Constructor Methods

3.4 Retrieving Information from an Object

3.5

Passing a Value and Passing a Reference

3.6 Flow of Control: Control Structures

3.7 Testing an Improved OneRowNim

Special Topic: Intelligent Agents

3.8 From the Java Library: java.lang.Object

3.9

Object-Oriented Design: Inheritance and Polymorphism

3.10 Drawing Lines and Defining Graphical Methods (Optional)

Chapter Summary
Solutions to Self-Study Exercises

Exercises

101

102 CHAPTER 3 o Methods: Communicating with Objects

3.1 Introduction

In this chapter, we take a look at Java methods and parameters. Methods
and parameters are the primary mechanisms for passing information into
and out of an object. We will once again focus on the OneRowNim simula-
tion that we designed in the previous chapter. That version was sufficient
to introduce us to Java objects and classes, but it was limited in its ability
to communicate with other objects.

In this chapter, we want to expand OneRowNim to make our simulation
more realistic. We begin by learning how to pass information to an ob-
ject. That will enable us to specify the number of sticks to remove using
a single method. We then consider special methods called constructors,
which are used to initialize an object’s state when it is created. We also
learn how to retrieve information from an object. That will enable us to
request a OneRowNim object for several different bits of information. Then
we consider the i f-else and while control structures which allow us to
define more useful methods and write more realistic test programs.

3.2 Passing Information to an Object

One convention of object-oriented programming is to provide public
methods to set and get the values of some of its private instance vari-
ables. Methods that set or modify an object’s instance variables are called
mutator methods. Methods that get or retrieve the value of an instance
variable are called accessor methods.

NN S GINAAEBI I (BN Accessor and Mutator Methods. An

accessor method is a public method used to get the value of an object’s
instance variable. Such methods are often named getVarName() where
VarName is the name of the variable that’s being accessed. A mutator
method is a public method used to modify the value of one or more
instance variables. The special type of mutator method that sets or
assigns a variable a specified value is often called setVarName().

It is up to the designer of the class to determine which private vari-
ables require accessor and mutator methods. If you were designing a
BankAccount class, you might want a public getAccountNumber ()
method, so that clients could retrieve information about their bank ac-
counts, but you would probably not want a public getAccountPassword ()
method or a public setAccountBalance () method.

In the remainder of this section, we will be concerned with muta-
tor methods. We defined three mutator methods named takeOne (),
takeTwo (), and takeThree as part of the OneRowNim class in the pre-
vious chapter. All three of these method change the values of the instance

SECTION 3.2 o Passing Information to an Object 103

variables nSticks and player. All three methods have very similar
bodies. The definition of the takeOne () is:

‘ public void takeOne ()

| nSticks = nSticks — 1;
layer = 3 — player;

} play play

The only difference in the bodies of the other two methods is that they
subtract 2 and 3 from nSticks instead of 1. Instead of having three, vir-
tually identical methods, It would be a more efficient design to define a
single method where the number to be subtracted from nSticks would
be supplied as an argument when the method is called. In order to be able
to handle such an argument, we must design a new method that uses a
parameter to handle the argument.

A formal parameter, or more simply, parameter, is a variable used to
pass information into a method when the method is invoked. The type and
variable name of the formal parameter must appear in the formal parameter
list that follows the method’s name in the method header. The formal
parameter is used to hold a value that it is passed while the method is
executing.

Formal parameter

PANZOTNCOPNEOIBE Formal Parameter. A formal parameter
is a variable that serves as a storage location for information that is
passed to a method. To specify a formal parameter, you must provide
a type identifier followed by variable identifier, and you must place
this declaration inside the parentheses that follow the method’s name.

Consider the following definition for a takeSticks () method:

public void takeSticks (int num)

{ nSticks = nSticks — num;
player = 3 — player;

}

Notice that executing the body of takeSticks () when the parameter
num stores the value 1 accomplishes precisely the same task as executing
takeOne (). If, instead, a value of 2 or 3 is stored in num, then calling the
method acts like takeTwo () or takeThree () respectively. Thus, using
parameters enables us to design methods that are more general in what
they do, which is an important principle of good program design.

Another example of a mutator method is one in which define a set
method to allow the starting number of sticks to be set for an instance of
OneRowNim. For this, we could define:

‘ public void setSticks (int sticks)
| nSticks = sticks;
‘} // setSticks ()

As we will see in Section 3.3, we can also define a constructor method that
can be used, when the game is created, to set the initial value of nSticks.

<

Scope

Local scope

Class scope

104 CHAPTER 3 o Methods: Communicating with Objects

It is often desirable to have more than one method that sets the values of
an objects’ instance variables.

If a method uses more than one parameter, use a comma to separate the
individual parameter declarations in the method header. For example, if
we wanted a method for OneRowNim that specified both the number of
sticks for the start of a game and which player takes a turn first, it could
be defined:

public void setGame(int sticks , int starter) \
{ nSticks = sticks; \
player = starter; \
} // setGame () ‘

The Scope of Parameters, Variables, and Methods

The bodies of the mutator methods in the previous section make use of
both instance variables and parameters. It is important to note that there
is a difference in where these two types of variables can be used. The
scope of a variable or method refers to where it can be used in a program.

A parameter’s scope is limited to the body of the method in which it is
declared. Variables that are declared in the body of a method have scope
which extends from the point where they are declared to the end of the
block of code in which they are declared. Parameters are local variables
which are declared in the parameter list of a method’s header and which
have initial values specified by the arguments in a method call. The scope
of a parameter is the same as the scope of a variable declared at the very
beginning of the body of a method. Once the flow of execution leaves a
method, its parameters and other local variables cease to exist. The scope
of local variables is referred to as local scope.

PANZAQ BN (@OFN@ O Scope. Local variables, that is,
parameters and variables declared in the body of a method, have local
scope which extends from the point at which they are defined to the
end of the block of code in which they are defined. In particular, the
scope of a parameter is the entire body of the method in which it is
declared.

By contrast, instance variables, class variables, and all methods have
scope that extends throughout the entire class, that is, class scope. They
can be used in the body of any method and in the expressions that as-
sign initial values to class level variables. There are two restrictions to
remember. First, instance variables and instance methods cannot be used
in the body of a class method, one modified with static, unless an in-
stance of the class is created there and then the dot notation of qualified
names must be used to refer to the variable or method. This is because
class methods are called without reference to a particular instance of the
class. The main () method of the OneRowNim class that we defined in the
previous chapter is an example of such a class method. In that case, to

SECTION 3.2 o Passing Information to an Object 105

test the instance methods of OneRowNim we first created an instance of
OneRowNim and used it to call its instance methods:

\OneRowNim game = new OneRowNiIn(); // Create instance
‘game.report(); // Call an instance method

The second restriction involved in class scope is that one class level vari-
able can be used in the expression that initializes a second class level vari-
able only if the first is declared before the second. There is no similar
restriction on methods.

NS AN COPAN@ROIRE Scope. Class level variables, that is,
instance variables and class variables have class scope, which extends
throughout the class. Methods also have class scope.

Except for the restrictions noted above, methods and class level vari-
ables can be referred to within the same class by their simple names,
with just the method (or variable) name itself, rather than by their quali-
fied names, with the dot operator. Thus, in OneRowNim, we can refer to
nSticks and report () in the bodies of other instance methods. In a
class method, such as main (), we would have to create an instance of
OneRowNim with a name like game and refer to game . report ().

+

Simple vs. qualified names

ANZAS DANN@OPN@ERMOIBE Qualified Names. Within the same class,

references to class methods or class variables can be made in terms of
simple names. Within the bodies of instance methods, references to
instance variables and references to other instance methods can also be
made in terms of simple names. However, within the bodies of class
methods, qualified names, or dot notation, must be used to refer to
instance methods or instance variables just like how they are referred
to in other classes.

NP GE[@INENRIE Scope Error. It would be a syntax error to
refer to a method’s parameters or other local variables from outside
the method.

3.2.1 Arguments and Parameters

The new class definition for OneRowNim is given in Figure 3.1. Note that
now that we have a single method, takeSticks (), that can be used
to take away a variable number of sticks, we have removed the three
methods we wrote in the previous chapter, takeOne (), takeTwo (), and
takeThree (), from OneRowNim. Using a single method, with a parame-
ter, is clearly a better design. To see this, just imagine what we would have
to do if we didn’t use a parameter and we wanted to be able to take away
four sticks, or five, or more. If we didn’t have parameters, we’d have to
write a separate method for each case, which is clearly a bad idea. Using
parameters in this way leads to a more general useful method and thus is
an example of the generality principle.

<

106 CHAPTER 3 o Methods: Communicating with Objects

public class OneRowNim
{ private int nSticks = 7; // Start with 7 sticks
private int player = 1; //Player 1 plays first

public void takeSticks (int num)

{ nSticks = nSticks — num;
player = 3 — player;

} // takeSticks ()

public void report()
{ System.out.println (+ nSticks);
System.out. println (+ player);
} // report ()
} //OneRowNiml class

Figure 3.1: The OneRowNim class definition with takeSticks () method.

Now let’s consider how we would create a OneRowNim instance and
use the new method in the main () method or in a different class. If we
want to have an instance of OneRowNim object to remove 3 sticks on the
first move by using the takeSticks () method, we need to pass the int
value 3 to the method. In order to effect this action, we would use the
following statements:

\ OneRowNim game = new OneRowNim ();
‘ game. takeSticks (3);

Because the definition of takeSticks () includes a single int parame-
ter, we must supply a single int value (such as 3), when we invoke it.
When the method is invoked, its formal parameter (num) will be set to the
value we supply (3). The value we supply does not have to be a literal
int value. We can supply any expression or variable that evaluates to an
int value. For example:

‘int val = 7 — 5;
‘ game. takeSticks (val);

In this case, the value being passed to takeSticks () is 2, the value that
val has at the time the method call is made.

It would be an error to try to pass a value that was not a int to
takeSticks (). For example, each of the following invocations of
takeSticks () results in a syntax error:

‘ game.takeSticks(); // no argument is supplied
‘ game.takeSticks(); // 73”7 is a String , not an int
‘ game.takeSticks(int); // int not is an int value

SECTION 3.2 o Passing Information to an Object 107

As you recall from Chapter 0, the value that is passed to a method when
it is invoked is called an argument. Even though the terms argument and
parameter are sometimes used interchangeably, it will be useful to ob-
serve a distinction. We will use the term parameter to refer to the formal
parameter—the variable used to pass data to a method—that occurs in the
method definition. We use the term argument to refer to the actual value
that is supplied when the method is invoked.

ANZOREE GE[@IN[€NNIY Type Error. It would be a syntax error to
use an argument whose type doesn’t match the type of its
corresponding parameter.

The distinction between parameter and argument is related to the differ-
ence between defining a method and invoking a method. Defining a method
is a matter of writing a method definition, such as

‘ public void printStr(String s) \
' { System.out.println(s); \

¢ |

This definition defines a method that takes a single St ring parameter, s,
and simply prints the value of its parameter. On the other hand, invoking
a method is a matter of writing a method call statement, such as

LprintStr (”HelloWorld”);

/

This statement calls the printStr () method and passes it the string
“HelloWorld”. This notation assumes that the call to the instance method
printStr () is made within the body of another instance method of the
same class.

3.2.2 Passing an int value to a OneRowNim method.

To get a clearer picture of the interaction that takes place when we invoke
takeSticks () and passitan int value, let’s write a main () method to
test our new version of OneRowNim.

Our first version of main () is shown in Figure 3.2. We will use it to
trace how the parameter of takeSticks () interacts with the instance

public static void main (String argv][])

{ OneRowNim game; // Declare a OneRowNim object }
game = new OneRowNim(); // Instantiate the references ‘
game. takeSticks (3), // remove 3 sticks ‘

Y // main () ‘

Figure 3.2: A main () method to test the takeSticks () method.

variables nSticks and player. The statements in the main () program
simply create an instance of OneRowNim that is referenced by game and
invoke the setSticks () method with an argument of 3.

Parameter vs. arqument

Defining vs. calling a method

Invoking a method

Figure 3.3: Tracing the state
of game (a) Just before calling
takeSticks (3). (b) Just
before executing the body of
takeSticks (3). (c) Just
after executing the body of
takeSticks (3). (d) After flow
of control leaves takeSticks ().

108 CHAPTER 3 o Methods: Communicating with Objects
gam e Ln el owiikn garne: reH owhlib
nakicks int=7 nabicks int=7
player:int =1 playerint = 1

EY fak e Sticks(]
hdrmn;int= 3
garne: OneR owhlitn
rSticks: int = 4 (b]
player:int =2
game: On el owiimn
ak e:Sticks() nShcks: ink =4
FLukn ift = 3 player:int = 2

(] [d)

To get a clearer understanding of how a parameter works, it will be
instructive to trace through the code in main (). Figure 3.3 displays
how the states of the instance variables of game and the parameter of
takeSticks () interact.

Executing the first two statements of main () creates the instance game
of OneRowNim. Figure 3.3(a) shows the initial state of game. When the
takeSticks (3) method call is made, a parameter (which is a local vari-
able) named num is created and the value 3 is stored in it. The state of
the instance variables and the parameter are shown in (b). Then the body
of takeSticks () is executed. The new state of game is shown in (c).
After the flow of control leaves the body of takeSticks () and returns
tomain (), the memory location which stored the value of the parameter
num is released for other uses. The state of game at this point is shown in
(d). Notice that the value of nSticks has been reduced to 4.

3.2.3 Passing keyboard input to takeSticks ()

To complete this section, let's modify our main () method in Figure 3.2
so that it prompts the user to input an integer from the keyboard and
then uses a Scanner object, introduced in the previous chapter, to read
the integer. That integer will then be used as the argument in a call to
takeSticks (). These modifications have been incorporated into the
revised version of the main () method shown in Figure 3.4. If we now
run this program the following output will be generated in the console
window before waiting for keyboard input:

" Number of sticks left: 7
' Next turn by player 1
|

Input 1, 2, or 3 and hit enter:
N

SECTION 3.3 o Constructor Methods 109

import java.util.Scanner;

public static void main (String argv[])

{ Scanner SC,; // Declare a Scanner variable
sc = Scanner.create (System.in); // Instantiate it
OneRowNim game; // Declare a OneRowNim variable
game = new OneRowNim(); // Instantiate it
game.report (); // Report state of game
System . out. println ();
int num = sc.nextInt(); // Read an int from keyboard
game. takeSticks (num); // Use the value read
game.report(); // Report state of game

} // main ()

Figure 3.4: Amain () method with keyboard input for OneRowNim.

If the user then inputs a 2 from the keyboard, that input will be read
and the takeSticks () method will remove 2 sticks. The output in the
console window will now look like:

‘Number of sticks left: 7 \
' Next turn by player 1 \
' Input 1, 2, or 3 and hit enter:2 \
' Number of sticks left: 5 \
' Next turn by player 2 |

SELE-STUDY EXERCISES

EXERCISE 3.1 Explain the difference between a method declaration and
a method invocation.

EXERCISE 3.2 Explain the difference between a formal parameter and an
argument.

EXERCISE 3.3 Modify the OneRowNim class of Figure 3.4 by adding
two instance variables of type String to store names of the two play-
ers. Choose names for the instance variables that would be appropri-
ate for storing names for player one and player two. Write a method
named setNames () with two string parameters which assigns the first
parameter to the instance variable that you created for the name of player
one. The second parameter should be assigned to the other new instance
variable.

EXERCISE 3.4 Write a statement that calls the setName () method of
the previous exercise and sets the name of player one of game to “Xena”
and sets the name of player two to “Yogi”.

3.3 Constructor Methods

In the previous section, we looked at several examples of mutator meth-
ods that change the values of private instance variables of an object. It

Constructor names

Constructing an object

Initializing variables

Constructors can’t return a value

110 CHAPTER 3 o Methods: Communicating with Objects

is possible to define mutator methods to set the initial values of instance
variables after an object is created, but initial values can also be set by
constructors.

As you recall from Chapter 0, a constructor method is used to create
an instance (or object) of a class and to assign initial values to instance
variables. A constructor declaration looks just like a method definition
except it must have the same name as the class, and it cannot declare a
result type. Unlike the class level variables and methods of a class, con-
structors are not considered members of the class. Therefore, they are not
inherited by a class’s subclasses. Access to constructors is governed by the
access modifiers public and private. Here is a simple constructor for
our OneRowNim class:

public OneRowNim ()

{ nSticks = 7;
player = 1;

}

This constructor merely sets the initial values of the instance variables,
nSticks and player. In our current version of OneRowNim these vari-
ables are given initial values by using initializer statements when they are
first declared:

‘ private int nSticks = 7;
. private int player = 1;

So we now have two ways to initialize a class’s instance variables. In the
OneRowNim class it doesn’t really matter which way we do it. However,
the constructor provides more flexibility because it allows the state of the
object to be initialized at runtime. Of course, it would be somewhat redun-
dant (though permissible) to initialize the same variable twice, once when
it is declared and again in the constructor, so we should choose one or
the other way to do this. For now, let’s stick with initializing the instance
variables when they are declared.

AN HHEGIINAEBIESI@N]| Constructors. Constructors provide a
flexible way to initialize an object’s instance variables when the object
is created.

A constructor cannot return a value and, therefore, its declaration cannot
include a return type. Because they cannot return values, constructors
cannot be invoked by a regular method invocation. Instead, constructors
are invoked as part of an instance creation expression when instance objects
are created. An instance creation expression involves the keyword new
followed by the constructor invocation:

‘ OneRowNim game // Declare

‘ = new OneRowNim(); // and instantiate gamel
| OneRowNim game2 // Declare

‘ = new OneRowNim(); // and instantiate game2

SECTION 3.3 e Constructor Methods 111

Note here that we have combined variable declaration and instantiation
into a single statement, whereas in some previous examples we used sep-
arate declaration and instantiation statements. Either way is acceptable.

ANZASDANI@IEPAN@IENBINE Constructors. Constructors cannot
return a value. Therefore, no return type should be declared when the
constructor is defined.

JENZ N e[eleIN[ePly When to Use Return. All method
definitions except constructors must declare a return type.

Constructors should be used to perform the necessary initialization op-

erations during object creation. In the case of a OneRowNim object, what

initializations could be performed? One initialization that would seem = State initialization
appropriate is to initialize the initial number of sticks to a number speci-

fied. In order to do this, we would need a constructor with a single int

parameter:

‘ public OneRowNim(int sticks) \
' { nSticks = sticks; \

L |

Now that we have this constructor we can use it when we create instances
of OneRowNim:

\ OneRowNim gamel = new OneRowNim(21); \
‘ OneRowNim game2 = new OneRowNim(13); ‘

The effect of these statements is the same as if we had used the
setSticks () method that was discussed briefly on page 103. The dif-
ference is that we can now set the number of sticks when we create the
object.

Should we keep the preceding constructor, or keep the setSticks ()
method or keep both in our class definition? The constructor can only
be invoked as part of a new statement when the object is created but the
setSticks () method could be called anytime we want. In many cases,
having redundant methods for doing the same task in different ways
would be an asset, because it allows for more flexibility in how the class
could be used. However, for a game like One Row Nim, a major concern
is that the two instance variables get changed only in a manner consistent
with the rules for One Row Nim. The best way to guarantee this is to have
takeSticks () as the only method that changes the instance variables
nSticks and player. The only time that it should be possible to set the
number of sticks for a game is when a constructor is used to create a new
instance of OneRowNim.

SELF-STUDY EXERCISES

Flexible design

112 CHAPTER 3 o Methods: Communicating with Objects

EXERCISE 3.5 What’s wrong with the following constructor defini-
tion?

public void OneRowNim(int sticks) \
{ nSticks = sticks; \

} |

EXERCISE 3.6 Change the OneRowNim (int sticks) constructor so
that it sets the number of sticks and also have it also set player two as the
player who takes the first turn.

3.3.1 Default Constructors

As we noted in Chapter 2, Java automatically provides a default constructor
when a class does not contain a constructor.

PANZASBANN@OVN@ERNEIRE Default Constructor. If a class contains
no constructor declarations, Java will automatically supply a default
constructor. The default constructor takes no parameters. If the class is
public, the default constructor will also be public and, hence,
accessible to other objects.

The default constructor’s role is simply to create an instance (an object) of
that class. It takes no parameters. In terms of what it does, the default
constructor for OneRowNim would be equivalent to a public constructor
method with an empty body:

[public OneRowNim () { } J

This explains why the following statement was valid when a class defini-
tion of OneRowNim contained no explicit definition of a constructor:

e
tOneRowNim game = new OneRowNim (); J

3.3.2 Constructor Overloading and Method Signatures

It is often quite useful to have more than one constructor for a given class.
For example, consider the following two OneRowNim constructors:

public OneRolem() {} // Constructor #1

public OneRowNim(int sticks) // Constructor #2 ‘
{ nSticks = sticks; \
} |

The first is an explicit representation of the default constructor. The sec-
ond is the constructor we defined earlier to initialize the number of sticks
in a OneRowNim object. Having multiple constructors lends flexibility to
the design of a class. In this case, the first constructor merely accepts
OneRowNim’s default initial state. The second enables the user to initialize
the number of sticks to something other than the default value.

SECTION 3.3 e Constructor Methods 113

In Java, as in some other programming languages, when two different
methods have the same name, it is known as method overloading. In
this case, OneRowNim is used as the name for two distinct constructor
methods. What distinguishes one constructor from another is its signa-
ture, which consists of its name together with the number and types of
formal parameters it takes. Thus, our OneRowNim constructors have the
following distinct signatures:

' OneRowNim ()
- OneRowNim(int)

Both have the same name, but the first takes no parameters, whereas the
second takes a single int parameter.

The same point applies to methods in general. Two methods can have
the same name as long as they have distinct signatures. A method signa-
ture consists of its name, and the number, types, and order of its formal
parameters. A class may not contain two methods with the same signa-
ture, but it may contain several methods with the same name, provided
each has a distinct signature.

Method overloading

Methods are known by their
signatures

PAALODANEOPNEZRNOIN: Method Signature. A method signature
consists of the method’s name, plus the number, types, and order of its
formal parameters. A class may not contain two methods with the

same signature.

There is no limit to the amount of overloading that can be done in design-
ing constructors and methods. The only restriction is that each method
have a distinct signature. For example, suppose in addition to the two
constructors we have already defined, we want a constructor that would
let us set both the number of sticks and the player who starts first. The
following constructor will do what we want:

‘ public OneRowNim(int sticks , int starter)

‘ { nSticks = sticks; // Set the number of sticks
\ player = starter; // Sct who starts

)

When calling this constructor, we would have to take care to pass the num-
ber of sticks as the value of the first argument and either 1 or 2 as the value
of the second argument:

\ OneRowNim game3 = new OneRowNim(14, 2);
‘ OneRowNim game4 = new OneRowNim(31, 1);

If we mistakenly reversed 14 and 2 in the first of these statements, we
would end up with a OneRowNim game that starts with 2 sticks and has
player 14 as the player with the first move.

A constructor is invoked once to cre-
ate an object

114 CHAPTER 3 o Methods: Communicating with Objects

We have now defined three constructor methods for the OneRowNim
class. Each constructor has the name OneRowNim, but each has a distinct
signature:

' OneRowNim ()
| OneRowNim(int)
‘ OneRowNim(int, int)

3.3.3 Constructor Invocation

A constructor method is invoked only as part of a new expression when
an instance object is first created. Each of these is a valid invocation of a
OneRowNim constructor:

‘ // Default constructor

\ OneRowNim gamel = new OneRowNim();

‘ // Sets number of sticks

| OneRowNim game2 = new OneRowNim(21);

‘ // Sets both instance variables
|

OneRowNim game3 = new OneRowNim(19, 2);

The following constructor invocations are invalid because there are no
matching constructor definitions:

‘ // No matching constructors
\ OneRowNim game4 = new OneRowNim(”21");
‘ OneRowNim game5 = new OneRowNim(12, 2, 5);

In the first case, there is no constructor method that takes a String pa-
rameter, so there’s no matching constructor. In the second case, there is no
constructor that takes three int arguments. In both cases, the Java com-
piler would complain that there is no constructor method that matches the
invocation.

aNZaemlsiffe(@iN[@RNie Method Call. The signature of the method
call—its name and the number, types, and order of its
arguments—must exactly match the signature of the method
definition.

3.4 Retrieving Information from an Object

The modifications we’ve made to the OneRowNim class allow us to set the
instance variables of a OneRowNim object with a constructor, but there is
no way for us to retrieve their values other than to use the report ()
method to write a message to the console. We will want to be able to
ask a OneRowNim object to provide us with the number of sticks remain-
ing and who plays next when we develop a graphical user interface for
OneRowNim in the next chapter. We declared nSticks and player as
private variables, so we cannot access them directly. Therefore, we will

SECTION 3.4 e Retrieving Information from an Object 115

need accessor methods to get the values of each of the instance variables.
Consider the following method definitions:

public int getSticks ()
{ return nSticks;

}

public int getPlayer ()
{ return player;

}

Recall that a method’s ResultType is specified just in front of the Method-
Name. We want the two methods to return int values that represent
OneRowNim’s instance variables. Therefore, their result types are both
declared int.

Before we discuss how the value that is returned by a method is used
when the method is called, let’s consider one more method definition.
Many methods that return a value do a computation rather than simply
returning the value of an instance variable. For example, suppose we wish
to define a method for the OneRowNim class that will notify the user of an
instance of the class whether the game is over. Thus we want a method
that, when called, returns a true or false depending on whether or
not all the sticks have been taken. gameOver () is a descriptive name
of such a method and the method should have a boolean result type.
This method should return t rue when the instance variable nSticks no
longer contains a positive int value. Thus we can define:

| public boolean gameOver () \
| return (nSticks <= 0); \
)

The expression (nSticks <= 0) evaluatestoa falsevalueifnSticks
stores a positive value and it evaluates to t rue otherwise. Thus the value
returned is precisely what is required.

3.4.1 Invoking a Method That Returns a Value

When we invoke a method that returns a value, the invocation expression Retrieving information
takes on, or is replaced by, the value that is returned. For example, if we
execute the statements

/ B
| OneRowNim gamel = new OneRowNim(11); \

‘ int sticksLeft = gamel. getSticks (); \

the expression gamel.getSticks () will take on the value 11 after the
getSticks () method is finished executing. At that point, the second
statement above can be treated as if expression gamel.getSticks () is

Redundancy and flexibility

116 CHAPTER 3 o Methods: Communicating with Objects

replaced with the value 11, which is assigned to sticksLeft. In effect,
the second statement is equivalent to the following statement:

-
tint sticksLeft = 11; J

INZQ WG ONEZPNOBE Evaluating Method Calls. A nonvoid
method call is an expression that has a value of a particular type. After
the method is executed, the method call expression becomes the value
returned.

We can use a value returned by a method call the same way we use a
literal value of the same type. It can be assigned to variables, be part of
a numerical expression, or be an argument of another method. All of the
following statements involve valid calls of methods that return values:

‘ int fewerSticks = gamel. getSticks () — 1; \
| boolean done = gamel.gameOver (); \
| System.out.println (gamel. getPlayer ()); \
- gamel. getSticks (); |

In each statement, the method call can be replaced with the value it re-
turns. Notice that the last statement is valid but does nothing useful. In
Java and some other languages like C and C++, methods that return a
value can simply be called without making use of the value returned. This
may be useful to do if the method changes the state of instance variables
or sends a message to another object or an output device. The method
getSticks () does nothing but return the value of nSticks, so simply
calling the method accomplishes nothing.

3.4.2 An Expanded OneRowNim Class

Let’s add the new methods that return values to our OneRowNim class. We
might note that the report () method from the previous chapter displays
the values of nSticks and player in the console window which now
could be done by using the methods getSticks () and getPlayer ()
with System.out.println (). However, calling report () is an easy
way to display the values of both instance variables but it cannot provide
access to either variable as an int value. So let’s keep all three methods
in our class definition. The inconvenience of a small amount of redun-
dancy is outweighed by the added flexibility of being able to call all three
methods.

PSS @INAAERZEI@NE Using Redundancy. Incorporating some
redundancy into a class, such as providing more than one way to
access the value of an instance variable, makes the class more widely
usable.

Figure 3.5 provides a UML class diagram of the expanded OneRowNim
class.

SECTION 3.4 e Retrieving Information from an Object 117

OneRowNim

— nSticks: int

— player: int

+ OneRowNim()

+ OneRowNim(in sticks:int)
-+ OneRowNim(in sticks:int,in starter:int)
+ takeSticks(in num:int)

+ getSticks():int

+ getPlayer():int

+ gameOver():boolean

+ report()

Figure 3.5: A UML class diagram for the expanded OneRowNim.

Let’s also consider a new main () method to test the new methods of
the class. A very short list of statements that call each of the three new
methods returning values is given in the main () method in Figure 3.6

public static void main(String[] args)

{ OneRowNim game = new OneRowNim(13,2);
game. takeSticks (2);
System.out. print();
System.out. println (game.gameOver ());
System.out. print ();
System.out. println (game. getPlayer ());
System.out. print();
System.out. println (game. getSticks ());

} // main ()

Figure 3.6: Amain () method that tests the new methods for OneRowNim

The output to the console when this program is run will be:

‘ N
' The game is over is: false \
. The next turn is by player: 1 \
t Sticks remaining: 11 J

Note that the constructor sets player to 2, so player stores the value 1
after one turn.

SELF-STUDY EXERCISES

Passing a primitive value

118 CHAPTER 3 o Methods: Communicating with Objects

EXERCISE 3.7 What would these segments of Java code display on the

screen?

' OneRowNim myGame = new OneRowNim(10,2);

\ System . out. println (myGame. getPlayer ());

| System.out.println (2 * myGame. getSticks ());
LSystem .out. println (myGame. gameOver ());

@

EXERCISE 3.8

Suppose that an int instance variable named nMoves

is added to the OneRowNim class that counts the number of moves taken
in a One Row Nim game. Write a Java method for the OneRowNim class
to get the value stored in nMoves.

EXERCISE 3.9

Write a method for the OneRowNim class called

playerOneGoesNext () that returns a boolean value. The value re-
turned should be true if and only if player one has the next turn.

3.5 Passing a Value and Passing a Reference

The effect of passing arguments to a method differs depending on whether
you are passing a value of primitive type (such as 5 or t rue) or a value of
reference type (such as “Hello” or game1l). When an argument of primi-
tive type is passed to a method, a copy of the argument is passed to the for-
mal parameter. For example, consider the PrimitiveCall class shown

public class PrimitiveCall
{
public static void myMethod(int n)
{ System.out.println(+ n);
n = 100;
System.out. println (+ n);
} // myMethod ()
public static void main(String argv|[])
{ int k = 5;
System.out. println (+ k);
myMethod (k) ;
System.out. println (+ k);
} // main ()
} // PrimitiveCall

Figure 3.7: Passing a primitive value to a method.

in Figure 3.7. Note that we have an int variable k, which initially stores
the value 5, and a method myMethod (), which takes an int parameter n.
In this case, when we invoke myMethod (k) , k’s value (5) is copied into n
and stored there during the method.

SECTION 3.5 e Passing a Value and Passing a Reference 119

One implication of passing a copy of a primitive value to a method is
that the original value of k in main () cannot be altered from inside the
method. Thus, the output generated by PrimitiveCall would be

main: k= 5
myMethod :

|
\ n= 5
. myMethod:

n= 100
main: k= 5

Note that in main(), k’s value is printed both before and after
myMethod () is called, but that its value remains unaffected even though
n’s value is changed within the method. This is because myMethod ()
contains just a copy of k’s value, not k itself. Any changes to the copy
within myMethod () leave k unaltered (See Fig. 3.8).

JAVA LANGUAGE RULE
of a primitive type, like boolean or int, is passed to a method, a
copy of the value is passed. That’s why its original value remains
unchanged outside the method, even if the copy is changed inside the
method.

Passing a Primitive Value. When a value

In contrast to this, when an argument of a reference type is passed to a
method, a copy of the reference to the object itself is assigned to the pa-
rameter. For example, in the case of a St ring parameter or a OneRowNim
parameter, the method would be given a reference to the object-that is,
the address of the object. The object itself is not passed, because it would
be too inefficient to copy the entire object with all its data and methods.
However, because the object’s reference gives the object’s location in mem-
ory, the method will have access to the object and can make changes to the
original object from within the method.

triait[) Friain)
k=3 k=5
(2L b ethod(]
h=5% <
rnain] ()
k=5
s ethod() triaing]
f= 100
k=5

i) il

Figure 3.8: Tracing the state
of wvariables k and n in
PrimitiveCall (a) Just be-
fore calling myMethod (k) in
main. (b) Just before executing
the body of myMethod (). (c)
Just after executing the body of
myMethod (). (d) After flow of
control returns tomain ().

120 CHAPTER 3 o Methods: Communicating with Objects

For example, consider the ReferenceCall class (Fig. 3.9). In this
case, myMethod () takes a parameter g of type OneRowNim. Because

public class ReferenceCall
{
public static void myMethod (OneRowNim g)
{ System.out.print();
System.out. println (g. getSticks ());
g.takeSticks (3);
System.out. print();
System.out. println (g. getSticks ());
} // myMethod ()

public static void main(String argv|[])

{ OneRowNim game = new OneRowNim(10);
System.out. print();
System.out. println (game. getSticks ());
myMethod (game) ;

System.out. print();
System.out. println (game. getSticks ());
}// main ()
} // ReferenceCall

Figure 3.9: Passing a reference value to a method.

a OneRowNim instance is an object, g is a reference variable. So when
myMethod (game) is invoked in main (), a reference to game is passed
to myMethod (). Note that in myMethod (), we use takeSticks (3) to
change the number of sticks of g from 10 to 7 and that this change persists
even after the method returns control to main (). The reason is that dur-
ing the method’s execution, both game and g refer to the exact same object
(see Fig. 3.10). The output generated by ReferenceCall would be

‘ main: Number of sticks: 10 \
. myMethod: Number of sticks: 10 \
' myMethod: Number of sticks: 7 \
‘ main: Number of sticks: 7 ‘

This illustrates that when passing a reference variable to a method, it is
possible for the method to change the state of the object associated with

SECTION 3.6 e Flow of Control: Control Structures 121
[rrain) | game= 4——= | nSticks = 10
[ayer=1
[main) | game= J——== | nSticks = 10
|m';.-Methud[] | q= _H player =1
()
[mainl] | game= +—— == |nSticks = 7
prAehod [0= +——= player=2
ic)
[main | game= 4——== | nSticks = 7
(@) player=2

the reference variable. In subsequent chapters we will see ways to make
use of this feature of reference parameters.

Figure 3.10: Tracing the
state of OneRowNim object in
ReferenceCall (a) Just before
calling myMethod (game). (b)
Just before executing the body of
myMethod (). (c) Just after exe-
cuting the body of myMethod ().
(d) After flow of control returns
tomain ().

PANAD TN [COPN@IOIfE Passing a Reference. When a reference to
an object is passed to a method, any changes made to the object from
within the method will persist when the method is finished executing.

PaNZOp)zis el@iN(€lNid] Side Effects. An unintended change to an
object is called a side effect. Care should be taken in designing
methods that the method does not produce unwanted side effects in
objects passed as reference parameters.

3.6 Flow of Control: Control Structures

We have been ignoring a couple of problems with the definition of the

OneRowNim class. One problem is that we would describe a One Row

Nim game as two players taking turns until there are no more sticks. An

object using OneRowNim would need a way to repeatedly execute a group

of statements. One command in Java that controls the repetition of a block

of statements is called a while loop. We will consider it later in this section.
A second problem is with the definition of takeSticks ():

‘ public void takeSticks (int num)
LA nSticks — num;

\ player = 3 — player;

.

Simple 1 £ statement

122 CHAPTER 3 o Methods: Communicating with Objects

It is possible to call this method with an argument greater than 3 or less
than 1. The call game . takeSticks (5) will remove 5 sticks even though
the rules of One Row Nim say that you must remove 1, 2, or 3. While one
might assume that the user interface should prevent the user from break-
ing this rule, it is a far better design if it was dealt with in OneRowNim.
To do this we need a Java structure that executes different statements de-
pending on whether the parameter is greater than 3, less than 1, or be-
tween 1 and 3. The Java if-else statement has this capability. A fuller treat-
ment of control structures appears in Chapter 6, but in this section, we will
briefly introduce a couple of simple control structures. This will enable us
to write programs that take more interesting actions.

3.6.1 The Simple If Statement

A selection control structure, allows a program to select between two or
more alternative paths of execution. The if statement is the most basic
selection control structure in Java. Most programming languages have its
equivalent.

PALOTNN€ON@ 0B If Statement. The if statement has the
following syntax:
if (boolean expression)
containedstatement ;

The statement contained in the if statement can be any valid Java state-
ment, including a compound statement. (Recall from Chapter 1 that
a compound statement is a set of statements contained within curly
braces.) The boolean expression is an expression that is either true
or false. We have seen examples of boolean expressions that involve
int variables, int values, and the inequality or equality operators. A
method call to a method with a boolean result type is another example
of a boolean expression. Given this description of if statement syntax,
the following are examples of valid if statements:

‘ if (true) System.out.println(”Hello”);
‘ if (nSticks <= 0) System.out.println(”game is over”);

For readability, we usually write an if statement with its contained state-
ment indented on the next line:

. if (true)

\ System.out. println (”Hello”);

. if (nSticks <= 0)

‘ System.out. println (“game is over”);

SECTION 3.6 o Flow of Control: Control Structures 123

The following are all examples of syntax errors involving the if statement:

if true // Parentheses are missing
System.out. println (" Hello”);

if (nSticks <= 0) return // Semicolon missing
if (”tl'th‘”) return; // " true” is not a boolean
if (true) ”Hello”; // ”Hello” 1is not a statement

Semantically, the if statement has the following interpretation: First, the
boolean condition is evaluated. If it is true, then the contained statement is
executed; if it is false, then the contained statement is not executed. This is
shown in Figure 3.11. The flowchart clearly shows that program flow will
take one or the other of the alternative paths coming out of the diamond-
shaped boolean condition box. The branch through the rectangular state-
ment box will be taken when the boolean condition is true; otherwise the
statement will be skipped.

As another example, consider the definition ofa getPlayerString ()
method for the OneRowNim class:

public String getPlayerString ()
{
if (player == 1)
return "P]a}'er One”; // Exit the method
if (player == 2)
return ”l’layer Two”; // Exit the method
return "Player error”; // Exit the method

}

The flowchart in Figure 3.12 shows the program flow of the entire
getPlayerString () method. It is important to note that when a

}

‘ return "Player One" +—>< exit method >

True

‘ return "Player Two" +—>< exit method)

‘ return "Player error" ‘

return statement is executed in a method, control is returned im-

boolean
condition

statement

Figure 3.11: Flowchart of the if
statement. Diamond-shaped sym-
bols at the branch points contain
boolean expressions. Rectangu-
lar symbols can only contain ex-
ecutable statements. Circles act
simply as connectors, to connect
two or more paths.

Figure 3.12: Flowchart of the
getPlayerString () method.

Compound statement

Local scope

124 CHAPTER 3 o Methods: Communicating with Objects

mediately to the calling method. Thus, if player == is true,
the string “Player One” is returned to the calling method and the
getPlayerString () method exits at this point. If it is false, then
player == 2 should be true (if we have a consistent state) and the string
“Player Two” should be returned and the method exited. Thus, if we have
a consistent state —that is, if player has value 1 or 2—then the third
return statement should never be reached.

The following example shows the more common case where the state-
ment contained in an if statement can be a compound statement:

if (player == 1) \
| String s = “Player One”; ‘
\ System.out. print (s); ‘
\ System.out.println (7 plays next”); ‘
‘ System.out. println (” The game is not over”); \
B |

If player == 1 is true, then all four statements in the contained com-
pound statement will be executed. Note here that we are declaring the
local variable, s, in this block. Its scope would extend only to the end of
the block. Note also that when we use a compound statement, the com-
pound statement itself is not followed by a semicolon because it is already
enclosed in braces.

A common programming error is to forget the braces around the com-
pound statement. Merely indenting the statements following the if clause
doesn’t alter the logic of the if statement. For example, the following if
statement still has only one statement in its if clause:

‘ if (conditionl) ‘
| System.out.println (“One”); ‘
‘ System.out.println(”T\m” ; //Not part of if statement ‘

This segment will always print “Two” because the second println () is
not part of the if statement. To include it in the if statement, you must
enclose both println () statements within braces:

‘ if (conditionl) ‘
\ { System.out.println("One”); ‘
‘ System.out. println ("Two”); |

}

aNZLOp s e[@N(€Nid] Indentation. Indentation can improve the
readability of a program but doesn’t affect its logic. Braces must be
used to group statements in the if clause.

3.6.2 The if-else Statement

A second version of the if statement incorporates an else clause into the
structure. This allows us to execute either of two separate statements (sim-

SECTION 3.6 o Flow of Control: Control Structures 125

ple or compound) as the result of one boolean expression. For example,
the statement

if (player == 1) \
\ System.out. println (”Player One”); \
| else \
‘ System.out. println (" Player Two”); ‘

will print “Player One” if player == 1 is true. Otherwise, it will print
“Player Two”.

PANZC AN [COPN@IOIRE [f-else Statement. The if-else statement has
the following syntax:
if (boolean expression)
statementl ;
else
statement?2

As in the case of the simple if statement, the keyword if is followed by
a parenthesized boolean expression, which is followed by statement1, which
may be either simple or compound. If statementl is a simple statement,
then it is followed by a semicolon. The else clause follows immediately
after statementl. It begins with the keyword else, which is followed by
statement2, which can also be either a simple or compound statement.
Note that there is no boolean expression following the else keyword.
In an if-else statement, the boolean expression following the keyword if
goes with both the if and else clauses.

Semantically, the if-else statement has the following interpretation: If
the boolean expression is true, execute statementl; otherwise execute state-
ment2. This interpretation is shown in Figure 3.13.

3.6.3 The Nested if/else Multiway Selection Structure

The statements that one inserts in place of statementl and statement2 in
the if-else statement can be any executable statement, including another
if statement or if-else statement. In other words, it is possible to embed
one or more if-else statements inside another if-else statement, thereby
creating a nested control structure. As with most things, making a control
structure too complex isn’t a good idea, but there is a standard nested if-
else control structure that is very useful. It is known as multiway selec-
tion. As shown in Figure 3.14, the multiway structure is used when you
want to select one and only one option from several alternatives.
Suppose we have an int variable num that will contain one of the val-
ues 1, 2, or 3 unless there has been an error assigning a value to it. Sup-
pose that we want to write code that will write out the English word for

If-else syntax

boolean
condition

statement2 statement1
?

Figure 3.13: Flowchart of the
if-else statement.

126 CHAPTER 3 o Methods: Communicating with Objects
Figure 3.14: Flowchart of a nested
if-else statement. l

Two

False True

Error:

Unknown value Ulhirezs

I I\

Sels

O

the value in num. In the example shown in Figure 3.14 there are three
alternatives plus an error state. Here is the Java code for this example:

if (num == 1)
System.out. println ("One”);
else if (num == 2)
System.out. println ("Two”);
else if (num == 3)
System.out. println (" Three”);
else
System.out. println (”Error: Unknown value”);

Note that the multiway structure has a single entry point and that only one
Multiple alternatives of the four possible alternatives is executed. The code will print exactly
one of the strings.

We will have many occasions to use the if-else structure. Al-
though it does not represent a significant change, we could rewrite our
takeStick () method to make use of the if-else instead of the somewhat
obscure statement :

[player = 3 — player; J

SECTION 3.6 e Flow of Control: Control Structures 127

to change the value of player from 1 to 2 or vice versa:

public String takeSticks(int num)
{ nSticks = nSticks — num;
if (player == 1)
player = 2; // From 1 to 2
else
player = 1; // From 2 to 1

In some respects this version of takeSticks () involves four lines of
code instead of one but is simpler to understand. The i f-statement tests
whether the value of player is 1. If it is, the value is changed to 2. If
the value of player is not 1, then the value must be 2 and so the value is
changed to 1. Both versions of the code will give precisely the same result,
a programmer could choose to write the code either way.

SELF-STUDY EXERCISES

EXERCISE 3.10 Consider the following method with boolean param-
eter.

public String getStatus(boolean isDone) \
{ if (isDone) \
return ; \

else ‘
return ; \

|

}

Draw a flowchart for the if-else version of the get Status () method, us-
ing the figures in this section as a guide. The if-else structure should be
drawn exactly as shown in Figure 3.11. It should have a single entry point
that leads directly to the top of a diamond-shaped box that contains a
boolean condition. There should be two branches coming out of the con-
dition box. The one going to the right is the true case, and the one going
to the left is the false case. Each of these branches should contain one
rectangular box, which contains the statements that would be executed in
that case. The left and right branches should be connected by a circular
symbol that is aligned directly under the diamond box whose conditions
it connects. There should be a single exit arrow pointing directly down.

EXERCISE 3.11 Identify the error in the following statements:

if (isHeavy == true)

System . out. println ();
else ;

System.out. println ();

if (isLong == true)

System.out. println ()
else

System.out. println ();

Flowchart symbols

128 CHAPTER 3 o Methods: Communicating with Objects

EXERCISE 3.12 Suppose we have an int instance variable named
player in some class describing a three person game. Write a method
named getPlayerName () that returns a String. It should return
“Ann”, “Bill”, “Cal”, or “Error” when the value of player is respectively
1,2, 3, or any other value.

EXERCISE 3.13 How does a parameter for a primitive type differ from
a parameter for a reference type?

3.6.4 The While Structure

A repetition structure is a control structure that repeats a statement or
sequence of statements in a controlled way. Repetition structures are also
referred to as loop structures. Many types of programming tasks require
a repetition structure. Consider some examples.

e You want to add up the squares of the numbers from 1 to 100.

¢ You want to compute compound interest on an amount of money in
a savings account with a fixed interest rate if it is kept there for 30
years.

o A computer security employee wants to try every possible password
in order to break into an account of a suspected spy.

e You want to have players input moves for a turn in a game until the
game is over. Our OneRowNim is such an example.

We will study several different repetition structures of Java in depth in
Chapter 6. We will briefly consider the while statement here so as to be
able to define methods that are more powerful and more interesting. Let
us write a method that solves a slight generalization of the first problem
above. We will use the while statement to sum the squares of integers from
1 to a number specified as a parameter of the method. Thus, the method
call sumSquares (3) should return the value 14 since 1 %1 +2%2+43%3 =
1+449=14.

public int sumSquares(int max)
{ int num = 1;
int sum = 0;

while (num <= max) { // While num <= max
sum = sum + numxnum; // Add square to sum
num = num + 1; // Add 1 to num

} // while

return sum; // Return the sum

}

Note that in this example, the variable num gets assigned an initial value
of 1 before the while statement. Note also that the boolean expression
num < max in parentheses after while states the condition for which we
wish to continue summing squares. Finally note that the last statement
in the block following the boolean expression adds 1 to num-that is, this
variable is updated at the end of the block.

SECTION 3.6 o Flow of Control: Control Structures 129

The while statement is a loop statement in which the loop entry condi-
tion occurs before the loop body. It has the following general form:

ANZAS DNNE@OVN@ERNOIRE While Statement. The while statement has
the following syntax:
while (loop entry condition)
loopbody ;

When the while statement is executed, the loop entry condition is evalu-
ated and if this evaluates to false, execution continues at the statement
immediately after the loop body. If the loop entry condition evaluates to
true, the loop body is executed and then the entry condition is evalu-
ated again. The loop body continues to be executed until the loop entry
condition evaluates to false.

To have a while statement accomplish a task, the variable or variables
in the loop entry condition must be initialized correctly before the while
statement and these variables must be correctly updated at the end of the
loop body. We can refer to the initializer statement followed by a while
statement as a while structure. We can restate the above guidelines as a
design principle:

AN P @IBNAERIERI @) Loop Structure. A properly designed
while structure must include an initializer, a loop entry condition, and
an updater. The updater should guarantee that the loop entry
condition eventually fails, thereby allowing the loop to terminate.

In pseudocode, the while structure would take the following form:

‘ InitializerStatements; // Initializer \
' while (loop entry condition) { // Bound test \
\ Statements; // Loop body ‘
\ UpdaterStatements; // Updater \
U |

As its form suggests, the while structure is designed so that on some con-
ditions the loop body will never be executed. Because it tests for the loop
entry condition before the loop body, it is possible that the loop body is
never executed. We might say that it is designed to perform 0 or more
iterations.

For example, if the method call sumSquares (-3) is executed, the loop
body will be skipped, because the loop entry condition num <= max is
false to begin with. No iterations will be performed, and the algorithm
will simply return the value 0.

Note also that in the while statement the bound test is preceded by
initializer statements, and the loop body contains updater statements. The
semantics of the while structure are shown in Figure 3.15.

Figure 3.15: Flowchart of the
while statement and while struc-
ture.

130 CHAPTER 3 o Methods: Communicating with Objects

While Statement While Structure

Initializer
~<«— | Updater

. —

True
Statement

;?;5 Statement
False condition (loop body)

SELF-STUDY EXERCISE

EXERCISE 3.14 Modify the definition of the sumSquares () method
to define a method named sumCubes () that sums the cubes of integers
from a minimum value up to a maximum value and returns that sum.
sumCubes () should have two parameters that will store the minimum
and maximum values. Thus the method call sumCubes (2, 3) should
return 35 since 2%2%2+43%3%3 =8+427 =35.

3.7 Testing an Improved OneRowNim

Let’s use the control structures that we have discussed to improve the
definition of the takeSticks () method of OneRowNim. We noted ear-
lier that our current definition allows 4 or more sticks to be removed
from nSticks even though the rules of One Row Nim indicate that a
player must take one, two, or three sticks on a turn. We can use i f-else
statements to make certain that no more than 3 sticks get removed.

What should happen if the method takeSticks () is called with an
argument that does not represent a legal number of sticks to remove? In
this case, it would probably make sense to remove no sticks at all and to
keep the value of player the same so that the player whose turn it is does
not change. In addition, it would be nice if the method could signal that an
illegal move has been attempted. This can be accomplished if we redefine
takeSticks () to return a boolean value. Let’s have a return value of
true represent the case that a valid number of sticks have been removed
and the player to play next has been changed. A return of false will
indicate that an illegal move has been attempted. Making these changes

SECTION 3.7 e Testing an Improved OneRowNim 131

to the takeSticks () method will yield a method definition that looks
like:

public boolean takeSticks (int num)
{ if (num < 1) {
return false; // Error
} else if (num > 3) {
return false; // Error
} else {
nSticks = nSticks — num;
player = 3 — player;
return true;
} // else
} // takeSticks
N
Notice that the new definition of the takeSticks () method has a
boolean return type. Also notice that the if/else multiway structure
is used to handle the three cases of the parameter num being less than one,
more than three, or a valid number.

Let us add one more method to the OneRowNim class. Let’s define a
method called getWinner () that will return the number of the winning
player if the game is over. Recall that the player who takes the last stick
loses, so after that last play, the player whose turn it is to play next is the
winner. However, we should be concerned about what value to return if
the game is not over when the method is called. A common strategy is
to have a method return a special value to indicate that it is in a state in
which it cannot return the value requested. Returning a 0 value is a good
way to indicate that the game is not over so a winner cannot be identified.
With this information, the if/else statement can be used in the definition
of getWinner ().

‘ public int getWinner ()
{ if (nSticks < 1)

return 0;

|
|
return player; ‘
|
|
} // getWinner () ‘

|
|
|
\ else
|

We now have the final version (for this chapter) of the OneRowNim
class whose implementation is given in Figure 3.16. We have turned a
very simple class into one that contains quite a few elements. Compared
to our first version (in Chapter 1), this Chapter’s version of OneRowNim
presents an interface (to other objects) that is easy and convenient to
use. The constructor methods with parameters provide an easy way
to create a OneRowNim instance with any number of sticks. The use
of private instance variables and a single, carefully designed mutator
method, takeSticks (), prevents other objects from tampering with
the state of a OneRowNim object’s state. The other methods provide a
flexible way to find out the state of a OneRowNim object. The complete
implementation of this OneRowNim is shown in Figure 3.16.

132

CHAPTER 3 o Methods: Communicating with Objects

public class OneRowNim

{

private int nSticks = 7;
private int player = 1;

public OneRowNim ()
{

} // OneRowNim () constructor

public OneRowNim(int sticks)
{ nSticks = sticks;

} // OneRowNim () constructor?2

public OneRowNim(int sticks , int starter)
{ nSticks = sticks;

player = starter;
} // OneRowNim () constructor3

public boolean takeSticks(int num)

{ if (num < 1) return false; // Error
else if (num > 3) return false; // Error
else // this 1is a valid move

{ nSticks = nSticks — num;
player = 3 — player;
return true;

} // else

} // takeSticks ()

public int getSticks ()
{ return nSticks;
} // getSticks ()

public int getPlayer ()
{ return player;
} // getPlayer ()

public boolean gameOver ()
{ return (nSticks <= 0);
} // gameOver ()

public int getWinner ()

{ if (nSticks < 1) return getPlayer ();
else return O0; //game 1is not over

} // getWinner ()

public void report()
{ System.out. println ("Number of sticks left: +
getSticks ());
System.out. println ("Next turn by player 7 +
getPlayer ());

7

} // report ()

} // OneRowNim class

Figure 3.16: The OneRowNim class with improved methods.

SECTION 3.7 e Testing an Improved OneRowNim 133

Let’s use a while statement to test the new methods of the class. A
pseudocode description of how a game is played might look like:

Choose the initial number of sticks for the game
while the game is not over
{ Report the state of the game
Process the next move
}

Report the state of the game
Report who the winner is

Translating this pseudocode into Java code in amain () method in a sepa-
rate class gives us the class shown in Figure 3.17. We will use the Scanner
class introduced in the previous chapter to get moves from the keyboard

import java.util.Scanner;

public class TestOneRowNim
{

public static void main(String argv[])

{ Scanner sc = Scanner.create(System.in);
OneRowNim game = new OneRowNim (11);
while (game. gameOver () == false)

{ game.report(); // Prompt the wuser
System.out. print();
int sticks = sc.nextInt(); // Get move
game. takeSticks (sticks); // Do move
System.out. println ();

} // while

game.report(); // The game is now over

System.out. print();

System.out. println (game. getWinner ());

} // main ()

} // TestOneRowNim

Figure 3.17: The TestOneRowNim class with a while loop.

for both players. Before each move game.report () describes the state
of the game before the user is prompted to input a move for one of the
players. A reader interested in seeing the lengthy output to the console
when the TestOneRowNim class is run is encouraged to actually run the
program.

Note that the return value of the takeSticks () method is ignored
in this test program. We will make use of the return value in test pro-
grams in the next chapter when better user interfaces are developed for
OneRowNim. Note, however, that taken together, the public methods for

Object-oriented design

134 CHAPTER 3 o Methods: Communicating with Objects

OneRowNim provide other objects with an interface that they can use to
communicate with individual OneRowNim objects.

AN GINAAEIRIECI @] Interfaces. Well-designed objects
provide a useful public interface and protect the object’s private
elements from other objects.

To reiterate a point made at the outset, object-oriented programming is a
process of constructing objects that will interact with each other. Object-
oriented programs must ensure that the objects themselves are well de-
signed in terms of their ability to carry out their designated functions.
Good design in this sense requires careful selection of instance variables
and careful design of methods to ensure that the object can carry out its
assigned tasks. However, equal care must be taken to ensure that the
interactions that take place among objects are constrained in ways that
make sense for that particular program. This aspect of designing ob-
jects comes into play in designing the methods—constructor, accessor, and
mutator—that make up the object’s interface.

Special Topic: Intelligent Agents

Wouldn't it be nice if we had a computer program that could schedule
appointments for us, remind us of meetings and commitments, find in-
formation for us on the WWW, and manage our e-mail messages for us?
Wouldn't it be nice to have a computerized personal assistant?

Actually, such programs are called intelligent agents, which are pro-
grams that are capable of acting autonomously to carry out certain tasks.
Intelligent agent technology is becoming an important research area in
computer science. Most agent programs incorporate some kind of ma-
chine learning capability, so that their performance improves over time.

As a typical agent activity, suppose I was able to tell my intelligent
agent to buy me a copy of a certain book that I just heard about. Given a
command like “buy me a copy of X,” the agent would perform a search
of online book sellers and come up with the best deal. Once it had found
the best buy, the agent would communicate with a computer-based agent
representing the book seller. My agent would make the order and pay
for it (assuming I gave it authority to do so), and the book seller’s agent
would process the order.

As far-fetched as the capability may now seem, this is the direction
that research in this area is headed. Researchers are developing agent
languages and describing protocols that agents can use to exchange in-
formation in a reliable and trustworthy environment. Obviously, you
wouldn’t want your agent to give your money to a fraudulent book seller,
so there are significant problems to solve in this area that go well beyond
the problem of simply exchanging information between two agents.

The best way to learn more about this research area is to do a Web
search using the search string “Intelligent Agent.” There are numerous re-
search groups and companies that provide online descriptions and demos
of their products.

SECTION 3.8 o From the Java Library java.lang.Object 135

3.8 From the Java Library java.lang.Object

The most general class in Java’s class hierarchy is the java.lang.0Object
class. It is the superclass of all classes that occur in Java programs. By de-
fault, it is the direct superclass of any class that does not explicitly specify
a pedigree in its class definition.

All subclasses of Ob ject inherit the public and protected methods
contained in Ob ject, so all such methods can be thought of as belonging
to the subclasses. This means that all classes inherit the methods of the
Object class, because every class is a subclass of it. In this section, let’s
look briefly at how we can use an inherited method and also at how we
can override it-that is, redefine the method-if it doesn’t exactly suit our
purposes.

One of the most useful methods in the Object class is the
toString () method:

ublic class Object

|
public String toString() ; ‘

The toString () method returns a String representation of its object.
For example, ol.toString () will return a String that in some sense
describes o1.

Because OneRowNim is a subclass of Object, it inherits the
toString () method. To illustrate the default behavior of toString (),
let’s use it with a OneRowNim instance:

' OneRowNim g1 = new OneRowNim(11); \
' OneRowNim g2 = new OneRowNim(13); \
| System.out.println(gl.toString ()); \
t System.out. println (g2. toString ()); ‘

This code segment creates two OneRowNim instances, one named g1 and
the other named g2. The inherited toString () method is then invoked
on each OneRowNim instance, which produces the following output:

(‘
. OneRowNim@1dc6077b \
t OneRowNim@1dc60776 J

What this experiment shows is that the default definition of toString ()
returns some kind of internal representation of its object. It looks as if it
returns the name of the object’s class concatenated with its memory ad-
dress. This may be useful for some applications. But for most objects
we will want to override the default definition to make the toString ()
method return a string that is more appropriate for OneRowNim.

What String should the g1.toString () method return? Let’s have
it return a St ring that reports the OneRowNim instances’s current state,
which are the values stored in the two instance variables. To override
a method, you simply define a method with the same signature in the

java.sun.com/j2se/1.5.0/docs/api/

Inheritance

136 CHAPTER 3 o Methods: Communicating with Objects

subclass. If you call toString () with an instance of the subclass, its
version of the method will be used. In this way, the subclass method over-
rides the superclass version. Thus, OneRowNim.toString () will have
the following signature:

- B\
tpublic String toString (); J

Let us describe the state of a oneRowNim instance very briefly in the string
returned by the toString () method:

| public String toString () \
' { return + nSticks + + player; |

B

If we add the toString () method to the OneRowNim class and then run
the program shown in Figure 3.18, we get the following output:

p
' nSticks
‘ nSticks

9, player = 2 ‘
13, player =1 ‘

public class TestToString
{
public static void main(String argv[])
{ OneRowNim gl = new OneRowNim(11);
OneRowNim g2 = new OneRowNim (13);
gl.takeSticks (2);
System.out. println(gl.toString ()
System.out. println(g2.toString ()
} // main
} // TestToString

)
)

Figure 3.18: An application to test the overridden toString () method.

While this new method may not play an important role in the OneRowNim
class, it does provide a very brief, understandable description of the state
of the object. This is the reason that the toString () method was in-
cluded in the Object class.

3.9 Object-Oriented Design: Inheritance and
Polymorphism

This use of Object’s toString () method provides our first look at
Java’s inheritance mechanism and how it promotes the generality and
extensibility of the object-oriented approach. As a subclass of Object,
our OneRowNim class automatically inherits toString () and any other
public or protected methods defined in Object. We can simply use
these methods as is, insofar as they are useful to us. As we saw in this
case, the default version of toString () wasn’t very useful. In that case,

SECTION 9 o OOD: Inheritance and Polymorphism 137

we can override the method by defining a method in our class with the
exact same method signature. The new version of toString () can be
customized to do exactly what is most appropriate for the subclass.

One of the great benefits of the object-oriented approach is the ability
to define a task, such as toString (), at a very high level in the class
hierarchy and let the inheritance mechanism spread that task through-
out the rest of the hierarchy. Because toString () is defined in Object,
you can invoke this method for any Java object. Moreover, if you over-
ride toString () in the classes you define, you will be contributing to its
usefulness. Two important lessons from this example are

ANAVEHRSGINNARIECIE@IN) [nheritance. The higher up in the class
hierarchy that a method is defined, the more widespread its use can be.

JENZ NG RRII(@N] Overriding toString (). The
toString () method can be overridden in any user defined Java
class. It is a useful thing to do in any class where the state of an object
can be defined briefly.

Obviously there is much more that needs to be explained about Java’s
inheritance mechanism. Therefore, we will be revisiting this topic on
numerous occasions in subsequent chapters.

Another important concept of object-oriented design is polymorphism.
The toString () method is an example of a polymorphic method. The
term polymorphism is from the Greek terms poly, which means “many,”
and morph, which means “form.” The toString () method is polymor-
phic because it has different behavior when invoked on different objects.

For example, suppose we design a class, Student, as a subclass of
Object and define its toString () method to return the student ID
number. Given this design, then ob7j.toString () will return a student
ID if obj is an instance of Student, but if it is an instance of OneRowNim,
it will return a the description of its state that we defined above. The
following code segment illustrates this point:

Object obj; // obj can refer to any Object
Ob] = new Student(”’12345”);// obj refers to a Student
System.out. println (obj.toString ()); // Prints ”712345"
Obj = new OneRowNim(11); // obj refers to a OneRowNim
System.out. println (obj. toString ());

// Prints: nSticks = 11, player = 1

In this case, the variable obj is used to refer to a Student and then to a
OneRowNim instance. This is okay because both classes are subclasses of
Object. When toString () isinvoked on obj, Java will figure out what
subclass of Object the instance belongs to and invoke the appropriate
toString () method.

138 CHAPTER 3 o Methods: Communicating with Objects

310 Drawing Lines and Defining Graphical
Methods (Optional)

We used a Graphics object in the previous chapter to draw rectangles
and ovals in a JFrame window. The Graphics class also possesses a
method for drawing a line segment. Problems involving drawing pic-
tures in an JFrame window using a series of line segments can be a source
of examples of defining useful methods and also of making good use of
loops.

The Graphics class has a public instance method with the header:

-
‘ public void drawLine(int x1, int yl, int x2, int y2)
N

The method call g.drawLine (x1, yl, x2, y2) drawsa line from the
point (x1,yl) to (x2,y2) where (x,y) refers to a point that is x pixels from
the left edge of the area that g is drawing in and y pixels from the top edge.
Thus g.drawLine (10, 10, 10, 60) draws a vertical line segment
that is 50 pixels long and is 10 pixels from the left edge of the drawing
area, that is, a line segment from the point (10, 10) to the point (10,60).

Consider the problem of creating an Swing program with a method
called drawSticks () to draw any specified number of vertical line seg-
ments. This method might be useful for an graphical user interface to
the OneRowNim game to draw the number of sticks at a given point in a
game. Suppose that this method must have an int parameter to specify
the number of vertical lines to draw and two int parameters to spec-
ify the location of the top endpoint of the left most line segment. The
drawSticks () method will need to use a Graphics object connected
to the JFrame window for drawing the line segment. The only such
Graphics object available is the parameter in the paint () method of
the Canvas. Thus the method must have a Graphics parameter and it
will be called in the paint () method using the Graphics object there as
an argument. Thus the header of the method should look like:

-
Lpublic void drawSticks(Graphics g,int x,int y,int num)

The length of the line segments and and the distance between them
are not specified by parameters so we need to choose some fixed values
for these quantities. Let us assume that the line segments are 10 pixels
apart and 50 pixels long. We now have enough information to complete
the definition of an applet to solve this problem. Such a class definition is
reproduced in Figure 3.19.

Note that the body of drawSticks () uses a while-loop to draw the
lines and declares and initializes a local variable to zero to use for counting
the number of lines drawn. The statement g.drawLine (x, y, %, y +
50) ; draws a vertical line which is 50 pixels long. Increasing the value
of x by 10 each time through the loop moves the next line 10 pixels to the
right.

The first call to drawSticks () in the paint () method draws 12
lines with (25,25) the top point of the left-most line. The second call to

CHAPTER 3 o Chapter Summary 139
/+*% DrawLineCanvas demonstrates some graphics commands.
* It draws a set of 12 vertical lines and a set of 7 lines.
*/
import java.awt.x*;
import javax.swing.]JFrame;
public class DrawSticksCanvas extends Canvas
/+*% drawSticks (g,x,y,num) will draw num vertical line
segments . The line segments are 10 pixels apart and
50 pixels long. The top endpoint of the left most
*line segment is at the point (x,y).
*/

public void drawSticks(Graphics g, int x, int y, int num)
{ int k = 0;
while (k < num)
{ g.drawLine(x, y, x, y + 50);
x = x + 10;
k =k + 1;
} // while
} /7 drawSticks ()

public void paint(Graphics g)
{ drawSticks (g, 25, 25, 12);
g.setColor (Color.cyan);

drawSticks (g, 25, 125, 7);
Y /7 paint()

} // DrawSticksCanvas

Figure 3.19: A Swing Class with a method for drawing a set of sticks.

drawSticks () will draw 7 cyan sticks 100 pixels lower. Note that chang-
ing the color of g before passing it as an argument to drawSticks ()

changes the drawing color.

Animage of the DrawSticksCanvas as it appears in a window is shown
in Figure 3.20.

As we have seen in this example, defining methods with parameters to
draw an object makes the code reusable and makes it possible to draw a
complex scene by calling a collection of simpler methods. It is a typical
use of the divide-and-conquer principle. The while-loop can be useful in
drawing almost any geometrically symmetric object.

Technical Terms

@®) @ Draw Sticks Program

Figure 3.20: The DrawSticksCan-
vas as displayed in a Java win-
dow.

CHAPTER SUMMARY

SOLUTIONS TO
SELF-STUDY EXERCISES

140 CHAPTER 3 o Methods: Communicating with Objects

accessor method loop structure repetition structure
class scope method overloading scope

formal parameter method signature selection

if statement mutator method side effect

if/else statement multiway selection while statement
inherit override while structure
local scope polymorphism

Summary of Important Points

o A formal parameter is a variable in a method declaration. It always con-
sists of a type followed by a variable identifier. An argument is a value
that is passed to a method via a formal parameter when the method is
invoked. A method’s parameters constrain the type of information that
can be passed to a method.

e When an argument of primitive type is passed to a method, it cannot
be modified within the method. When an argument of reference type
is passed to a method, the object it refers to can be modified within the
method.

o Except for void methods, a method invocation or method call is an
expression which has a value of a certain type. For example,
nim.getSticks () returns a int value.

o The signature of a method consists of its name, and the number, types,
and order of its formal parameters. A class may not contain more than
one method with the same signature.

o A constructor is a method that is invoked when an object is created. If a
class does not contain a constructor method, the Java compiler supplies
a default constructor.

e Restricting access to certain portions of a class is a form of informa-
tion hiding. Generally, instance variables are hidden by declaring them
private. The class’s public methods make up its interface.

o The if statement executes a statement only if its boolean condition is
true. The if-else statement executes one or the other of its statements
depending on the value of its boolean condition. Multiway selection al-
lows one and only one of several choices to be selected depending on
the value of its boolean condition.

o The while statement is used for coding loop structures that repeatedly
execute a block of code while a boolean condition is satisfied.

SOLUTION 3.1 A method declaration defines the method by specifying its name,
qualifiers, return type, formal parameters, and its algorithm, thereby associating
a name with a segment of executable code. A method invocation calls or uses a
defined method.

SOLUTION 3.2 A formal parameter is a variable in the method declaration, whose
purpose is to store a value while the method is running. An argument is a value
that is passed to a method in place of a formal parameter.

CHAPTER 3 o Solutions to Self-Study Exercises 141

SOLUTION 3.3 The following code declares two instance variables for names of
players and defines a setName () method:

private String nameOne = "Player One”;
private String nameTwo = "Player Two”;

public void setNames(String namel, String name2)
{ nameOne = namel;

nameTwo = name2;
}

Of course, there are many other appropriate names for the variables and parame-
ters and other initial assignments.

SOLUTION 3.4 A method call that sets the names of the players of gamel is:

~
Lgamel .setNames (" Xena” ,”Yogi”); J

SOLUTION 3.5 A constructor cannot have a return type, such as void.

SOLUTION 3.6 One definition for the method is:

‘ public OneRowNim(int sticks) \
| nSticks = sticks; \
} player = 2;

SOLUTION 3.7 The following would be displayed on the screen:

‘ false \

SOLUTION 3.8 One definition for the method is:

‘ public int getMoves() \
A return nMoves; \

¢ |
N . False True
SOLUTION 3.9 One definition for the method is:
‘ public boolean playerOnelsNext() \ S returm
} % return (player == 1); ‘ "Not Done" "Done"

exit method) exit method)
SOLUTION 3.10 See Figure 3.21.

Figure 3.21: Flowchart of the if-
else version of the get Status ()
method.

142 CHAPTER 3 o Methods: Communicating with Objects

SOLUTION 3.11

if (isHeavy == true)
System.out. println (“Heavy”) ;
else ; // Error (remove this semicolon)

System.out. println (" Light”);

if (isLong == true)
System .out. println ("Long”)
else // Error (end line above with semicolon)

System.out. println ("Short”);

SOLUTION 3.12

public String getPlayerName ()
{ if (player == 1)
return "Ann”;
else if (player == 2)
return "Bill”;
else if (player == 3)
return “"Cal”;
else
return “"Error”;

SOLUTION 3.13 When passing an argument for a primitive type, a copy of the
argument’s value is passed. The actual argument cannot be changed inside the
method. When passing a reference to an object, the object can be changed within
the method.

SOLUTION 3.14

public int sumCubes(int min, int max)
int num = min;
int sum = 0;
while (num <= max) { // While num <= max
sum = sum + numxnumsnum; // Add cube of num to sum

num = num + 1,’ // Add 1 to num
} // while
return sum; // Return the sum

EXERCISES EXERCISE 3.1 Fill in the blanks in each of the following sentences:

a. When two different methods have the same name, this is an example of

b. Methods with the same name are distinguished by their

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

c. A method that is invoked when an object is created is known as a
method.

CHAPTER 3 o Exercises 143

d. A method whose purpose is to provide access to an object’s instance variables
method.

A boolean value is an example of a

is known as an

type.

A OneRowNim variable is an example of a

type.

. A method’s parameters have scope.

S g oo

. A class’s instance variables have scope.

-

Generally, a class’s instance variables should have access.

The methods that make up an object’s interface should have access.

—

k. A method that returns no value should be declared

1. Java’s if statement and if-else statement are both examples of control

structures.

m. An expression that evaluates to either true or false is known as a

=]

. In an if-else statement, an else clause matches

o. The ability to use a superclass method in a subclass is due to Java’s

mechanism.
p- The process of redefining a superclass method in a subclass is known as
the method.

EXERCISE 3.2 Explain the difference between the following pairs of concepts:

Parameter and argument.

. Method definition and method invocation.
Local scope and class scope.

. Primitive type and reference type.
Access method and constructor method.

o Q0o

EXERCISE 3.3 Translate each of the following into Java code:

a. If bl is true, then print “one”; otherwise, print “two”.

b. If bl is false and if b2 is true, then print “one”; otherwise, print “two”.

c. If bl is false and if b2 is true, then print “one”; otherwise, print “two”, or print
“three”.

EXERCISE 3.4 Identify and fix the syntax errors in each of the following:

‘ if (isWalking == true) ;

\ System.out. println ();
else

‘ System.out. println ();

if (isWalking)

\ System.out. println ()

| else

‘ System.out. println ();

144 CHAPTER 3 o Methods: Communicating with Objects

if (isWalking)

System.out. println (" Walking”);
else

System.out. println ("Not walking”)

if (isWalking = false)

System.out. println (" Walking”);
else

System.out. println ("Not walking”);

EXERCISE 3.5 For each of the following, suppose that isWalking is true
and isTalking is false (first draw a flowchart for each statement and then
determine what would be printed by each statement):

if (isWalking == false)
System.out. println ("One”);
System.out. println ("Two”);

if (isWalking == true)
System.out. println ("One”);
System.out. println ("Two”);

if (isWalking == false)
{
System.out. println ("One”);
System.out. println ("Two”);
}

if (isWalking == false)
if (isTalking == true)
System.out. println ("One”);
else
System.out. println ("Two”);
else
System.out. println (" Three”);

CHAPTER 3 o Exercises 145

EXERCISE 3.6 Show what the output would be if the following version of
main () were executed:

public static void main(String argv[])
{
System.out. println ();
OneRowNim gamel ;
gamel = new OneRowNim(21);
OneRowNim game?2 ;
game2 = new OneRowNim(8);
gamel. takeSticks (3);
game2. takeSticks (2);
gamel . takeSticks (1);
gamel.report ();
game2.report ();
System.out. println ();

EXERCISE 3.7 Determine the output of the following program:

public class Mystery

{
public String myMethod(String s)

{

return (+ s);
}
public static void main(String argv[])
{
Mystery mystery = new Mystery ();
System.out. println (mystery.myMethod ();
}

EXERCISE 3.8 Write a boolean method—a method that returns a boolean—
that takes an int parameter and converts the integers 0 and 1 into false and
true, respectively.

EXERCISE 3.9 Define an int method that takes a boolean parameter. If the
parameter’s value is false, the method should return 0; otherwise, it should
return 1.

EXERCISE 3.10 Define a void method named hello that takes a single
boolean parameter. The method should print “Hello” if its parameter is true;
otherwise, it should print “Goodbye”.

EXERCISE 3.11 Define a method named hello that takes a single boolean
parameter. The method should return “Hello” if its parameter is true; otherwise it
should return “Goodbye”. Note the difference between this method and the one
in the previous exercise. This one returns a St ring. That one was a void method.

EXERCISE 3.12 Write a method named hello that takes a single String pa-
rameter. The method should return a String that consists of the word “Hello”
concatenated with the value of its parameter. For example, if you call this method
with the expression hello ("dolly™"), it should return “hello dolly”. If you call
itwithhello ("young lovers wherever you are"),itshould return “hello
young lovers wherever you are”.

146 CHAPTER 3 o Methods: Communicating with Objects

EXERCISE 3.13 Define a void method named day1 that prints “a partridge in a
pear tree”.

EXERCISE 3.14 Write a Java application program called TwelveDays that
prints the Christmas carol “Twelve Days of Christmas.” For this version, write a
void method named intro () that takes a single St ring parameter that gives the
day of the verse and prints the intro to the song. For example, intro ("first")
should print, “On the first day of Christmas my true love gave to me”. Then write
methods day1 (), day2 (), and so on, each of which prints its version of the verse.
Then write amain () method that calls the other methods to print the whole song.

EXERCISE 3.15 Define a void method named verse that takes two String
parameters and returns a verse of the Christmas carol “Twelve Days of Christ-
mas.” For example, if you call this method with verse("first", "a
partridge in a pear tree"), it should return, “On the first day of Christ-

mas my true love gave to me, a partridge in a pear tree”.

EXERCISE 3.16 Define a void method named permute, which takes three
String parameters and prints out all possible arrangements of the three strings.
For example, if you called permute ("a", "b", "c"), it would produce the
following output: abc, acb, bac, bca, cab, cba, with each permutation on a separate
line.

EXERCISE 3.17 Design a method that can produce limericks given a bunch of
rhyming words. That is, create a limerick template that will take any five words
or phrases and produce a limerick. For example, if you call

tlimerick(, , , ,); J

your method might print (something better than)

‘ There once a person named Jones \
' Who had a great liking for stones, \
' But whenever it rained, \
' Jones \
‘ t good for the bones. ‘

For each of the following exercises, write a complete Java application program:

EXERCISE 3.18 Define a class named Donor that has two instance variables,
the donor’s name and rating, both of which are Strings. The name can
be any string, but the rating should be one of the following values: “high,”
“medium,” or “none.” Write the following methods for this class: a construc-
tor, Donor (String, String), that allows you to set both the donor’s name and
rating; and access methods to set and get both the name and rating of a donor.

EXERCISE 3.19 Challenge. Define a CopyMonitor class that solves the fol-
lowing problem. A company needs a monitor program to keep track of when a
particular copy machine needs service. The device has two important (boolean)
variables: its toner level (too low or not) and whether it has printed more than
100,000 pages since its last servicing (it either has or has not). The servicing rule
that the company uses is that service is needed when either 100,000 pages have
been printed or the toner is too low. Your program should contain a method that
reports either “service needed” or “service not needed” based on the machine’s
state. (Pretend that the machine has other methods that keep track of toner level
and page count.)

CHAPTER 3 o Exercises 147

EXERCISE 3.20 Challenge. Design and write an OldMacdonald class that
sings several verses of “Old MacDonald Had a Farm.” Use methods to generalize
the verses. For example, write a method named eieio () to “sing” the “EIE1O”
part of the verse. Write another method with the signature hadAnX (String s),
which sings the “had a duck” part of the verse, and a method withA (String
sound) to sing the “with a quack quack here” part of the verse. Test your class by
writing amain () method.

ADDITIONAL EXERCISES

EXERCISE 3.21 Suppose you have an Object A, with public methods a (),
b (), and private method c (). And suppose you have a subclass of A named B
with methods named b (), c () and d (). Draw a UML diagram showing the rela-
tionship between these two classes. Explain the inheritance relationships between
them and identify those methods that would be considered polymorphic.

EXERCISE 3.22 Consider the definition of the class C. Define a subclass of C
named B that overrides method m1 () so that it returns the difference between m
and n instead of their sum.

public class C {

private int m;

private int n;

public C(int mIn, int nIn) {
m = min;
n = nln;

}

public int ml() {
return nun;

}

148 CHAPTER 3 o Methods: Communicating with Objects

Chapter 4

Input/Output: Designing
the User Interface

OBJECTIVES

After studying this chapter, you will

Understand the importance of the user interface.

Know how to use a simple command-line interface.

Be able to program and use a simple Graphical User Interface (GUI).
Understand the concept of event-driven programming.

Know how to program and use a Java Swing program.

OUTLINE

41 Introduction

4.2 The User Interface

4.3 A Command-line Interface

44 A Graphical User Interface (GUI)

45 Case Study: The One Row Nim Game

4.6 From the Java Library: java.io.File and file input (Optional)

Chapter Summary
Solutions to Self-Study Exercises

Exercises

149

User interface

Division of labor

150 CHAPTER 4 o Input/Output: Designing the User Interface
4.1 Introduction

One of the most important parts of learning a programming language is
learning how to program an application to accept input and produce out-
puts (I/0). Computers wouldn't be very useful if we could not give them
data to manipulate and compute, and if we were not able to read or un-
derstand the results that they produce. In general, a computer program’s
input and output capabilities are known collectively as its user interface.

An input operation is any action that transfers data from the user to
the computer’s main memory via one of the computer’s input devices.
An output operation is any action that transfers data from the computer’s
main memory to one of the computer’s output devices.

In this chapter, we will introduce three simple user interfaces: a
command-line interface and two graphical user interfaces (GUIs). These
interfaces can be used interchangeably with the material in most of the
subsequent chapters. Indeed, one of the most important design princi-
ples that we emphasize in this chapter is that the user interface should be
designed to function independently of the computational task. In other
words, it should be possible to take an application, such as a computer
game, and design it so that it can be used with a variety of different user
interfaces.

4.2 The User Interface

The user interface is that part of the program that handles the input and
output interactions between the user and the program. As an interface,
it limits or constrains the manner in which the user can interact with the
program.

Computer programs are just one of the many things that require a user
interface. Virtually every device we use has one. For example, consider
again the difference between the user interface of a digital versus an ana-
log watch. On a digital watch, you have a display that tells you the time
to the exact hour, minute, and second. On an analog watch, one with a
sweep second hand, the time can never be displayed to the exact second.
Similarly, on a digital watch there are buttons that let you set the time to
the exact hour, minute, and second. On an analog watch, there is a small
wheel that allows you to set the time only approximately. Thus, the user
interface constrains the kinds of interactions that are possible between the
user and the device.

With regard to our Java programs, one way to divide up the labor is to
distinguish between the user interface and the computational functions.
The role of the user interface is to transmit data back and forth between the
user and the program. The role of the computational part of the program
is to perform some kind of computation, in the broad sense of that term.
The computation might be to play a game, or calculate a square root, or
monitor a hospital patient. Figure 4.1 provides a generic picture of the
relationship between the user interface and the computational object.

In this chapter we focus our attention on the user interface side of the
relationship shown in Figure 4.1. In subsequent chapters we will focus
more on the computational side of the relationship. What we desire is an

SECTION 4.3 o A Command-Line Interface 151

| nput -

ser|nterface
- Hutput

Input
Output

LComputationaldbject

approach that lets us combine a computational object with any one of the
three different kinds of user interfaces.

VA\ZN S GUASEBERI(@N] The User Interface Module Separating
the user interface from the computational object is a good way to
divide up the labor in programs that perform I/0.

4.3 A Command-Line Interface

A command-line interface is perhaps the simplest, and most old-
fashioned, way to design the interaction between a user and a program.
According to this approach, user input is taken from the keyboard, and
the program’s output is displayed on some kind of console (Fig. 4.2).

00000000 " | Commendlinelnterface
Feyboard

oooo0oO0o0 Output nout

1< el g Cutput

LComputationalObject

Hil

Canzale

The command-line approach might also be called console interface. In
the early days of computers, before we had graphics-based computer
monitors capable of displaying multiple windows, the console was the
entire computer display. For today’s computers the console might be a
window provided by your programming environment, as in Figure 4.3.

In Chapter 3 we described how to use the System.out.print ()
and System.out.println () methods to output strings to the console.
That takes care of the output side of command-line interface. The more
challenging task is managing the input-side of the interface.

Figure 4.1: The user interface
transmits data back and forth be-
tween the user and the program’s
computational objects.

Figure 4.2: A command-line user
interface.

152 CHAPTER 4 o Input/Output: Designing the User Interface
Figure 4.3: The Java console win-
dow.

Java Console

: Flease input gour name here > Ralph
|Hi FRalph nice to mest you.

In Java, input and output is handled by objects that are called streams.
You can think of a stream as a kind of pipe through which data flow
Streams (Fig. 4.4). An input stream carries data from some kind of input device,
such as a keyboard or network connection or a file, to the program’s main
memory. An output stream carries data from the program’s memory to
some kind of output device, such as a printer or a file.

Figure 4.4: Input and output

streams. LT T 0 T 0 Y _
OO O0o0 0O _-"‘ 01001 01 ooa1 0g
[] = =] Program
Feyboard Input Stream HMemory
Hil Qoi001oooiod
' -4 System.nut - 01001010001 ad
Lonzole Output Stream

Each Java program has three standard streams available to it at startup:
System.in, System.out, and System.err. System.in is a prede-
fined input stream that is typically associated with the keyboard (Fig. 4.4).
That is, it carries data from the keyboard to the program. System.out
and System.err are both output streams typically associated with the
console. They both carry data from the program to the console. The dif-
ference is simply that System.out is used for normal program output
and System.err is used to output error messages.

4.3.1 Using a BufferedReader to Input Strings from the
Keyboard

We will use a BufferedReader object to handle data input from the
keyboard. As its name implies, the BufferedReader class performs
buffered input. A buffer is a portion of main memory where input is held
Buffered input until it is needed by the program. Using a buffer between the keyboard
and the program allows you to use the Backspace key to delete a char-
acter. When you hit the Enter key, any characters that you deleted will
be ignored when the program retrieves characters from the input buffer.
If the user’s input were not buffered in this way, it would contain ev-
ery keystroke, including the Backspaces, and then it would be up to the
program to eliminate the characters that were supposed to be deleted.

SECTION 4.3 o A Command-Line Interface 153

Reader

BufferedReader

+ BufferedReader(r : Reader)
+ readline(): String

Input3treamBeader

+ InputStreamPeader(s : InputStrearn)

Figure 4.5 provides a UML diagram of the Buf feredReader class and
shows its relationship to other the classes that will be used for keyboard
input . Note that along with InputStreamReader, BufferedReader
is one of several subclasses of the Reader class. As the diagram
shows, BufferedReader has two important methods. Its constructor
method takes a Reader parameter, which means that when we create a
BufferedReader we must provide it with a reference to some kind of
Reader object. To perform keyboard input, we want to provide a refer-
ence to an object that can read System. in, the standard input stream.
As the figure shows, Input St reamReader has a constructor that allows
it to read an InputStream. Therefore, to construct a Buf feredReader
that will read System. in we use the following statement:

e ‘
| BufferedReader input = new BufferedReader \

‘ (new InputStreamReader (System.in)); \

In this statement we are actually creating two objects. We first create an
InputStreamReader, giving it a reference to System. in. We then pass
that object to a BufferedReader. The result is a cooperation between
two objects that enables us to do buffered reading of the keyboard.

By creating a BufferedReader in this way, whenever we use its
readLine () method, it will read a line of characters from the keyboard.
For example, having created a Buf feredReader named input, the fol-
lowing code segment will read one line of input and assign it to the
String variable named inputString.

(

N
kString inputString = input.readLine (); J

When the program encounters the readLine () expression, it will wait
for the user to hit the Enter key. It will then input whatever the user

Figure 4.5: The BufferedRead-
er class.

Keyboard input

Wrapper classes

154 CHAPTER 4 o Input/Output: Designing the User Interface

typed, minus any characters that were Backspaced over, into the String
variable.

JPNZQ VNN (G ONE:PNOBE Keyboard Input. The
BufferedReader.readLine () method allows the user to
backspace over errors during keyboard input.

4.3.2 Inputting Numbers from the Keyboard

As the previous section showed, we can use a Buf feredReader object
to input St rings from the keyboard. In Java, all keyboard input is repre-
sented as St rings. However, what if we want to input numbers? The an-
swer is that we have to extract numbers from the input strings. To do this,
Java provides us two special classes, known as wrapper classes: Integer
and Double.

A wrapper class contains methods for converting primitive data into
objects and for converting data from one type to another. The Integer
class contains the parseInt () method, which extracts an int from its
String argument. For example, in the following usage, the string ”"55” is
converted into the number 55:

-
Lint m = Integer.parselnt(”55”); J

Similarly, the Double class contains the parseDouble () method, which
extracts a double value from its parameter. In this example, the number
55.2 is extracted from the string ”55.2":

-
Ldouble num = Double. parseDouble(”55.27); J

If we are writing a program that requires us to input numbers from
the keyboard, then assuming we have created a BufferedReader ob-
ject named input, we can use these methods in combination with the
readLine () method, to input and process numbers. For example, this
code segment calculates a runner’s race pace:

String inputString = new String ();

System.out. println ("How many total miles did you run? ”);
inputString = input.readLine (); // Input a String}
double miles = Double.parseDouble(inputString); // Convert
System.out. println ("How many minutes did it take you? ”);

inputString = input.readLine(); // Input another String
double minutes = Double.parseDouble(inString);
// Convert

System.out. println (”Your average pace was 7 +
minutes/miles + 7 minutes per mile”);

SECTION 4.3 o A Command-Line Interface 155

Notice how we included prompts in this example so that the user knows
what type of input is expected. Designing appropriate prompts is an
important aspect of designing a good user interface.

LANAVHHIE GNP @N Prompting. In a well-designed user
interface, prompts should be used to guide the user through the input
process.

4.3.3 Designing a Keyboard Reader Class

Now that we have introduced the library classes and methods that we
will use for command-line input, lets design a class to encapsulate these
functions. We want a class that will use a Buf feredReader to read any
kind of data—strings, integers, or real numbers—from keyboard. We also
want this class to hide some of the messy details involved in performing
keyboard input.

KewvboardReader U
zos -
- reader : BufferedReader Bufferedfe ader

+ KevboardReader()

+ getkevboardinput): String
+ getkevboardinteger(] : int

+ getkevboardbouble() : double
+ prompt(s: String)

+ display(z: String)

- readkevboard(): String

Figure 4.6 presents the design of KeyboardReader class. Note that
instances of this class will use a BufferedReader object to perform
the actual keyboard input. That’s why we need a private instance vari-
able of type BufferedReader. The constructor method will create a
BufferedReader, which will then be used whenever a read operation
is requested. Note that the KeyboardReader () has five public meth-
ods. The getKeyboardInput () method returns a String. This is the
method we will call when we just want to get the string that the user typed
from the keyboard. The getKeyboardInteger () method returns an
int value. This is the method we will call when we want an integer from
the keyboard. Similarly, the getKeyboardDouble () method returns a
double. This is the method we will call when we want to input a floating
point value from the keyboard. Finally, the prompt () and display ()
methods will be used to perform two other important tasks of a user in-
terface: that of prompting the user and that of displaying the program’s
output.

The following code segment illustrates how we will use a Keyboard-
Reader object to input an integer:

' KeyboardReader cmdline = new KeyboardReader ();
- int m = cmdline. getKeyboardInteger ();

Figure 4.6: Design of the
KeyboardReader class.

Private helper method

I/O exceptions

156 CHAPTER 4 o Input/Output: Designing the User Interface

All we need to do is create an instance of the KeyboardReader and ask
it to get an integer for us. This greatly simplifies the work we would have
to do when we want to perform keyboard input.

Note that Figure 4.6 lists a private method named readKeyboard ()
in the KeyboardReader class. This is the method that does the actual
work of reading data from the keyboard. Because it is private, it can only
be called by the other methods in KeyboardReader. It cannot be called
by other classes. The reason we make it private is to hide it, and the messy
details of performing keyboard input, from other classes.

One of those messy details is the fact that whenever I/O is performed,
it is possible for things to go wrong. The possibility of errors occurring
applies to all forms of I/0O, not just keyboard I/O. For example, when a
program is trying to read a file, the file might be missing. Or when trying
to download a web page, the Internet connection might malfunction.

Because these types of external errors are possible, Java requires that
whenever a program performs certain types of 1/0, it must watch out
for certain kinds of error conditions, known as exceptions. Exceptions are
covered in Chapter 11, so we will not attempt to cover them here. Instead,
we will design the readKeyboard () method to take care of this detail
for us.

PANAO DA€ OFN@ENOIRE Exceptions. Java I/O methods require
that programs check for certain error conditions during input.

Figure 4.7 gives the full implementation (for now) of the Keyboard-
Reader class. Lets go through it line by line. The first thing to no-
tice is the use of the import statement. Recall that importing a Java
package enables us to refer to elements in the package by their short
names (BufferedReader), rather than by their fully qualified names
(java.io.BufferedReader).

Next notice how we create a BufferedReader object in the
KeyboardReader () constructor:

‘ reader = new BufferedReader
‘ (new InputStreamReader (System.in));

The resulting reader object will persist as long as our KeyboardReader
object exists and can be used for all subsequent input operations.

Next notice the definition of the readKeyboard () method. It calls
the inherited readLine () method to input a line from the keyboard and
then it returns the line. Note, however, how the call to the readLine ()
method is embedded ina try. . .catch block. This is one way to handle
the possibility that an exception might occur during the input operation.
Java requires that our program do something to address the possibility
of an I/O exception, and as we will learn in Chapter 11, there are other
designs that we might have used here. The primary advantage of doing
it this way is that we can hide this language detail from the rest of the
program. The rest of the program—and any other programs that use the
KeyboardReader class—will not have to worry about this exception is-
sue. They can just ask the KeyboardReader to get them a string or an
integer and it will deliver the goods.

SECTION 4.3 o A Command-Line Interface 157

import java.io.x*;

public class KeyboardReader
{ private BufferedReader reader;

public KeyboardReader () {
reader = new BufferedReader
(new InputStreamReader (System.in));

public String getKeyboardInput()

{ return readKeyboard ();

}

public int getKeyboardInteger ()

{ return Integer.parselnt(readKeyboard());
}

public double getKeyboardDouble ()

{ return Double. parseDouble (readKeyboard ());
}

public void prompt(String s)

{ System.out.print(s);

}

public void display(String s)

{ System.out.print(s);

}
private String readKeyboard ()
{ String line = ;
try
{ line = reader.readLine();
} catch (IOException e)
{ e.printStackTrace ();
}
return line;
}

Figure 4.7: Definition of the KeyboardReader class.

Next, notice how the public input methods are defined. The
getKeyboardInput () method just returns the line that it gets by call-
ing readKeyboard (). The getKeyboardInteger () method also calls
readKeyboard (), but instead of just returning the line, it extracts an
integer from it and returns the integer. The getKeyboardDouble ()
method works the same way.

Finally, notice how the public output methods are defined. Both the
prompt () and display () methods take a single String parameter
and do exactly the same thing—they merely print their string. So why do
we have two methods when one will suffice? The answer is that these
methods encapsulate important and distinct user-interface functions—
prompting the user and displaying output—that just happen to be imple-
mented in exactly the same way in this case. As we will see when we de-
sign our GUI interface, we will use completely different objects to prompt
the user and display output. So, despite their similarities, it is important

158 CHAPTER 4 o Input/Output: Designing the User Interface

that we distinguish the task of prompting the user from the more general
task of displaying output.

4.3.4 Designing a Command-Line Interface

Now that we have defined a special class for performing keyboard input,
we now show how it can be used as a user interface in cooperation with
the other objects that make up a program. As described in Figure 4.1,
the user interface will serve as an intermediary between the user and
some type of computational object. Although our command-line interface
should work with any application, no matter how complex, we begin with
a very simple computational problem. This will allow us to focus on the
user interface.

Let’s design a program that prompts the user for his or her name and
then says hello. Thus, the program’s I/O should look like this:

‘ Hi, please input your name here > Kim
. Hi Kim, nice to meet you.

In the design we use there will be two primary objects involved. One
will serve as the user interface. This will be our KeyboardReader. A
second object will serve as the computational object. In this case it will
“compute” an appropriate greeting. It will serve contain the main ()
method and will encapsulate the algorithm for this application. It will
use a KeyboardReader to handle its I/O needs.

The main advantage of this division of labor is that it enables us to use
the KeyboardReader, as is, with virtually any Java application. More-
over, despite its simplicity, our computational object in this example can
serve as a template for future programs.

AN E@INNAERIERI@N| Modularity. By designing the user
interface as a self-contained module, we can use it with just about any
application.

Figure 4.8 provides the details the design we wish to implement. Note
that GreeterApp contains an instance variable for a KeyboardReader.
This will enable it to use the KeyboardReader whenever it needs to per-
form keyboard input. By giving GreeterApp a main () method, we al-
low it to be the main class for our application. Its run () method will con-
tain the algorithm that controls the application, and its greet () method
will handle the task of greeting the user.

The full implementation of the GreeterApp class is shown in
Figure 4.9. It begins by declaring an instance variable for the
KeyboardReader, which is instantiated in the constructor method. This
gives GreeterApp a way to refer directly to the user interface whenever it
needs keyboard input. The run () method encapsulates the application’s
algorithm. Notice how it uses the KeyboardReader to prompt the user,
to input the user’s name, and then to display the greeting. Finally, the
main () method serves to create an instance of the computational object
and calls its run () method.

SECTION 4.3 e

User

Input

Output

keyboardReader

- reader ; BufferedReader

+ KeyboardReader()

H+ qetkevboardinput(): String
+ getkeyboardinteger(): int

+ qetkevboardbouble) : double
+ prompilz: String)

+ dizplayiz: String)

- readkeyboard(): String

A Command-Line Interface

-} lses

159

Greeter

User Interface

- reader ; KeyboardReader

+ mainCargs[]:String)

+ init()

+ runl)

+ greet(name String): String

Computational Object

7z

{

public class GreeterApp

private KeyboardReader reader;

public GreeterApp ()

{
}

reader =

GreeterApp ()

public void run()
String name = ;
reader . prompt(

{

}

name

= reader.getKeyboardInput ();

new KeyboardReader ();

reader.display (greet(name) +

run ()

public String greet(String name)

{
}

public static void main(String args[])
new GreeterApp ();

{

return

+ name +

greet ()

GreeterApp app =

app.run () ;

GreaterApp

);

Figure 4.9: Definition of the GreeterApp class.

To re-cap, we have designed a simple command-line interface that can
be used, with minor changes, for virtually any programming task in sub-
sequent chapters. Before moving on, it may be helpful to touch on some
of the important object-oriented principles that went into our design.

o Divide-and-conquer: We see the usefulness of dividing a program
into separate objects, one to handle the computations required by
the application, and one to handle the user interface.

Encapsulation: The classes we designed encapsulate just the in-
formation and behavior that is necessary to perform their specific
roles.

Information hiding: We use a private method to hide certain messy
implementation details from other parts of the program.

Generality and Extensibility: We have developed a design that is
general enough that it can be extended to other applications.

Figure 4.8: Using Keyboard-
Reader as the user interface.

Event-driven programming

160 CHAPTER 4 o Input/Output: Designing the User Interface

SELE-STUDY EXERCISES

EXERCISE 4.1 Java’s Math class has a static method that will gener-
ate a random number between 0 and 0.99999999—that is, between 0 and
1, not including 1. By using simple arithmetic, we can generate random
numbers between any two values. For example, the following statement
assigns a random integer between 1 and 100 to the variable:

e B
k secretNumber = 1 + (int)(Math.random() * 100); J

Given this statement, design and implement an application that will play
the following guessing game with the user. The computer generates a ran-
dom number between 1 and 100 and then lets the user guess the number,
telling the user when the guess is too high or too low. Note that for this
problem, the user will have to input integers at the keyboard.

4.4 A Graphical User Interface (GUI)

While command-line interfaces are useful, one of the great advantages of
the Java language is that its extensive class library makes it relatively easy
to develop applications that employ Graphical User Interfaces (GUIs).
GUIs have been around now for many years, since the production of the
Macintosh in the early 1980s. Today nearly all the personal computing
applications are GUI-based. Therefore, it is important that beginning pro-
grammers be able design and write programs that resemble, albeit on a
simpler scale, those programs that they use every day. Among other ben-
efits, developing the ability to write GUI programs, like the ones everyone
uses today, will make it easier for you to show off your work to others,
which might help motivate further interest in learning to program.

In this and subsequent sections, we will develop an extensible GUI
model that can be used with either a Java application or an applet. By
extensible we mean a model that can be easily adapted and used in a wide
variety of programs. GUI programming involves a computational model
known as event-driven programming, which means that GUI programs
react to events that are generated mostly by the user’s interactions with
elements in the GUI. Therefore, we will have to learn how to use Java’s
event model to handle simple events.

Given that this is our first look at some complex topics, we will keep
the discussion as simple as possible. This means we will delay discussion
of certain issues, which we take up in more depth in Chapter 13.

4.4.1 Java’s GUI Components

The Java library comes with two separate but interrelated packages of GUI
components, the older java.awt package and the newer javax.swing
package. For the most part, the Swing classes supersede the AWT
classes. For example, the java.awt.Button class is superseded by the
javax.swing.JButton class, and the java.awt.TextField class is
superseded by the javax.swing.JTextFieldclass. Asthese examples
show, the newer Swing components add an initial 'J” to the names of their
corresponding AWT counterparts.

SECTION 4.4 e A Graphical User Interface (GUI) 161

E =ﬁrFFIFr =E

Tupul wyuur pmame lere: |Ht|||.||| |

Hi Halph nire tn mert vl

Click here fur a greeling!

S

Figure 4.10 illustrates how some of the main components appear in a
GUI interface. As shown there, a JLabel is simply a string of text dis-
played on the GUI, used here as a prompt. A JTextField is an input
element that can hold a single line of text. In this case, the user has in-
put his name. A JTextArea is an output component that can display
multiple lines of text. In this example, it displays a simple greeting. A
JButton is a labeled control element, which is an element that allows
the user to control the interaction with the program. In this example, the
user will be greeted by the name input into the JTextField, whenever
the JButton is clicked. As we will learn, clicking on the JButton causes
an event to occur, which leads the program to take the action of displaying
the greeting. Finally, all of these components are contained in a JFrame,
which is a top-level container. A container is a GUI component that can
contain other GUI components.

The Swing classes are generally considered to be superior to their AWT
counterparts. For one thing, Swing components use a sophisticated object-
oriented design known as the model-view-controller (MVC) architecture,
which gives them much greater functionality than their AWT counter-
parts. For example, whereas an AWT Button can only have a string as its
label, a Swing JButton can use an image as a label. (See Chapter 13 for a
detailed discussion of the MVC architecture.)

Second, Swing components are written entirely in Java which makes
them more portable and enables them to behave the same way regardless
of the operating system on which they are run. Because of their portability,
Swing components are considered lightweight. By contrast, AWT classes
use routines that are implemented in the underlying operating system and
are therefore not easily portable. Hence, they are considered heavyweight
components. Whereas a Swing JButton should look and act the same
way regardless of platform, an AWT Button would have a different im-
plementation, and hence a different look and feel, on a Macintosh and on
a Windows system. In this book, we will use the new Swing classes in our
programs.

Figure 4.10: Various GUI com-
ponents from the javax.swing
package. [Artwork: We need to
label the components.]

Model-view-controller (MVC) archi-
tecture

Swing portability

Inheritance

Functionality

The isa relationship

Top-level container

Specialization

162 CHAPTER 4 o Input/Output: Designing the User Interface

4.4.2 Class Inheritance: Extending a Superclass

As yourecall from Chapter 0, class inheritance is the mechanism by which
a class of objects can acquire (inherit) the methods and variables of its su-
perclasses. Just as a horse, by membership in the class of horses, inherits
those attributes and behaviors of a mammal, and, more generally, those of
an animal, a Java subclass inherits the variables and methods of its super-
classes. We sometimes lump together an object’s attributes and behaviors
and refer to them collectively as its functionality. So we say that an object
of a subclass inherits the functionality of all of its superclasses.

By the same token, just as a horse and a cow extend their mammalian
attributes and behaviors in their own special ways, a Java subclass ex-
tends the functionality of its superclasses in its own special way. Thus, a
subclass specializes its superclass.

In Chapter 3, we showed how all classes in the Java hierarchy inherit
the toString () method from the Object class. The lesson there was
that an object in a subclass can either use or override any public method
defined in any of its superclasses. In order to implement GUI programs,
we need to look at another way to employ inheritance. In particular, we
need to learn how to define a new class by extending an existing class.

We noted in Chapter 2 that unless a class is explicitly defined as a sub-
class of some other class it is considered implicitly to be a direct subclass
of Object. Thus, the GreeterApp class that we defined earlier in this
chapter is a subclass of Object. We can make the relationship between
GreeterApp and Object explicit by using the extends keyword when
we define the GreeterApp class:

p
t public class GreeterApp extends Object { ... } ‘

Thus, the extends keyword is used to specify the subclass/superclass
relationships that hold in the Java class hierarchy. We sometimes refer to
the subclass/superclass relationship as the isa relationship, in the sense
that a horse isa mammal, and a mammal isa animal. Thus, the extends
keyword is used to define the isa relationship among the objects in the
Java class hierarchy.

A top-level container is a GUI container that cannot be added to an-
other container; it can only have components added to it. Figure 4.11 is a
class hierarchy that shows the relationships among some of the top-level
Swing and AWT classes. For example, the javax.swing.JFrame class,
which represents a top-level window, is a subclass of java.awt .Frame,
and the javax.swing.JPanel is a subclass of java.awt.Panel. We
can see from this figure that a JFrame isa Frame and an Frame isa Window
and a Window isa Container. These subclass/superclass relationships
are created in their respective class definitions by using the extends
keyword as follows:

e N
' public class JFrame extends Frame { ... } \
' public class Frame extends Window { ... } \
. public class Window extends Container { ... } |

J

As we will see in the next section, extending a class in this way enables us

SECTION 4.4 o A Graphical User Interface (GUI) 163

javalang

java.awt

javax.swing

JFrame
JDialog

Component

JComponent

java.applet

Applet }< = JApplet

to create a new class by specializing an existing class.

4.4.3 Top-level Windows

Referring again to Figure 4.11, notice that all of the Swing components are
subclasses of the AWT Container class. This means that Swing compo-
nents are Containers. They inherit the functionality of the Container
class. So Swing components can contain other GUI components. That is
why a JButton can contain an image.

All GUI programs must be contained inside some kind of top-level
container. Swing provides three top-level container classes: JFrame,
JApplet and JDialog. For our basic GUI, we will use a JFrame as the
top-level window for stand alone applications.

A JFrame encapsulates the basic functionality of a top-level window.
It has what is called a content pane, to which other Swing components,
such as buttons and text fields, can be added. Also, it comes with enough
built-in functionality to respond to certain basic commands, such as when
the user adjusts its size or closes it.

Figure 4.12 shows a simple top-level window as it would be displayed
on the console. This window has a title ("My GUI”). It is 200 pixels wide,
150 pixels high, and its top-left corner is located at coordinates (100,150)
on the console screen. Like in other graphical systems, points on the Java
console always given as an ordered pair, (X, Y), with the horizontal coordi-
nate, X, listed first, followed by the vertical coordinate, Y. The horizontal
x-axis extends positively from left to right, and the vertical y-axis extends
positively from top to bottom.

The class that created and displayed this window is shown in Fig-
ure 4.13. Note the use of the extends keyword to define SimpleGUI
as a subclass of JFrame. As a subclass, SimpleGUI inherits all of the
functionality of a JFrame (Fig. 4.14) . That is, it can contain other GUI

Figure 4.11: Top-level Swing and
AWT classes. [NOTE: REDRAW
JWindow is a subclass of Win-
dow.]

Content pane

Figure 4.12: A simple window.

164 CHAPTER 4 o Input/Output: Designing the User Interface

@06 wmycu

import javax.swing.x*;

public class SimpleGUI extends JFrame
{
public SimpleGUI(String title)
{ setSize (200,150);
setLocation (100, 150);
setTitle(title);
setVisible(true); // Displays the JFrame
} // SimpleGUI ()

public static void main(String args][])
{ new SimpleGUI("My GUI");
} // main ()

} // SimpleGUI class

Figure 4.13: A top-level window with a title.

components. It knows how to resize and close itself, and so on. The rea-
son we want to define a subclass of JFrame, rather than just use a JFrame
instance, is because we want eventually to give our subclass additional
functionality that is specialized for our application.

AN HGINNAEIBIESI(@N]| Specialization. By creating a subclass of
JFrame we can specialize its functionality for our application.

Note how SimpleGUI’s main () program creates an instance of
SimpleGUI by invoking its constructor. There is no need to use a vari-
able here because there are no further references to this object in this class.
However, simply constructing a SimpleGUI will not cause it to appear on
the Java console. For that to happen, it is necessary to give it a size and to
call its setVisible () method. This is done in the constructor method.

The constructor method illustrates how to use some of the meth-
ods inherited from JFrame. Figure 4.14 shows some of the methods
that SimpleGUI inherits from JFrame. We use the setSize () and

pleGUT is a sub-

SECTION 4.4 e A Graphical User Interface (GUI) 165

JFrarne

=+ JFrarneftitle: Sthng]

+ getContent Pane(]: Containier
+ 5 etLavout] Layoutbdanager]

+ setTitle[s: Sthing)

+ getTitle[]: String

+ addic: Companent]

+ pack]]

H+ 5 b]

+ s et Siz eflint, weink)

+ s etLocakion(xint, wint)

N

SimpleGl]

setLocation () methods to set SimpleGUI’s size and location. We use
the setTitle () method to set its title. And we use the setVisible ()
method to cause it to appear on the console.

444 GUI Components for Input, Output, and Control

To enable our top-level window to serve as a user interface, it will be nec-
essary to give it some components. Figure 4.15 provides an overview of
some of the main Swing components. Generally, there are three types of
components, which correspond to the three main functions of a user in-
terface: input, output, and control. A JTextField would be an example
of an input component. The user can type text into the text field, which
can then be transmitted into the program. A JTextArea is an example
of an output component. The program can display text in the text area.
Control components enable the user to control the actions of the program.
A JButton would be an example of a control component. It can be asso-
ciated with an action that can be initiated whenever the user clicks it. We
might also consider a JLabel to be an output component, because we can
use it to prompt the user as to what type of actions to take.

Let’s begin by creating a simple user interface, one that enables us to
perform basic input, output, and control operations with a minimum of
Swing components. This will allow us to demonstrate the basic principles
and techniques of user-interface design and will result in a GUI that can
be extended for more sophisticated applications. For this example, we
will limit our application to that of simply greeting the user, just as we
did in designing our command-line interface. That means that the user
will be prompted to input his or her name and the program will respond
by displaying a greeting (Fig. 4.10). We will call our GUI GreeterGUI, to
suggest its interdependence with the same Greeter computational object
that we used with the command-line interface.

For this simple application, our GUI will make use of the following
components:

e A JTextField will be used to accept user input.

Figure 4.15: Swing components.

166 CHAPTER 4 o Input/Output: Designing the User Interface

javalang
—
java.a
/\
Component

Container

javax.swing [

JTextField JPasswordField

e A JTextArea will serve to display the program’s output.
e A JButton will allow the user to request the greeting.

e A JLabel will serve as a prompt for the JTextField.

Figure 4.16 shows some of the constructors and public methods for the
JTextArea, JTextField, JButton, and JLabel components. The fol-
lowing code segments illustrate how to use these constructors to create
instances of these components:

// Declare instance variables for the components
private JLabel prompt;
private JTextField inField;
private JTextArea display;
private JButton goButton;

// Instantiate the components
prompt = new JLabel(”Please type your name here: ”);
inField = new]TextField(lO); // 10 chars wide
display = new JTextArea(10, 30);// 10 rows x 30 columns
goButton = new JButton(”Click here for a greeting!”);

For this example, we use some of the simpler constructors. Thus, we create
a JTextField with a size of 10. That means it can display 10 characters
of input. We create a JTextArea with 10 rows of text, each 30 characters

SECTION 4.4 e A Graphical User Interface (GUI) 167

JEutton

+ JBEutton| bext ; String]
+addActionListened al ; ActionListener]
+=atEnablad(in b : boolean)

JLabel
+ JLabel[te:xt ; String]

JTextFizld

+ JTextFiald{zal @ int)

+ JTextField[text ; String)

+ getText(] : String

+ addActionListeneral | ActionListenar]
+ zetEnabled(in b ; boolean]

JTextArea

+ JTextArearow :int, cal sint)
+appandte | String)
+setText[text ; String]

wide. We create a JButton with a simple text prompt meant to inform
the user of how to use the button.

4.4.5 Adding GUI Components to a Top-Level Window

Now that we know how to create GUI components, the next task is to
add them to the top-level window. A JFrame is a top-level Container
(Fig. 4.11), but instead of adding the components directly to the JFrame
we have to add them to the JFrame’s content pane, which is also a
Container.

Figure 4.16: Public methods and
constructors for basic Swing com-
ponents.

ANADESNEONEERNOIBE Content Pane. GUI Components cannot
be added directly to a JFrame. They must be added to its content
pane.

Java’s Container class has several add () methods that can be used to
insert components into the container:

‘ add(Component comp) // add comp to end of container
' add (Component comp, int index)// add comp at index
‘ add(String region, Component comp) add comp at region

The particular add () method to use depends on how we want to arrange
the components in the container. The layout of a container is controlled
by its default layout manager, an object associated with the container that
determines the sizing and the arrangement of its contained components.
For a content pane, the default layout manager is a BorderLayout. This

Layout manager

Figure 4.17: Arrangement of com-

ponents in a border layout.

168 CHAPTER 4 o Input/Output: Designing the User Interface

is an arrangement whereby components may be placed in the center of the
pane and along its north, south, east, and west borders (Fig. 4.17).

North

West Center East

South

Components are added to a border layout by using the add (String
region, Component comp) method, where the String parameter
specifies either “North,” “South,” “East,” "West,” or “Center.” For exam-
ple, to add the JTextArea to the center of the JFrame we first create a
reference to its content pane and we then add the component at its center:

‘ Container contentPane = getContentPane(); // Get pane \
| contentPane.add("Center”,display); // Add JTextArea |

One limitation of the border layout is that only one component can be
added to each area. This is a problem for our example because we want
our prompt JLabel to be located right before the JTextField. To get
around this problem, we will create another container, a JPanel, and add
the prompt, the text field, and the goButton to it. That way, all of the
components involved in getting the user’s input will be organized into
one panel. We then add the entire panel to one of the areas on the content
pane.

JPanel inputPanel = new JPanel ();

inputPanel.add (prompt); // Add JLabel to panel
inputPanel.add(goButton); // Add JButton to panel

’

| |
| inputPanel.add(inField); // Add JTextField to panel ‘
| |

contentPane.add(”South”, inputPanel); // Add to JFrame

The default layout for a JPanel is FlowLayout, which means that com-
ponents are added left to right with the last addition going at the end of
the sequence. This is an appropriate layout for this JPanel because it will
place the prompt just to the left of the input JTextField.

AN HHH@INNAEERIERI (@) Encapsulation. JPanels can be used to

group related components in a GUL

4.4.6 Controlling the GUI's Action

Now that we know how to place all the components on the GUI, we need
to design the GUI's controls. As mentioned earlier, GUIs use a form of
event-driven programming. Anything that happens when you are using

SECTION 4.4 e A Graphical User Interface (GUI) 169

Java Applet
Handlers: actionPerformed() method

f

Java Enabled Browser: Netscape, JVM
Handlers: menu_event, scrollbar

I

Operating System: MacOS, Windows, Unix
Handlers: select_window, close_window

b+ttt #f

Computer Hardware
Generate Events: mouse_clicks, diskette events,
mouse_moves, keyboard_events

a computer—every keystroke and mouse movement—is classified as an
event. As Figure 4.18 illustrates, events are generated by the computer’s
hardware and filtered up through the operating system and the applica-
tion programs. Events are handled by special objects called listeners. A
listener is a specialist that monitors constantly for a certain type of event.
Some events, such as inserting a CD in the CD-ROM drive, are handled
by listeners in the operating system. Others, such as typing input into
a Web page or a Word document, are handled by listeners in a piece of
application software, such as a browser or a word processor.

In an event-driven programming model, the program is controlled by
an event loop. That is, the program repeatedly listens for events, taking
some kind of action whenever an event is generated. In effect, we might
portray this event loop as follows:

Repeat forever or until the program is stopped \
Listen for events \
If event—A occurs, handle it with event—A-handler \

-
|
|
\ If event—-B occurs, handle it with event—-B—handler

The event loop listens constantly for the occurrence of events and then
calls the appropriate object to handle each event.

Figure 4.19 shows some of the main types of events in the
java.awt.event package. In most cases, the names of the event classes
are suggestive of their roles. Thus, a MouseEvent occurs when the mouse
ismoved. A KeyEvent occurs when the keyboard is used. The only event
that our program needs to listen for is an Act ionEvent, the type of event
that occurs when the user clicks the JBut ton.

When the user clicks the JButton, Java will create an ActionEvent
object. This object contains important information about the event, such
as the time that the event occurred and the object, such as a JButton,
that was the locus of the event. For our application, when the user
clicks the JButton, the program should input the user’s name from the
JTextField and display a greeting, such as “Hi John nice to meet you”

Figure 4.18: Java’s event model.

Event listener

Figure 4.19: Java’s event hierar-

chy.

java.sun.com/j2se/1.5.0/docs/api/

170 CHAPTER 4 o Input/Output: Designing the User Interface

javalang

Object

JDIJ

java.util

EventObject

]

java.awt

£\
ActionEvent |
AdjustmentEvent |

ComponentEvent I

—{ PaintEvent I

—{ WindowEvent I

KeyEvent I

MouseEvent I

in the JTextArea. That is, we want the program to execute the following
code segment:

‘ String name = inField.getText();
8 &
‘ display .append(greeter.greet(name) + "\n”);

The first line uses the JTextField.getText () method to get the text
that the user typed into the JTextField and stores it in a local vari-
able, name. The second line passes the name to the greeter.greet ()
method and passes the result it gets back to the JTextArea.append ()
method. This will have the effect of displaying the text at the end of the
JTextArea.

In this example, we have used a couple of the standard public methods
of the JTextField and JTextArea classes. For our simple GUI, the
methods described in Figure 4.16 will be sufficient for our needs. How-
ever, if you would like to see the other methods available for these and
other Swing components, you should check Java’s online API documen-
tation.

4.4.7 The ActionListener Interface

Given that the code segment just described will do the task of greeting
the user, where should we put that code segment in our program? We
want that code segment to be invoked whenever the user clicks on the
goButton. You know enough Java to understand that we should put that
code in a Java method. However, we need a special method in this case,
one that will be called automatically by Java whenever the user clicks that

SECTION 4.4 o A Graphical User Interface (GUI) 171

button. In other words, we need a special method that the button’s listener
knows how to call whenever the button is clicked.

Java solves this problem by letting us define a pre-selected method
that can be associated with the goButton. The name of the method is
actionPerformed () and it is part of the ActionListener interface.
In this case, an interface is a special Java class that contains only methods
and constants (final variables). It cannot contain instance variables. (Be
careful to distinguish this kind of interface, a particular type of Java class,
form the more general kind of interface, whereby we say that a class’s pub-
lic methods make up its interface to other objects.) Here’s the definition of
the ActionListener interface:

‘ public abstract interface ActionListener

\ extends EventListener
| public abstract void actionPerformed (ActionEvent e);
B

This resembles a class definition, but the keyword interface replaces
the keyword class in the definition. Note also that we are declaring this
interface to be abstract. An abstract interface or abstract class is one
that contains one or more abstract methods. An abstract method is one
that consists entirely of its signature; it lacks an implementation—that is,
it does not have a method body. Note that the actionPerformed/()
method in ActionListener places a semicolon where its body is sup-
posed to be.

ANAS DAN@OVAN@ERMOIRE Java Interface. A Java interface is like a

Java class except that it cannot contain instance variables.

N WA W(@{BNCMNEINE Abstract Methods and Classes. An
abstract method is a method that lacks an implementation. It has no
method body.

Declaring a method abstract means that we are leaving its imple-
mentation up to the class that implements it. This way, its implementation
can be tailored to a particular context, with its signature specifying gen-
erally what the method should do. Thus, actionPerformed () should
take an ActionEvent object as a parameter and perform some kind of
action.

What this means, in effect, is that any class that implements the
actionPerformed () method can serve as a listener for Act ionEvents.
Thus, to create a listener for our JButton, all we need to do is give an
implementation of the actionPerformed () method. For our program,
the action we want to take when the goButton is clicked, is to greet
the user by name. Thus, we want to set things up so that the follow-

Java interface

Abstract method

172 CHAPTER 4 o Input/Output: Designing the User Interface

ing actionPerformed () method is called whenever the goButton is
clicked:

public void actionPerformed (ActionEvent e)

| |
' { if (e.getSource() == goButton) \
\ { String name = inField.getText(); \
\ display .append(greeter. greet (name) +); \
. |
= |

In other words, we place the code that we want executed when the button
is clicked in the body of the actionPerformed () method. Note that in
the if-statement we get the source of the action from the ActionEvent
object and check that it was the goButton.

That explains what gets done when the button is clicked—namely,
the code in actionPerformed() will get executed. But it doesn’t
explain how Java knows that it should call this method in the first
place. To set that up we must do two further things. We must place
the actionPerformed () method in our GreeterGUI class, and we
must tell Java that GreeterGUI will be the ActionListener for the
goButton.

The following stripped-down version of the GreeterGUI class illus-
trates how we put it all together:

public class GreeterGUI extends Frame
implements ActionListener

public void buildGUI()
{ .
goButton = new JButton ();
goButton.addActionListener (this);
}
public void actionPerformed (ActionEvent e)
{ if (e.getSource() == goButton)
{ String name = inField.getText();
display .append(greeter. greet(name) +);

}

First, we declare that GreeterGUI implements the ActionListener
interface in the class header. This means that the class must provide a
definition of the actionPerformed () method, which it does. It also
means that GreeterGUT isa ActionListener. So SimpleGUT is both a
JFrame and an ActionListener.

SECTION 4.4 o A Graphical User Interface (GUI) 173

Second, note how we use the addActionListener () method to as-
sociate the listener with the goButton:

{goButton .addActionListener (this)

N

The this keyword is a self-reference—that is, it always refers to the
object in which it is used. It’s like a person referring to himself by saying
“1”. When used here, the this keyword refers to this GreeterGUI. In
other words, we are setting things up so that the GreeterGUI will serve
as the listener for action events on the goButton.

PANZCTAN(COPAN@EOIfE This Object. The this keyword always
refers to the object that uses it. It is like saying “I” or “me.”

174 CHAPTER 4 o Input/Output: Designing the User Interface

4.4.8 Connecting the GUI to the Computational Object

Figure 4.20 gives the complete source code for our GreeterGUI interface.
Because there is a lot going on here, it might be helpful to go through the
program carefully even though we have introduced most of its elements

import javax.swing.x;
import java.awt.x;
import java.awt.event.x;

public class GreeterGUI extends JFrame
implements ActionListener
{ private JTextArea display;
private JTextField inField;
private JButton goButton;
private Greeter greeter;

public GreeterGUI(String title)

{ greeter = new Greeter ();
buildGUI ();
setTitle(title);
pack ();
setVisible (true);

} // GreeterGUI ()

private void buildGUI()

{ Container contentPane = getContentPane ();
contentPane.setLayout(new BorderLayout());
display = new JTextArea(10,30);
inField = new JTextField (10);
goButton = new JButton ();
goButton.addActionListener (this);

JPanel inputPanel = new JPanel ();

inputPanel.add (new JLabel()
inputPanel.add(inField);

inputPanel.add(goButton);

contentPane .add(, display);

contentPane .add(, inputPanel);

} // buildGUI ()

public void actionPerformed (ActionEvent e)

{ if (e.getSource() == goButton)

{ String name = inField.getText();
display .append (greeter.greet (name) +);

} // actionPerformed ()

}

Figure 4.20: Definition of the GreeterGUI class.

already. That will help us put together all of the various concepts that we
have introduced.

To begin with, note the several Java packages that must be included
in this program. The javax.swing package includes definitions for
all of the Swing components. The java.awt.event package includes

SECTION 4.4 e A Graphical User Interface (GUI) 175

the ActionEvent class and the ActionListener interface, and the
java.awt packages contain the Container class.

Next note how the GreeterGUI class is defined as a subclass
of JFrame and as implementing the ActionListener interface.
GreeterGUI thereby inherits all of the functionality of a JFrame. Plus,
we are giving it additional functionality. One of its functions is to serve as
an ActionListener forits goButton. The ActionListener interface
consists entirely of the actionPerformed () method, which is defined
in the program. This method encapsulates the actions that will be taken
whenever the user clicks the goButton.

The next elements of the program are its four instance variables, the
most important of which is the Greeter variable. This is the variable that
sets up the relationship between the GUI and the computational object. In
this case, because the variable is declared in the GUI, we say that the GUI
uses the computation object, as illustrated in Figure 4.8. This is slightly
different from the relationship we set up in the command-line interface,
in which the computational object uses the interface (Fig. 4.2).

The other instance variables are for those GUI components that must
be referred to throughout the class. For example, note that the goButton,
inField, and display are instantiated in the bui1dGUT () method and
referenced again in the act ionPerformed () method.

The next element in the program is its constructor. It begins by creating
an instance of the Greeter computational object. It is important to do this
first in case we need information from the computational object in order
to build the GUI. In this case we don’t need anything from Greeter, but
we will need such information in other programs.

We've already discussed the fact that the constructor’s role is to coor-
dinate the initialization of the GreeterGUI object. Thus, it invokes the
buildGUI () method, which takes care of the details of laying out the
GUI components. And, finally, it displays itself by calling the pack () and
setVisible () methods, which are inherited from JFrame. The pack ()
method sizes the frame according to the sizes and layout of the compo-
nents it contains. The setVisible () method is what actually causes the
GUI to appear on the Java console.

Finally, note the details of the buildGUI () method. We have dis-
cussed each of the individual statements already. Here we see the order
in which they are combined. Note that we can declare the contentPane
and inputPanel variables locally, because they are not used elsewhere
in the class.

SELF-STUDY EXERCISES

EXERCISE 4.2 There is a simple modification that we can make to
GreeterGUI. The JTextField can serve both as an input element and
as a control element for action events. An ActionEvent is generated
whenever the user presses the Return or Enter key in a JTextField so
that the JButton can be removed. Of course, it will be necessary to des-
ignate the inField as an ActionListener in order to take advantage
of this feature. Make the appropriate changes to the buildGUI () and
actionPerformed () methods so that the inField can function as both
a control and input element. Call the new class GreeterGUI2.

Extending a class

Implementing an interface

The computational object

oneRowMin

- nSticks cint =21
- plavyer - ink =1

+ neRowMin([]

+ OneRowMin(sticks :int]

+ OneRawMinst int, pl :int)
+takeSticks[hum :int]
+getSticks[] :int
+getPlaneH] :int
+gamairvet] : boolean
+geti™innet] @ int

+ papatt[]

Figure 4.21: A UML diagram of
the OneRowNim class.

176 CHAPTER 4 o Input/Output: Designing the User Interface

4.4.9 Usingthe GUI in a Java Application

As you know, a Java application is a stand alone program, one that can
be run on its own. We have designed our GUI so that it can easily be
used with a Java application. We saw in the previous section that the GUI
has a reference to the Greeter object, which is the computational object.
Therefore, all we need to get the program to run as an application is a
main () method.

One way to use the GUI in an application is simply to create an in-
stance in a main () method. The main () method can be placed in the
GreeterGUI class itself or in a separate class. Here’s an example with
the main in a separate class:

-
| public class GreeterApplication \
' { public static void main(String args[]) \
o |
\ new GreeterGUI(); \
) |
B |
N

The main () method creates an instance of GreeterGUI, passing it a
string to use as its title. If you prefer, this same main () method can be
incorporated directly into the GreeterGUI class.

4.5 Case Study: The One Row Nim Game

In this section, we show how to develop alternative interfaces for our case
study game of One Row Nim that was developed in the two previous
chapters. As you recall, the One Row Nim game starts with, say, 21 sticks
on a table. Players take turns picking up 1, 2 or 3 sticks, and the player to
pick up the last stick loses. We wish to develop an application program so
that the user of the program can play this game against the computer, that
is, against the program.

As in our other examples in this chapter, our design will divide this
problem into two primary objects: a computational object, in this case
OneRowNim, and a user interface object, for which we will use either a
KeyboardReader or a OneRowNimGUI. One goal of our design was to
develop the OneRowNim class so that it can be used, without changes,
with either a command-line interface or a GUI.

Recall that we designed the OneRowNim class to maintain the state of
the game and to provide methods that enforce the rules of the game. Thus,
we know that after each legal move, the number of sticks will decline, until
it is 0 or less, which indicates that the game is over. Also, an instance of
OneRowNim keeps track of whose turn it is and can determine if the game
is over and who the winner is when the game is over. Finally, the game
ensures that players cannot cheat, either by taking too few or too many
sticks on one turn. Figure 4.23 shows the UML diagram of the OneRowNim
class as described at the end of the previous chapter.

SECTION 4.5 e Case Study: The One Row Nim Game 177

4.5.1 A Command-line Interface to OneRowNim

Let’s now focus on connecting a OneRowNim instance with a Keyboard-
Reader instance, the command-line interface we developed at the begin-
ning of this chapter. To do so requires no changes to KeyboardReader
(Fig. 4.6). Unlike in the greeter example, we will use a third object to
serve as the main program. As shown in Figure 4.22, the OneRowNimApp
class will contain the run () method that controls the game’s progress.
OneRowNimApp will use the KeyboardReader object to prompt the user,
to display the program’s output, and to perform input from the keyboard.
It will use the OneRowNim object to keep track of the game.

In fact, the main challenge for this part of our problem is designing the
run () method, which will use a loop algorithm to play the game. The
user and the computer will repeatedly take turns picking up sticks until
the game is over. The game is over when there are no more sticks to pick
up. Thus, we can use the game’s state—the number of sticks left—as our
loop’s entry condition. We will repeat the loop while there are more than
0 sticks remaining.

The following pseudocode describes the remaining details of our al-
gorithm. We refer to the OneRowNim instance as the game object, and
we refer to the KeyboardReader instance as the reader object. We
use the notation game: get the number of sticks left toindicate
that we are sending a message to the game object.

Create a game object with 21 sticks
Create a reader object
sticksLeft = game:get the number of sticks left
reader:display the rules of the game
while (game: the game is not over)
whoseMove = game: find out whose turn it is
if (whoseMove == user)
game: user chooses number of sticks to take
else
game: computer chooses number of sticks to take
sticksLeft = game: get the number of sticks left
reader: report the number of sticks left
// At this point the game is over.
if game: the user is the winner
reader: report that the user wins
else

reader: report that the computer wins
N

In this algorithm, the initializations we perform consist of creating the
game and reader objects and initializing sticksLeft. We use a while
loop structure to control the game. The loop’s entry condition is that the
‘the game is not over’. This is a piece of information that comes directly
from the game object. As long as the game is not over, the body of the
loop will be executed. Note that in the loop’s body;, either the player or the
computer makes a move. Again, it is up to the game object to determine
whose move it is. Following the move we ask the game how many sticks
are left and we use the reader object to report this.

Note that the loop structure has the three necessary elements. The ini-

Loop algorithm

Loop structure: Initializer, entry con-
dition, updater

Division of labor

178 CHAPTER 4 o Input/Output: Designing the User Interface

tializer in this case is the creation of a OneRowNim object. We know that
this will cause the game to have 21 sticks and it will be the user’s move.
The loop-entry condition is that the game is not over, which is based on
the fact that there are still sticks remaining to be picked up. But again, this
knowledge is kept by the game object. Finally, we have an updater that
consists of either the computer or the user picking up some sticks. This in
turn changes the value of sticksLeft on each iteration, moving us ever
closer to the condition that there are no sticks left, at which point the game
will be over.

Note that we have left out of this algorithm the details of the user’s
moves and computer’s moves. These are the kinds of actions that are
good to put into separate methods, where we can worry about checking
whether the user made a legal move and other such details.

Figure 4.22 provides the implementation of the OneRowNimApp appli-
cation. It uses a KeyboardReader as a command-line interface and a
OneRowNim instance as it computational object. Thus, it has private in-
stance variables for each of these objects, which are instantiated in the
constructor method. The algorithm we just described has been placed in
the run () method, which is called from main () after the application is
instantiated. The use of the boolean method gameOver () to control the
loop makes this code segment easier to understand. Also, it leaves it up
to the game object to determine when the game is over. From an object-
oriented design perspective, this is an appropriate division of responsibil-
ity. If you doubt this, imagine what could go wrong if this determination
was left up to the user interface. A user-interface programmer might end
up, mistakenly, implementing the wrong rule for the game being over. A
similar point applies to the getWinner () method. This determination
rests with the game, not the user interface. If left up to the user interface,
it is possible that a programming mistake could lead to the loss of the
game’s integrity.

The run () method calls userMove () and computerMove () to per-
form the specific set of actions associated with each type of move.
The userMove () method uses the KeyboardReader () to prompt the
user and input his or her move. It then passes the user’s choice to
game .takeSticks (). Note how it checks the return value to determine
whether the move was legal or not and provides an appropriate response
through the interface.

Finally, note how we use private methods to implement the actions as-
sociated with the user’s and computer’s moves. Because these private
methods are not part of the object’s interface and because they can only
be used within the object themselves, they are in a sense secondary to the
object’s public instance methods. We sometimes refer to them as helper
methods. This division of labor allows us to organize all of the details
associated with the moves into a single module. The computerMove ()
method uses a temporary strategy of taking a single stick and passes
the number 1 to game.takeSticks (). Finally, computerMove () re-
ports its choice through the interface. After we have covered operators of
the int data type in the next chapter, we will be able to describe better
strategies for the computer to make a move.

This example shows how simple and straightforward it is to use our
KeyboardReader user interface. In fact, for this problem, our interface

SECTION 4.5 o Case Study: The One Row Nim Game 179

public class OneRowNimApp
{ private KeyboardReader reader;
private OneRowNim game;

public OneRowNimApp ()

{ reader = new KeyboardReader ();
game = new OneRowNim (21);

} // OneRowNim ()

public void run()
{ int sticksLeft = game.getSticks ();
reader.display (“Let’s play One Row Nim. You go first.\n");
reader.display (”There are ” + sticksLeft +
” sticks left.\n”);
reader.display (”You can pick up 1, 2, or 3 at a time\n.”);
while (game.gameOver() == false)
{ if (game.getPlayer() == 1) userMove();
else computerMove ();
sticksLeft = game. getSticks ();
reader.display (”There are ” + sticksLeft +
” sticks left.\n"”);
} // while
if (game.getWinner() == 1)
reader.display ("Game over. You win. Nice game.\n”);
else reader.display(”“Game over. | win. Nice game.\n”);
Y //run ()

private void userMove()
{ reader.prompt(”“Do you take 1, 2, or 3 sticks?: ”);
int userTakes = reader.getKeyboardInteger ();
if (game.takeSticks (userTakes))
{ reader.display (”"You take ” + userTakes +
} else
{ reader.display(”You can’t take ” + userTakes +
7. Try again\n”);

7

An”);

} // else
} //userMove ()

private void computerMove ()

{game.takeAway(l); // Temporary strategy .
reader.display ("1 take 1 stick. ”);

} // computerMove ()

public static void main(String args[])
{ OneRowNimApp app = new OneRowNimApp();
app.run();
} // main ()
} // OneRowNimApp

Figure 4.22: Definition of OneRowNimApp, a command-line interface to
the OneRowNim.

Java’s event loop

180 CHAPTER 4 o Input/Output: Designing the User Interface

didn’t require any changes. Although there might be occasions where we
will want to extend the functionality of KeyboardReader, it can be used
without changes for a wide variety of problems in subsequent chapters.

AN P H@INNAERIERI @] Code Reuse. A well-designed user
interface can be used with many computational objects.

4.5.2 A GUI for OneRowNim

The first task is designing a GUI for the OneRowNim is to decide how to
use input, output, and control components to interact with the user. Fol-
lowing the design we used in the GUI for our greeter application, we can
use a JTextField for the user’s input and a JTextArea for the game’s
output. Thus, we will use the JTextArea to report on the progress of the
game and to display any error messages that arise. As in the greeter exam-
ple, we can use both the JTextField and JButton as control elements
and a JLabel as a prompt for the input text field. For the most part then,
the use of GUI components will remain the same as in our previous exam-
ple. This is as we would expect. The relationship between the user and
the interface are pretty similar in both this and the previous application.

In contrast, the relationship between the interface and the game are
quite different from what we saw in the greeter application. As in the
previous application, the GUI will still need a reference to its associated
computational object, in this case the game:

‘ private OneRowNim game;

‘ game = new OneRowNim ();

The biggest difference between this GUI and the one we used with
the greeter application occurs in the details of the interaction between
the GUI and the game. These details are the responsibility of the
actionPerformed () method, whose actions depend on the actual
progress of the individual game.

Unlike in the command-line version, there is no need to use a loop con-
struct in the actionPerformed () method. Instead, because we are us-
ing event-driven programming here, we will rely on Java’s event loop to
move the game from one turn to another.

As in the greeter example, the actionPerformed () method will be
called automatically whenever the JButton is clicked. It is the responsi-
bility of the GUI to ensure that it is the user’s turn whenever this action
occurs. Therefore, we design actionPerformed () so that each time it
is called, it first performs the user’s move and then, assuming the game

SECTION 4.5 e Case Study: The One Row Nim Game 181

is not over and an error did not occur on the user’s move, it performs the
computer’s move. Thus, the basic algorithm is as follows:

Let the user move.
If game:game is not over and computer turn
let the computer move.
Game: how many sticks are left.
display: report how many sticks are left
If game:game is over
Stop accepting moves.
Report the winner.

[

After the user’s move, it is possible that the user picked up the last stick,
which means that the game would be over. In that case, the computer
would not get a move. Or, the user could have made an error. In that case
it would still be the user’s move. These possibilities have to be considered
in the algorithm before the computer gets to move. As the pseudocode
shows, it is the OneRowNim object’s responsibility to keep track of whether
the game is over and whose turn it is.

Figure 4.23 shows the complete implementation of the OneRowNimGUI
class. In terms of its instance variables, constructor, and its buildGUI ()
method, there are only a few minor differences between this GUI and
the GreeterGUI (Fig. 4.20). This GUI has instance variables for its
JTextField, JTextArea, and JButton, as well as one for OneRowNim
instance, its computational object. It needs to be able to refer to these
objects throughout the class. Hence we give them class scope.

The constructor method plays the same role here as in the previous
GUI: It creates an instance of the computational object, builds the GUI’s
layout, and then displays the interface on the console.

All of the changes in the buildGUI () method have to do with
application-specific details, such as the text we use as the prompt and
the goButton’s label. One new method we use here is the setText ()
method. Unlike the append () method, which is used to add text to the
existing textin a JTextArea, the setText () method replaces the text in
aJTextAreaora JTextField.

Next let’s consider the private userMove () and computerMove ()
methods. Their roles are very similar to the corresponding methods in
the command-line interface: They encapsulate the details involved in per-
forming the players’ moves. The primary difference here is that for the
user move we input the user’s choice from a JTextField rather than
from the keyboard. We use getText () to retrieve the user’s input from
the JTextField and we use Integer.parselnt () to convert to an
int value:

-

Lint userTakes = Integer.parselnt(inField.getText()); J

Another difference is that we use a JTextField to display the program’s
messages to the user.

As we have noted, the main differences between this and the
GreeterGUI occur in the actionPerformed() method. Note

182 CHAPTER 4 o Input/Output: Designing the User Interface

import javax.swing.x;
import java.awt.x;
import java.awt.event.x;

public class OneRowNimGUI extends JFrame implements ActionListener
{ private JTextArea display;

private JTextField inField;

private JButton goButton;

private OneRowNim game;

public OneRowNimGUI(String title)
{ game = new OneRowNim(21);
buildGUI();
setTitle (title);
pack ();
setVisible (true);
} // OneRowNimGUI()
private void buildGUI()
{ Container contentPane = getContentPane();
contentPane.setLayout(new BorderLayout());
display = new JTextArea(20,30);
display.setText(”Let’s play Take Away. There are ” + game.getSticks () +
” sticks.\n” + ”"Pick up 1,2, or 3 at a time.\n” + ”"You go first. n”);
inField = new JTextField (10);
goButton = new JButton(”Take Sticks”);
goButton.addActionListener (this);
JPanel inputPanel = new JPanel();
inputPanel .add(new JLabel (“How many sticks do you take: ”));
inputPanel.add (inField);
inputPanel .add (goButton);
contentPane.add(”Center”, display);
contentPane.add(”South”, inputPanel);
} // buildGUI
private void userMove ()
{ int userTakes = Integer.parselnt(inField.getText());
if (game.takeSticks (userTakes))
display .append(”“You take ” + userTakes + ”.\n");
else display.append(”“You can’t take ” + userTakes + . Try again\n");
}// userMove ()
private void computerMove ()
{ if (game.gameOver()) return;
if (game.getPlayer() == 2)
{ game.takeSticks (1); // Temporary strategy
display .append ("] take one stick. ”);
}y /7 if
} // computerMove ()
private void endGame ()
{ goButton.setEnabled(false); // Disable button and textfield
inField .setEnabled (false);

if (game.getWinner() == 1)
display .append (”“Game over. You win. Nice game.\n"”);
else display.append(“Game over. [win. Nice game.\n");

} // endGame ()
public void actionPerformed (ActionEvent e)
{ if (e.getSource() == goButton)
{ userMove ();
computerMove () ;
int sticksLeft = game. getSticks ();
display.append(”There are ” + sticksLeft + 7 sticks left.\n");
if (game.gameOver()) endGame();
Y /7 if
} // actionPerformed ()
} // OneRowNimGUI

Figure 4.23: The OneRowNimGUT class.

SECTION 5 e File Input 183

there how we use OneRowNim’s public methods, getPlayer (),
gameOver () and getWinner () to control the interaction with the user.

One issue that differs substantially from the command-line interface is:
How do we handle the end of the game? Because we are using Java’s built-
in event loop, the GUI will continue to respond to user’s events, unless we
stop it from doing so. One way to do this is to disable the JButton and
the JTextField. By disabling a control element, we render it unable to
respond to events. To do this we use the setEnabled () method, passing
it the value false to, in effect, “turn off” that component:

‘ if (game.gameOver())

\{ goButton.setEnabled (false); // End the game
\ inField .setEnabled (false);

)

Although it doesn’t apply in this situation, the setEnabled () method
can be used repeatedly in a GUI to turn components on and off as the
context of the interaction dictates.

This example shows how simple and straightforward it can be to build
a GUI for just about any application. One main design issue is deciding
what kinds of input, output, and control elements to use. For most ap-
plications, we can use JTextField, JTextArea, JLabel, and JButton
as the GUI’s basic elements. A second design issue concerns the develop-
ment of the actionPerformed () method, which must be designed in
an application-specific way. Here we apply what we’ve learned regard-
ing Java’s event-programming model: We designate one or more of our
elements to serve as an ActionListener and we design algorithms to
handle the action events that occur on that element.

Of course, for some applications we may need two JTextFields to
handle input. Atsome point, we also might want to introduce JMenus and
other advanced GUI elements. Some of these options will be introduced in
upcoming chapters. Others will be covered in Chapter 13, which provides
a more comprehensive view of Java’s GUI capabilities.

N/ NSRRI (@] GUI Design A well-designed GUI
makes appropriate use of input, output, and control elements.

4.6 From the Java Library: java.io.File
and File Input (Optional)

In addition to command-line and GUI user interfaces, there is one more
standard user interface, files. In this section we show how the Scanner
class, that was used in Chapter 2 for keyboard input, can also read input
from files. Reading input from a file is relevant to only certain types of
programming problems. It is hard to imagine how a file would be used
in playing the One Row Nim game but a file might very well be useful

GUI input, output, and control

File

+ File[in String path]
+exists[] : boolesn
+delete]] : boolesn
+mkdif]_ boolean

Figure 4.24: A UML class diagram
of the File class with a partial list
of public methods

184 CHAPTER 4 o Input/Output: Designing the User Interface

to store a collection of riddles that could be read and displayed by a Java
program. We will develop such a program later in this section.

Java has two types of files, text files and binary files. A text file stores a
sequence of characters and is the type of file created by standard text edi-
tors like NotePad and WordPad on a Windows computer or SimpleText on a
Macintosh. A binary file has a more general format that can store numbers
and other data the way they are stored in the computer. In this section we
will consider only text files. Binary files are considered in Chapter 11.

4.6.1 File Input with the File and Scanner Classes

An instance of the java.io.File class stores information that a
Scanner object needs to create an input stream that is connected to the
sequence of characters in a text file. A partial list of the public methods
of the File class is given in the UML class diagram in Figure 4.26. We
will need to use only the File () constructor in this section. The File
instance created with the statement

Scanner

+creake(in InputStrean st Scanner
+ craeake(in File f] : Scanner

+ hext[]: String

+ ezt Int] : ink

+ hextDoublel]: double
+u=selelimitedin Sthing pat]: Scanner
+ hasMext(] : boolesn

+hasMextInt(] : boalean
+hasMextDoublel] : boolean

Figure 4.25: A UML class diagram
of the Scanner class with an ex-
panded list of public methods

-
‘ File theFile = new File();

(.

will obtain and store information about the “riddles.txt” file in the same
directory as the java code being executed, if such a file exists. If no such
file exists, the File object stores information needed to create such a file
but does not create it. In Chapter 11, we will describe how other objects
can use a file object to create a file in which to write data. If we wish to
create a File object that describes a file in a directory other than the one
containing the Java program, we must call the constructor with a string ar-
gument that specifies the file’s complete path name—that is, one that lists
the sequence of directories containing the file. In any case, while we will
not use it at this time, the exists () method of a File instance can be
used to determine whether or not a file has been found with the specified
name.

In order to read data from a file with a Scanner object we will need
to use methods that were not discussed in Chapter 2. An expanded list
of methods of the Scanner class is given in Figure 4.27. Note the there
is a Scanner () constructor with a File object as an argument. Unlike
the other create () method that was used in Chapter 2, this create ()
throws an exception that must be handled. The following code will create
a Scanner object that will be connected to an input stream that can read
from a file:

try

{ File theFile = new File ();
fileScan = new Scanner(theFile);
fileScan = fileScan .useDelimiter ();

} catch (IOException e)
{ e.printStackTrace ();
} // catch ()

We will discuss the t ry-catch commands when exceptions are covered
in Chapter 10. Until then, the t ry-cat ch structures can be copied exactly
as above, if you wish to use a Scanner object for file input. In the code

SECTION 6 e File Input 185

above, the useDelimiter () method has been used to set the Scanner
object so that spaces can occur in strings that are read by the Scanner
object. For the definition of a class to read riddles from a file, the above
code belongs in a constructor method.

After we create a Scanner object connected to a file, we can make a
call to nextInt (), nextDouble (), or next () method to read, respec-
tively, an integer, real number, or string from the file. Unlike the strategy
for using a Scanner object to get keyboard input, it is suggested that
you test to see if there is more data in a file before reading it. This can
be done with the hasNext (), hasNextInt (), and hasNextDouble ()
methods. These methods return the value true if there are more data in
the file.

The program in Figure 4.26 is the complete listing of a class that reads
riddles from a file and displays them. Note that, in the body of the method
readRiddles (), the statements:

String ques = null;
String ans = null;

-
|
‘ Riddle theRiddle = null;

:
|
|

make explicit the fact that variables that refer to objects are assigned null
as a value when they are declared. The statements:

‘ if (fileScan.hasNext())

\ ques = fileScan .next();

| if (fileScan.hasNext())

' { ans = fileScan.next();

\ theRiddle = new Riddle(ques, ans);
)

)
)

will read St ringsinto the variables ques and ans only if the file contains
lines of data for them. Otherwise the readRiddle () method will return
a null value. The main () method uses this fact to terminate a while
loop when it runs out of string data to assign to Riddle questions and
answers. There is a separate method, displayRiddle () using a sepa-
rate instance of Scanner attached to the keyboard to display the question
of a riddle before the answer.

The contents of the “riddles.txt” file should be a list of riddles with
each question and answer on a separate line. For example The following
three riddles saved in a text file would form a good example to test the
RiddleFileReader class.

\ What is black and white and red all over?
\ An embarrassed zebra

\ What is black and white and read all over?
| A newspaper
|

|

What other word can be made with the letters of ALGORITHM?

LOGARITHM

186 CHAPTER 4 o Input/Output: Designing the User Interface

import java.io.x;

import java.util.Scanner;

public class RiddleFileReader

{ private Scanner fileScan; // For file input
private Scanner kbScan; // For keyboard input

public RiddleFileReader (String fName)
{ kbScan = new Scanner (System.in);
try
{ File theFile = new File (fName);
fileScan = new Scanner(theFile);
fileScan = fileScan .useDelimiter ();
} catch (IOException e)
{ e.printStackTrace ();
} // catch ()
} // RiddleFileReader () constructor
public Riddle readRiddle ()
{ String ques = null;
String ans = null;
Riddle theRiddle = null;
if (fileScan .hasNext())
ques = fileScan.next();
if (fileScan .hasNext())

{ ans = fileScan.next();
theRiddle = new Riddle(ques, ans);
Yoot

return theRiddle;

} // readRiddle ()

public void displayRiddle (Riddle aRiddle)

{ System.out. println (aRiddle. getQuestion ());
System.out. print();
String str = kbScan .next(); //Ignore KB input
System.out. println (aRiddle.getAnswer ());
System.out. println ();

} /7 displayRiddle ()

public static void main(String[] args)

{ RiddleFileReader rfr =

new RiddleFileReader ();
Riddle riddle = rfr.readRiddle();
while (riddle != null)
{ rfr.displayRiddle (riddle);
riddle = rfr.readRiddle ();
} // while
} // main ()
} // RiddleFileReader <class

Figure 4.26: A program which reads riddles from a file and displays them.

When the main () method is executed, the user will see output in the
console window that looks like:

What is black and white and red all over?
Input any letter to see answer: X
An embarrassed zebra

What is black and white and read all over?
Input any letter to see answer:

CHAPTER 4 o Chapter Summary 187

Files are covered in depth in Chapter 11. Information on writing data
to a file and reading data from a file without using the Scanner class can
be found in that chapter.

SELF-STUDY EXERCISES

EXERCISE 4.3 Modify the RiddleFileReader class to create a pro-
gram NumberFileReaderthat opens a file named “numbers.txt” and re-
ports the sum of the squares of the integers in the file. Assume that the
file “numbers.txt” contains a list of integers in which each integer is on
a separate line. The program should print the sum of the squares in the
System.out console window. In this case, there is no need to have a
method to display the data being read or a Scanner object connected to
the keyboard. You will want a constructor method and a method that
reads the numbers and computes the sum of squares.

Technical Terms CHAPTER SUMMARY
abstract class event loop model-view-
abstract interface graphical user controller (MVC)
abstract method interface (GUI) architecture
AWT helper method output operation
binary file inheritance output stream
buffer input operation stream
command-line input stream Swing

interface interface text file
container layout manager top-level container
control element listener user interface
event-driven wrapper class

programming

Summary of Important Points

e Aninput operation is any action that transfers data from the user to the
computer’s main memory via one of the computer’s input devices. An
output operation is any action that transfers data from the computer’s
main memory to one of the computer’s output devices.

o The user interface is that part of the program that handles the input
and output interactions between the user and the program. As an in-
terface, it limits or constrains the manner in which the user can interact
with the program.

e In a command-line interface, user input is taken from the keyboard,
and the program’s output is displayed on some kind of console.

e A buffer is a portion of main memory where input is held until it is
needed by the program. Using a buffer between the keyboard and the
program allows you to use the Backspace key to delete a character.

188 CHAPTER 4 o Input/Output: Designing the User Interface

e A wrapper class contains methods for converting primitive data into
objects and for converting data from one type to another.

e Designing appropriate prompts is an important aspect of designing a
good user interface.

e I/0O operations must watch out for certain types of I/O exceptions.

e GUI programming involves a computational model known as event-
driven programming, which means that GUI programs react to events
that are generated mostly by the user’s interactions with elements in
the GUL

e Java has two packages of GUISs, the older java.awt and the newer
javax.swing.

e Swing components are based on the object-oriented model-view-
controller (MVC) architecture.

e The extends keyword is used to specify subclass/superclass relation-
ships in the Java class hierarchy.

o A top-level container is a GUI container that cannot be added to an-
other container; it can only have components added to it. All GUI
programs must be contained in a top-level container.

o There are generally three kinds of GUI components, corresponding to
the three main functions of a user interface: input, output, and control.

o Events are handled by special objects called listeners. A listener is a
specialist that listens constantly for a certain type of event.

e An interface is a special Java class that contains only methods and
constants (final variables).

CHAPTER 4 o Solutions to Self-Study Exercises 189

SOLUTION 4.1 The following modification of the GreeterApp class is an im- SOLUTIONS TO
plementation of the High Low Game: SELF-STUDY EXERCISES
(. 0
{ private KeyboardReader reader;
private int secretNumber;

public HighLowApp ()
{ reader = new KeyboardReader ();

secretNumber = 1 + (int)(Math.random() = 100);
} // HighLowApp () constructor

public void run()

{ int userGuess = —1;
reader.display (”Guess my secret number between 1 and 100.”7);
while (userGuess != secretNumber)

{ reader.prompt(”Please input your guess here > 7);
userGuess = reader.getKeyboardInteger ();
if (userGuess > secretNumber)
reader.display (”Your guess was too high.”);
if (userGuess < secretNumber)
reader.display (”Your guess was too low.”);
} // while
reader.display (”"Congratulations. Your guess was correct.”);
} // run ()

public static void main(String args[])
{ HighLowApp app = new HighLowApp ();
app.run();
} // main ()
}// HighLowApp

190 CHAPTER 4 o Input/Output: Designing the User Interface

SOLUTION 4.2 The following modification of GreeterGUI eliminates the
JButton.

import java.awt.x;
import java.awt.event.x;

public class GreeterGUI2 extends JFrame
implements ActionListener
{ private JTextArea display;
private JTextField inField;
private Greeter greeter;

public GreeterGUI2(String title)

{ greeter = new Greeter ();
buildGUI ();
setTitle (title);
pack ();
setVisible (true);

} // GreeterGUI2 ()

private void buildGUI()

{ Container contentPane = getContentPane ();
contentPane.setLayout(new BorderLayout());
display = new JTextArea(10,30);
inField = new JTextField (10);
inField .addActionListener (this);

JPanel inputPanel = new JPanel ();
inputPanel.add (new

JLabel());
inputPanel.add(inField);
contentPane .add(, display);
contentPane .add(, inputPanel);

} // buildGUI ()
public void actionPerformed (ActionEvent e)
{ if (e.getSource() == inField)
{ String name = inField.getText();
display .append(greeter.greet(name) +);

} // actionPerformed ()
} // GreeterGUI2

CHAPTER 4 o Exercises 191
SOLUTION 4.3 Java code that prints out the sum of the squares of a set of

integers read from a file named “numbers.txt”:

import java.util.Scanner;

public class NumberFileReader

{ private Scanner fileScan; // For file

input

public NumberFileReader (String fName)
{ try
{ File theFile = new File (fName);
fileScan = new Scanner(theFile);
} catch (IOException e)
{ e.printStackTrace ();
} // catch ()
} // NumberFileReader ()

public void readNumbers ()
{ int num = 0; // To store integers read
int sum = 0: // To store sum of squares
while (fileScan.hasNextInt())
{ num = fileScan.nextInt();
sum = sum + num * num;
} // while
System.out. println (”"The sum of squares = 7 + sum);

} // readNumbers ()

public static void main(String[] args)
{ NumberFileReader nfr =
new NumberFileReader (”"numbers. txt”);
nfr.readNumbers ()
} // main ()
} // NumberFileReader

EXERCISE 4.1

a. An is a Java program that can be embedded in a Web page.

b. A method that lacks a body is an method.

c. An is like a class except that it contains only instance methods, no
instance variables.

Fill in the blanks in each of the following sentences:

d. In a Java class definition a class can a class and an inter-
face.
e. Classes and methods not defined in a program must be from the Java

class library.
f. A subclass of a class inherits that class’s instance variables and in-
stance methods.
g. An object can refer to itself by using the keyword.
h. The JButton, JTextField, and JComponent classes are defined in the
package.

i. Java GUIs utilize a form of control known as programming.

EXERCISES

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

192 CHAPTER 4 o Input/Output: Designing the User Interface

j- When the user clicks on a program’s JButton,an__ will automatically
be generated.
k. Two kinds of objects that generate ActionEvents are _ and

1. JUButtons, JTextFields, and JLabels are all subclasses of

m. The JFrame class is a subclass of

n. Ifjava class intends to handle Act ionEvents, it must implement the
interface.

0. When an applet is started,its___ method is called automatically.

EXERCISE 4.2 Explain the difference between the following pairs of concepts:

Class and interface.

Extending a class and instantiating an object.

Defining a method and implementing a method.

. A protected method and a public method.

A protected method and a private method.

An ActionEvent and an ActionListener () method.

meoan T

EXERCISE 4.3 Draw a hierarchy chart to represent the following situation.
There are lots of languages in the world. English, French, Chinese, and Korean
are examples of natural languages. Java, C, and C++ are examples of formal lan-
guages. French and Italian are considered romance languages, while Greek and
Latin are considered classical languages.

EXERCISE 4.4 Arrange the Java library classes mentioned in the Chapter Sum-
mary into their proper hierarchy, using the Object class as the root of the hierar-
chy.

EXERCISE 4.5 Look up the documentation for the JBut ton class on Sun’s Web
site:

Lhttp://java.sun.com/ste/1.5.0/d0cs/api/ J

List the signatures of all its constructors.

EXERCISE 4.6 Suppose we want to set the text in our program’s JTextField.

What method should we use and where is this method defined? (Hint: Look up
the documentation for JTextField. If no appropriate method is defined there,
see if it is inherited from a superclass.)

EXERCISE 4.7 Does a JApplet have an init () method? Explain.
EXERCISE 4.8 Does a JApplet have an add () method? Explain.

EXERCISE 4.9 Does a JButton havean init () method? Explain.
EXERCISE 4.10 Does a JButton have an add () method? Explain.

EXERCISE 4.11 Suppose you type the URL for a “Hello, World!” applet into
your browser. Describe what happens—that is, describe the processing that takes
place in order for the applet to display “Hello, World!” in your browser.

EXERCISE 4.12 Suppose you have a program containing a JButton named
button. Describe what happens, in terms of Java’s event handling model, when
the user clicks the button.

EXERCISE 4.13 Java’'s Object class contains a public method, toString(),
which returns a string that represents this object. Because every class is a subclass
of Object, the toString () method can be used by any object. Show how you
would invoke this method for a JBut ton object named button.

CHAPTER 4 o Exercises 193

EXERCISE 4.14 The JFrame that follows contains a semantic error in its
SomeFrame () constructor. The error will cause the actionPerformed ()
method never to display “Clicked” even though the user clicks the button in the
JFrame. Why? (Hint: Think scope!)

public class SomeFrame extends JFrame
implements ActionListener
{

// Declare instance variables

private JButton button;

public JFrame ()

{
// Instantiate the instance variable
JButton button = new JButton (”Click me”);
add (button);
button.addActionListener (this);
Y /7 init ()

public void actionPerformed (ActionEvent e)
{
if (e.getSource() == button)
System.out. println (" Clicked”);
} // actionPerformed ()
} // SomeFrame

EXERCISE 4.15 What would be output by the following program?

public class SomeFrame2 extends JFrame
{
// Declare instance variables
private JButton button;
private JTextField field;

public SomeFrame ()

{
// Instantiate instance variables
button = new JButton (”"Click me”);
add (button);
field = new JTextField (”Field me”);
add(field);
System.out. println (field . getText() + button.getText());

} // init ()

public static void main(String[] args) {
SomeFrame2 frame = new SomeFrame2 ();
frame.setSize (400,400);
frame.setVisible (true);

}

} // SomeFrame?2

}

EXERCISE 4.16 Design and implement a GUI that has a JButton, a
JTextField, and a JLabel and then uses the toString () method to display
each object’s string representation.

194 CHAPTER 4 o Input/Output: Designing the User Interface

EXERCISE 4.17 The JButton class inherits a setText (String s) from its
AbstractButton () superclass. Using that method, design and implement a
GUI that has a single button labeled initially, “The Doctor is out.” Each time the
button is clicked, it should toggle its label to, “The Doctor is in” and vice versa.

EXERCISE 4.18 Design and implement a GUI that contains two JButtons, ini-
tially labeled, “Me first!” and “Me next!” Each time the user clicks either button,
the labels on both buttons should be exchanged. (Hint: You don’t need an if-else
statement for this problem.)

EXERCISE 4.19 Modify the GUI in the previous exercise so that it contains three
JButtons, initially labeled “First,” “Second,” and “Third.” Each time the user
clicks one of the buttons, the labels on the buttons should be rotated. Second
should get first’s label, third should get second’s, and first should get third’s label.

EXERCISE 4.20 Design and implement a GUI that contains a JTextField and
two JButtons, initially labeled “Left” and “Right.” Each time the user clicks a
button, display its label in the JTextField. A JButton ()’s label can be gotten
with the get Text () method.

EXERCISE 4.21 You can change the size of a JF rame by using the setSize (int

h, int v) method, where i and v give its horizontal and vertical dimensions
pixels. Write a GUI application that contains two JButtons, labeled “Big” and
“Small.” Whenever the user clicks on small, set the JFrame’ s dimensions to 200
x 100, and whenever the user clicks on big, set the dimensions to 300 x 200.

EXERCISE 4.22 Rewrite your solution to the previous exercise so that it uses a
single button whose label is toggled appropriately each time it is clicked. Obvi-
ously, when the JButton is labeled “Big,” clicking it should give the JFrame its
big dimensions.

EXERCISE 4.23 Challenge: Design and write a Java GUI application that allows
the user to change the JFrame’s background color to one of three choices, indi-
cated by buttons. Like all other Java Components, JFrame’s have an associated
background color, which can be set by the following commands:

setBackground (Color.red); \
setBackground (Color. yellow); ‘

The setBackground () method is defined in the Component class, and 13
primary colors—black, blue, cyan, darkGray, gray, green, lightGray,
magenta, orange, pink, red, white, yellow—are defined in the java.awt .Color
class.

ADDITIONAL EXERCISES

EXERCISE 4.24 Given the classes with the following headers

public class Animal

public class DomesticAnimal extends Animal
public class FarmAnimal extends DomesticAnimal...
public class HousePet extends DomesticAnimal...
public class Cow extends FarmAnimal

public class Goat extends FarmAnimal

public class DairyCow extends Cow

draw a UML class diagram representing the hierarchy created by these
declarations.

CHAPTER 4 o Exercises 195

EXERCISE 4.25 Given the preceding hierarchy of classes, which of the following
are legal assignment statements?

‘ DairyCow dc = new FarmAnimal (); \
' FarmAnimal fa = new Goat(); \
' Cow c1 = new DomesticAnimal (); \
' Cow c2 = new DairyCow (); \
‘ DomesticAnimal dom = new HousePet (); ‘

196 CHAPTER 4 o Input/Output: Designing the User Interface

Chapter 5

Java Data and Operators

OBJECTIVES
After studying this chapter, you will

Understand the role that data play in effective program design.
Be able to use all of Java’s primitive types and their operators.
Appreciate the importance of information hiding.

Be able to use class constants and class methods.

Know how to use Java’s Math and NumberFormat classes.

Be able to perform various kinds of data conversions.

OUTLINE

5.1

Introduction

5.2 Boolean Data and Operators

53

Special Topic: Are We Computers?
Numeric Data and Operators

5.4 From the Java Library: java.lang.Math

5.5

Numeric Processing Examples

5.6 From the Java Library: java.text.NumberFormat

5.7 Character Data and Operators

5.8 Example: Character Conversions

59

Problem Solving = Representation + Action
Chapter Summary
Solutions to Self-Study Exercises

Exercises

197

Figure 5.1: Can the chess board be
tiled with dominoes?

198 CHAPTER 5 e Java Data and Operators

5.1 Introduction

This chapter has two primary goals. One is to elaborate on Java’s prim-
itive data types, which were first introduced in Chapter 1. We will cover
boolean, integer, character, and real number data types, including the var-
ious operations that you can perform on these types. We will provide ex-
amples, including several modifications of the OneRowNim class, to show
typical uses of the various data types.

Our second goal is to illustrate the idea that programming is a matter of
choosing an appropriate way to represent a problem as well as choosing
an appropriate sequence of actions to solve the problem. Programming
is a form of problem solving that can be viewed as a two-part process:
representation and action.

Representation means finding a way to look at the problem. This might
involve seeing the problem as closely related to a known problem or see-
ing that parts of the problem can be broken up into smaller problems
that you already know how to solve. In terms of programming prob-
lems, representation often means choosing the right kinds of objects and
structures.

Action is the process of taking well-defined steps to solve a problem.
Given a particular way of representing the problem, what steps must we
take to arrive at its solution?

Choosing an appropriate representation is often the key to solving a
problem. For example, consider this problem: Can a chess board, with
its top-left and bottom-right squares removed, be completely tiled by
dominoes that cover two squares at a time?

One way to solve this problem might be to represent the chess board
and dominoes as shown in Figure 5.1. If we represent the board in this
way, then the actions needed to arrive at a solution involve searching for
a tiling that completely covers the board. In other words, we can try one
way of placing the dominoes on the board. If that doesn’t work, we try an-
other way. And so on. This process will be very time consuming, because
there are millions of different ways of trying to tile the board.

An alternative way to represent this problem comes from seeing that
the top-left and bottom-right squares of the board are both white. If you
remove them, you'll have a board with 62 squares, 32 black and 30 white.
Because each domino must cover one white and one black square, it is

SECTION 5.2 e Boolean Data and Operators 199

impossible to tile a board with an unequal number of black and white
squares.

Thus, by representing the problem as the total number of black and
white squares, the actions required to solve it involve a very simple rea-
soning process. This representation makes it almost trivial to find the so-
lution. On the other hand, the brute force representation presented first—
trying all possible combinations—made it almost impossible to solve the
problem.

5.2 Boolean Data and Operators

As we learned in Chapter 1, the boolean type is one of Java’s primitive
types. For this type, there are only two possible values, t rue and false.
The boolean type is derived from the work of British mathematician
George Boole, who in the 1850s, developed an algebra to process logical
expressions such as p and . Such boolean expressions produce a value that is
either true or false. Every modern programming language provides some
means of representing boolean expressions.

The boolean type has several important uses. As we saw in Chap-
ter 1, expressions of the form num == 7 and 5 < 7 have boolean val-
ues. Similarly, as we saw in Chapter 3, the boolean type is also used to
represent the condition in the if statement:

if (boolean expression)
statement;

For this reason, boolean expressions are also called conditions. Along these
same lines, a boolean variable can be used as a flag or a signal to “remem-
ber” whether or not a certain condition holds. For example, in the follow-
ing code fragment, we use isDone to mark when a particular process is
completed:

boolean isDone = false; // Initialize the flag
// Do some processing task
isDone = true; // Set flag when the task done
// Do some other stuff
if (isDone) // Check if finished the task
// [f so, do something
else

// Or, do something else

5.2.1 Boolean (or Logical) Operations

Like all the other simple data types, the boolean type consists of certain
data—the values t rue and false—and certain actions or operations that
can be performed on those data. For the boolean type there are four basic
operations: AND (signified by &&), OR (signified by ||), EXCLUSIVE-OR
(signified by A), and NOT (signified by !). These are defined in the truth
table shown in Table 5.1. A truth tables defines boolean operators by giving
their values in all possible situations. The first two columns of the table
give possible boolean values for two operands, o1 and o02. An operand is
a value used in an operation. Note that each row gives a different value

George Boole

Conditional statement

Boolean flag

Data and operations

Binary operator

Unary operator

200 CHAPTER 5 e Java Data and Operators

assignment to the two operands, so that all possible assignments are repre-
sented. The remaining columns give the values that result for the various
operators given the assignment of values to o1 and o2.

TABLE 5.1 Truth-table definitions of the boolean operators:
AND (&&), OR (||), EXCLUSIVE-OR (A), and NOT (!)

ol 02 0l && 02 ol||02 olA02 lol
true true true true false false
true false false true true false
false true false true true true
false false false false false true

To see how to read this table, let’s look at the AND operation, which is
defined in column 3. The AND operator is a binary operator—that is, it
requires two operands, o1 and o02. If both 01 and 02 are true, then (01 &&
02) is true (row1l). If either ol or 02 or both o1 and 02 are false, then the
expression (01 && 02) is false (rows 2 and 3). The only case in which (o1
&& 02) is true is when both 01 and 02 are true (row 4).

The boolean OR operation (column 4 of Table 5.1) is also a binary oper-
ation. If both 01 and 02 are false, then (ol || 02) is false (row 4). If either 01
or 02 or both 01 and 02 are true, then the expression (ol || 02) is true (rows
1-3). Thus, the only case in which (o1 || 02) is false is when both 01 and 02
are false.

The boolean EXCLUSIVE-OR operation (column 5 of Table 5.1) is a bi-
nary operation, which differs from the OR operator in that it is true when
either o1 or 02 is true (rows 2 and 3), but it is false when both 01 and 02 are
true (row 1).

The NOT operation (the last column of Table 5.1) is a unary operator—
it takes only one operand—and it simply reverses the truth value of its
operand. Thus, if 01 is true, !o1 is false, and vice versa.

5.2.2 Precedence and Associativity

In order to evaluate complex boolean expressions, it is necessary to un-
derstand the order in which boolean operations are carried out by the
computer. For example, what is the value of the following expression?

(N
ttrue || true && false J

The value of this expression depends on whether we evaluate the || first
or the && first. If we evaluate the || first, the expression’s value will be
false; if we evaluate the && first, the expression’s value will be true. In
the following example, we use parentheses to force one operation to be
done before the other:

| EXPRESSION EVALUATION |
| (true || true) && false ==> true && false ==> false \
‘ true || (true && false) ==> true || false ==> true ‘

SECTION 5.2 e Boolean Data and Operators 201

As these evaluations show, we can use parentheses to force one operator

or the other to be evaluated first. However, in Java, the && operator has Parentheses supersede
higher precedence than the || operator. Therefore, the second alternative

corresponds to the default interpretation that Java would apply to the ex-

pression that has no parentheses. In other words, given the expression

true || true && false, the AND operation would be evaluated before the

OR operation even though the OR operator occurs first (i.e., to the left) in

the unparenthesized expression.

TABLE 5.2 Precedence order of the boolean operators

Precedence Order Operator Operation

() Parentheses

! NOT

A EXCLUSIVE-OR
& & AND

[OR

U= WN =

As this example illustrates, the boolean operators have a built-in prece-
dence order which is used to determine how boolean expressions are to be
evaluated (Table 5.2). A simple method for evaluating an expression is to
parenthesize the expression and then evaluate it. For example, to evaluate
the complex expression

N
Ltrue || !false ~ false && true J

we would first parenthesize it according to the precedence rules set out in
Table 5.2, which gives the following expression:

ttrue [| (((!false) " false) && true) }

We can then evaluate this fully parenthesized expression, step by step,
starting at the innermost parentheses:

‘ Step 1. true || ((true " false) && true) \
| Step 2. true || (true && true) \
| Step 3. true || true \
 Step 4. true |

IANVASEIHO@IANY I IN@NEIZ Parentheses. Parentheses can (and
should) be used to clarify any expression that appears ambiguous or
to override Java’s default precedence rules.

In addition to operator precedence, it is necessary to know about an
operator’s associativity in order to evaluate boolean expressions of
the form (opl || op2 || op3). Should this expression be evaluated as

202 CHAPTER 5 e Java Data and Operators

((op1 || op2) || op3) or as (op1 || (op2 || op3))? The binary boolean opera-
tors all associate from left to right. Thus, the expressions

‘ true ~ true true // Same as: (true ~ true) ~ true ‘
‘ true && true && true // Same as: (true && true) && true ‘
‘ true ‘ | true | | true // Same as: (true | true) || true ‘

would be evaluated as follows:

‘ EXPRESSION EVALUATION ‘
| (true "~ true) =~ true ==> false " true ==> true \
| (true && true) && true ==> true && true ==> true \
 (true true) || true ==> true || true ==> true ‘

5.2.3 Short-Circuit Evaluation

Another important feature of the boolean operators is that they utilize a
form of evaluation known as short-circuit evaluation. In short-circuit eval-
uation, a boolean expression is evaluated from left to right, and the evalu-
ation is discontinued as soon as the expression’s value can be determined,
regardless of whether it contains additional operators and operands. For
example, in the expression

t exprl && expr2 J

if exprl is false, then the AND expression must be false, so expr2 need
not evaluated. Similarly, in the expression

(1 2
t exprl || expr J

if exprl is true, then the OR expression must be true, so expr2 need not
evaluated.

In addition to being a more efficient form of evaluating boolean ex-
pressions, short-circuit evaluation has some practical uses. For example,
we can use short-circuit evaluation to guard against null pointer excep-
tions. Recall from Chapter 2 that a null pointer exception results when
you try to use an uninstantiated reference variable—that is, a reference
variable that has not been assigned an object. For example, if we declare a
OneRowNim variable without instantiating it and then try to use it, a null
pointer exception will result:

‘OneRowNim game; // Uninstantiated Reference ‘
‘ if (!game.gameOVer()) // Null pointer exception ‘
| game. takeSticks (num); ‘

SECTION 5.2 e Boolean Data and Operators 203

In this code, a null pointer exception results when we use game in the
method call game . gameOver (). We can use short-circuit evaluation to
prevent the exception from occurring:

‘ if ((game !'= null) && (!game.gameOver()) \
‘ game. takeSticks (num); J
N

In this case, because game != null is false, neither method call involv-
ing game is made, thus avoiding the exception.

Special Topic: Are We Computers?

George Boole published his seminal work, An Investigation of the Laws
of Thought, in 1854. His achievement was in developing an algebra for
logic—that is, a purely abstract and symbolic system for representing the
laws of logic. Boole’s was not the first attempt to explore the relationship
between the human mind and an abstract system of computation. Back in
1655, Thomas Hobbes had already claimed that all thought was computa-
tion.

Itis estimated that the human brain contains (10'? = 10,000,000,000,000)
neurons, and each neuron contains something like 10,000 dendrites, the
fibers that connect one neuron to another. Together, the neurons and den-
drites make up a web of enormous complexity. Since the 1840s it has been
known that the brain is primarily electrical, and by the 1940s scientists
had developed a pretty good model of the electrical interactions among
neurons. According to this model, neurons emit short bursts of electricity
along their axons, which function like output wires. The bursts leap over
the gap separating axons and dendrites, which function like the neurons’
input wires.

In 1943, just before the first digital computers were developed, War-
ren McCulloch, a neurophysiologist, and Walter Pitts, a mathematician,
published a paper titled, “A Logical Calculus of the Ideas Imminent in
Nervous Activity.” In this paper, they showed that all of the boolean
operators—AND, OR, NOT, and EXCLUSIVE-OR—could be represented
by the behavior of small sets of neurons. For example, they showed that
three neurons could be connected together in such a way that the third
neuron fired if and only if both of the other two neurons fired. This is
exactly analogous to the definition of the boolean AND operator.

A few years later, when the first computers were built, many scientists
and philosophers were struck by the similarity between the logic elements
that made up the computer’s circuits and the neuronal models that Mc-
Culloch and Pitts had developed.

The area of neural networks is a branch of artificial intelligence (one
of the applied areas of computer science) and is based on this insight by
McCulloch and Pitts. Researchers in this exciting and rapidly advancing
tield develop neural network models of various kinds of human thinking
and perception.

204 CHAPTER 5 e Java Data and Operators

5.2.4 Using Booleans in OneRowNim

Now that we have introduced the boolean data type, let’s use it to im-
prove the OneRowNim class, the latest version of which, from Chapter 3,
is given in Figure 3.16. Previously we used an int variable, player,
to represent who's turn it is. For a two-person game, such as One Row
Nim, a boolean variable is well suited for this purpose, because it can
toggle between true and false. For example, let’s declare a variable,
onePlaysNext, and initialize it to true, to represent the fact that player
one will play first:

e
Lprivate boolean onePlaysNext = true;

When onePlaysNext is true, it will be player one’s turn. When it is
false, it will be player two’s turn. Note that we are deliberately remaining
uncommitted as to whether one or the other player is the computer.

Given this new variable, it is necessary to redefine the methods that
had previously used the player variable. The first method that needs
revision is the constructor:

public OneRowNim(int sticks , int starter)
{ nSticks = sticks;

onePlaysNext = (starter == 1);
}

// OneRowNim () constructor3

In the constructor, the st arter parameter is used with a value of 1 or 2 to
set which player goes first. Note how we use an assignment statement to
set onePlaysNext to trueif starter equals 1; otherwise it is set to false.
The assignment statement first evaluates the expression on its right hand
side (starter == 1). Because this is a boolean expression, it will have
a value of true or false, which will be assigned to onePlaysNext. Thus,
the assignment statement is equivalent to the following if /else statement:

if (player == 1)
onePlaysNext = true;

onePlaysNext = false;

The remaining changes are shown in Figure 5.2. There are only two in-
stance methods that need revision to accommodate the use of boolean

)

SECTION 5.3 e Numeric Data and Operators 205

variables. The takeSticks () method contains two revisions. The first
uses the boolean OR operator to test whether a move is valid:

public boolean takeSticks (int num)
{ if (num < 1 || num > 3 || num > nSticks)
return false; // Error
else // Valid move
{ nSticks = nSticks — num;
onePlaysNext = !onePlaysNext;
return true;
} // else
} // takeSticks ()

It also uses the boolean NOT operator to toggle the value of
onePlaysNext, to switch to the other player’s turn:

konePlaysNext = lonePlaysNext; J

Finally, the getPlayer () method now uses a if/else statement to return
either 1 or 2 depending on who's turn it is:

' public int getPlayer () \
| if (onePlaysNext) \
\ return 1; \
\ else return 2; \
‘ } // getPlayer () ‘

5.3 Numeric Data and Operators

Java has two kinds of numeric data: integers, which have no fractional
part, and real numbers or floating-point numbers, which contain a frac-
tional component. Java recognizes four different kinds of integers: byte,
short, int, and long, which are distinguished by the number of bits
used to represent them. A binary digit, or bit, is a 0 or a 1. (Recall that
computers read instructions as series of Os and 1s.) Java has two different
kinds of real numbers, float and double, which are also distinguished
by the number of bits used to represent them. See Table 5.3.

TABLE 5.3 Java’'s numeric types

Type Bits Range of Values

byte 8 —128 to + 127

short 16 —32768 to 32767

int 32 —2147483648 to 2147483647

long 64 26310203 —1

float 32 —3.40292347E 4 38 to + 3.40292347F + 38

double 64 —1.79769313486231570F + 308 to +1.79769313486231570E + 308

206 CHAPTER 5 e Java Data and Operators

public class OneRowNim
{ private int nSticks = 7;
private boolean onePlaysNext = true;

public OneRowNim ()

{

} //OneRowNim () constructorl

public OneRowNim(int sticks)

{ nSticks = sticks;

} // OneRowNim () constructor?2

public OneRowNim(int sticks , int starter)

{ nSticks = sticks;
onePlaysNext = (starter == 1);

} // OneRowNim () constructor3

public boolean takeSticks (int num)

{ if (num < 1 || num > 3 || num > nSticks)
return false; // Error
else // Valid move
{ nSticks = nSticks — num;
onePlaysNext = !onePlaysNext;
return true;
} //else

} // takeSticks ()
public int getSticks ()
{ return nSticks;
} {\color{cyan} // getSticks ()}
public int getPlayer ()
{ if (onePlaysNext) return 1;
else return 2;
} // getPlayer ()
public boolean gameOver ()
{ return (nSticks <= 0);
} // gameOver ()
public int getWinner ()
{ if (nSticks < 1) return getPlayer();
else return 0; // game 1is not over
} // getWinner ()
public void report()
{ System.out.println(
+ getSticks ());
System.out. println (
+ getPlayer ());
} // report ()
} // OneRowNim class

Figure 5.2: The revised OneRowNim uses a boolean variable to keep track
of who's turn it is.

The more bits a data type has, the more values it can represent. One bit
can represent two possible values, 1 and 0, which can be used to stand for
true and false, respectively. Two bits can represent four possible values:
00, 01, 10, and 11; three bits can represent eight possible values: 000, 001,

SECTION 5.3 o Numeric Data and Operators 207

010, 100,101, 110, 011, 111. And, in general, an n-bit quantity can represent
2" different values.

As illustrated in Table 5.3, the various integer types represent posi-
tive or negative whole numbers. Perhaps the most commonly used in-
teger type in Java is the int type, which is represented in 32 bits. This
means that Java can represent 2% different int values, which range from
—2,147,483,648 to 2,147,483,647, that is, from —23! to (23! —1). Similarly,
an 8-bit integer, a byte, can represent 2 or 256 different values, ranging
from —128 to +127. A 16-bit integer, a short, can represent 216 different
values, which range from —32768 to 32767. And a 64-bit integer, a Long,
can represent whole number values ranging from —2% to 263 — 1.

For floating-point numbers, a 32-bit f1oat type can represent 232 dif-
ferent real numbers and a 64-bit double value can represent 2% different
real numbers.

AN GUAPBERI(@N] Platform Independence. InJava, a data
type’s size (number of bits) is part of its definition and, therefore,
remains consistent across all platforms. In C and C++, the size of a
data type is dependent on the compiler.

It is worth noting that just as model airplanes are representations of
real airplanes, Java’s numeric types are representations or models of the
numbers we deal with in mathematics. In designing Java’s data types,
various trade-offs have been made in order to come up with practical
implementations.

One trade-off is that the set of integers is infinite, but Java’s int type
can only represent a finite number of values. Similarly, Java cannot
represent the infinite number of values that occur between, say, 1.111 and
1.112. So, certain real numbers cannot be represented at all. For exam-
ple, because Java uses binary numbers to represent its numeric types, one
number that cannot be represented exactly is 1. This inability to exactly
represent a value is known as round-off error. Being unable to represent
certain values can cause problems in a program. For example, it might be
difficult to represent dollars and cents accurately in a program.

Another source of problems in dealing with numeric data is due to lim-
its in their precision. For example, a decimal number represented as a
double value can have a maximum of 17 significant digits, and a float
can have a maximum 8. A significant digit is one that contributes to
the number’s value. If you tried to store values such as 12345.6789 or
0.123456789 in a f1loat variable, they would be rounded off to 12345.679
and 0.12345679, respectively, causing a possible error.

PANZOR) I SEl@IN[ERNIY] Significant Digits. In using numeric data,
be sure the data type you choose has enough precision to represent the

values your program needs.

SELF-STUDY EXERCISES

Integer data types

Data types are abstractions

Representation trade-offs

Round-off error

Numeric operators

Integer division gives an integer
result

Modular arithmetic

208 CHAPTER 5 e Java Data and Operators

5.3.1 Numeric Operations

The operations that can be done on numeric data include the standard
algebraic operations: addition (+), subtraction (—), multiplication (*), division
(/), as well as the modulus (%) operator. Note that in Java, the multiplica-
tion symbol is » and not the x. The arithmetic operators are binary op-
erators, meaning that they each take two operands. Table 5.4 compares

TABLE 5.4 The standard arithmetic operators in Java

Operation Operator Java Algebra

Addition + x+2 x+2

Subtraction — m—2 m-2

Multiplication * m*2 2mor2xm

Division / x/y x+yor %

Modulus Y% x%y xmodulo y (for integers x and y)

expressions involving the Java operators with their standard algebraic
counterparts.

Although these operations should seem familiar, there are some im-
portant differences between their use in algebra and their use in a Java
program. Consider the following list of expressions:

2 ==> value 1 An integer result

/ 2.0 ==> value 1.5 A floating —point result
2.0 ==> value 1.5 A floating—point result
/ 2 ==> value 1.5 A floating—point result

In each of these cases we are dividing the quantity 3 by the quantity 2.
However, different results are obtained depending on the fype of the
operands involved. When both operands are integers, as in (3/2), the
result must also be an integer. Hence, (3/2) has the value 1, an integer.
Because integers cannot have a fractional part, the 0.5 is simply discarded.
Integer division (/) always gives an integer result. Thus, the value of (6/2)
is 3 and the value of (7/2) is also 3. Because 3.5 is not an integer, the result
of dividing 7 by 2 cannot be 3.5.

PANZANRI I C[E[@IN[E@RNIE Integer Division. A common source of
error among beginning programmers is forgetting that integer
division always gives an integer result.

On the other hand, when either operand is a real number, as in the last
three cases, the result is a real number. Thus, while the same symbol (/)
is used for dividing integers and real numbers, there are really two dif-
ferent operations involved here: integer division and floating-point division.
Using the same symbol (/) for different operations (integer division and
real division) is known as operator overloading. It is similar to method
overloading, which was discussed in Chapter 3.

What if you want to keep the remainder of an integer division? Java
provides the modulus operator (%), which takes two operands. The ex-
pression (7 % 5) gives the remainder after dividing 7 by 5—2 in this case.

SECTION 5.3 e Numeric Data and Operators 209

In general, the expression (m % n) (read m mod n) gives the remainder
after m is divided by n. Here are several examples:

‘ 7 %5 ==>7 mod 5 equals 2 \
'5 %7 ==>5mod 7 equals 5 \
| =7 % 5 ==> -7 mod 5 equals -2 \
‘ 7 % -5 ==> 7 mod —5 equals 2 ‘

The best way to interpret these examples is to perform long division on
the operands keeping both the quotient and the remainder. For example,
when you do long division on —7 +5, you get a quotient of -1 and a re-
mainder of -2. The quotient is the value of —7/5 and the remainder is the
value of —7%5. When you do long division on 7 <+ —5, you get a quotient
of -1 and a remainder of 2. The quotient is the value of 7/ —5 and the
remainder is the value of 7% — 5.

We will encounter many practical uses for the modulus operator in our
programs. For a simple example, we use it when we want to determine
whether an integer is even or odd. Numbers that leave a 0 remainder
when divided by 2 are even:

Cif (N% 2 == 0) |
‘ System.out. println (N +); |

More generally, we could use the mod operator to define divisibility by 3,
4,10, or by any number.

Numeric Promotion Rules

Java is considered a strongly typed language because all expressions in
Java, such as (3/2), have a type associated with them. In cases where
one arithmetic operand is an integer and one is a floating-point num-
ber, Java promotes the integer into a floating-point value and performs a
floating-point operation.

Promotion is a matter of converting one type to another type. For ex-
ample, in the expression (5 + 4.0), the value 5 must be promoted to 5.0
before floating-point addition can be performed on (5.0 + 4.0). Generally
speaking, automatic promotions such as these are allowed in Java when-
ever it is possible to perform the promotion without loss of information. Be-
cause an integer (5) does not have a fractional component, no information
will be lost in promoting it to a real number (5.0). On the other hand, you
cannot automatically convert a real number (5.4) to an integer (5) because
that might lead to loss of information. This leads to the following rule:

Expressions have a type

PANADESNEOPNERNO0IEE Integer Promotion. In an operation that
contains an integer and a floating-point operand, the integer is
promoted to a floating-point value before the operation is performed.

This rule is actually an instance of a more general rule, for whenever an
expression involves operands of different types, some operands must be

Promotion is automatic

210 CHAPTER 5 e Java Data and Operators

converted before the expression can be evaluated. Consider the following
example:

' byte n = 125;
' short m = 32000;
‘ n % m;

In this case, (n * m) involves two different integer types, byte and short.
Before evaluating this expression Java must first promote the byte to a
short and carry out the operation as the multiplication of two shorts.
Conversion of short to byte would not be possible because there’s no
way to represent the value 32000 as a byte.

It is important to note that this conversion rule applies regardless of
the actual values of the operands. In applying the rule, Java looks at the
operand’s type, not its value. So even if m were assigned a value that
could be represented as a byte (for example, 100), the promotion would
still go from smaller to larger type. This leads to following the general
rule:

NS AN [COPN@EOIRE Type Promotion. In general, when two
different types are involved in an operation, the smaller type—the one
with fewer bits—is converted to the larger type before the operation is
performed. To do otherwise would risk losing information.

Table 5.5 summarizes the actual promotion rules used by Java in evaluat-
ing expressions involving mixed operands. Note that the last rule implies
that integer expressions involving byte or short or int are performed
as int. This explains why integer literals—such as 56 or —108—are rep-
resented as int typesin Java.

TABLE 5.5 Java promotion rules for mixed arithmetic operators.
If two rules apply, choose the one that occurs first in this table.

If either operand is The other is promoted to
double double

float float

long long

byte or short int

5.3.2 Operator Precedence

The built-in precedence order for arithmetic operators is shown in Ta-
ble 5.6. Parenthesized expressions have highest precedence and are evalu-
ated first. Next come the multiplication, division, and modulus operators,
followed by addition and subtraction. When we have an unparenthesized
expression that involves both multiplication and addition, the multiplica-
tion would be done first, even if it occurs to the right of the plus sign. Op-

SECTION 5.3 o Numeric Data and Operators 211

TABLE 5.6 Precedence order of the arithmetic operators

Precedence
Order Operator ~ Operation

1 () Parentheses
2 * [% Multiplication, Division, Modulus
3 + - Addition, Subtraction

erators at the same level in the precedence hierarchy are evaluated from
left to right. For example, consider the following expression:

9+6 -3 6/ 2)
Pre-3r/ J

In this case, the first operation to be applied will be the multiplication (*),
followed by division (/), followed by addition (+), and then finally the
subtraction (—). We can use parentheses to clarify the order of evaluation.
A parenthesized expression is evaluated outward from the innermost set
of parentheses:

Step 1. ((9 +6) — ((3 %6)/2)) |
Step 2. ((9 +6) — (18 / 2)) |
' Step 3. ((9 +6)—9) \
| Step 4. (15 -9) \
| Step 5. 6 |

Parentheses can (and should) always be used to clarify the order of oper-
ations in an expression. For example, addition will be performed before
multiplication in the following expression:

b 0
L(a+)*c J

Another reason to use parentheses is that Java’s precedence and promo-
tion rules will sometimes lead to expressions that look fine but contain
subtle errors. For example, consider the following expressions:

| System.out.println(5/3/2.0); // 0.5 ‘
‘System.out.println(S/(3/2.0)); // 3.33 ‘

The first gives a result of 0.5, but the use of parentheses in the second
gives a result of 3.33. If the second is the expected interpretation, then the
parentheses here helped avoid a subtle semantic error.

PANZRO@I TN IVINENNIE Parenthesize! To avoid subtle bugs
caused by Java’s precedence and promotion rules, use parentheses to
specify the order of evaluation in an expression.

SELE-STUDY EXERCISE

Preincrement and postincrement

Precedence order

Predecrement and postdecrement

212 CHAPTER 5 e Java Data and Operators

5.3.3 Increment and Decrement Operators

Java provides a number of unary operators that are used to increment or
decrement an integer variable. For example, the expression k++ uses the
increment operator ++ to increment the value of the integer variable k. The
expression k++ is equivalent to the following Java statements:

int k; |
‘k =k + 1,'// Add 1 to k and assign the result back to k ‘

The unary ++ operator applies to a single integer operand, in this case to
the variable k. It increments k’s value by 1 and assigns the result back to k.
It may be used either as a preincrement or a postincrement operator. In the
expression k++, the operator follows the operand, indicating that it is being
used as a postincrement operator. This means that the increment operation
is done after the operand’s value is used.

Contrast that with the expression ++k in which the ++ operator precedes
its operand. In this case, it is used as a preincrement operator, which means
that the increment operation is done before the operand’s value is used.

When used in isolation, there is no practical difference between k++
and ++k. Both are equivalent to k = k + 1. However, when used in con-
junction with other operators, there is a significant difference between
preincrement and postincrement. For example, in the following code
segment,

‘ int] = 0, k = 0; // Initially both j and k are 0 ‘
‘] = ++k,' // Final values of both j and k are IJ

the variable k is incremented before its value is assigned to j. After execu-
tion of the assignment statement, j will equal 1 and k will equal 1. The
sequence is equivalent to

‘intj
Kk =k
=k

0, k = 0; // Initially both j and k are 0 ‘
1

+ 1

4 ‘

; // Final values of both j and k are 1 ‘

However, in the following example,

‘il‘lt i = 0, k = O,' // Initially both i and k are 0 ‘
‘i= k++; // Final value of i is 0 and k 1is 1 ‘

the variable k is incremented after its value is assigned to i. After execution
of the assignment statement, i will have the value 0 and k will have the
value 1. The preceding sequence is equivalent to

‘ int i = 0, k = 0; // Initially both i and k are 0 ‘
=k |
‘ k =k + 1,' // Final value of i is 0 and k is 1 ‘

In addition to the increment operator, Java also supplies the decrement op-

SECTION 5.3 o Numeric Data and Operators 213

erator ——, which can also be used in the predecrement and postdecrement
forms. The expression —— k will first decrement k’s value by 1 and then
use k in any expression in which it is embedded. The expression k—— will
use the current value of k in the expression in which k is contained and
then it will decrement k’s value by 1. Table 5.7 summarizes the increment
and decrement operators. The unary increment and decrement operators
have higher precedence than any of the binary arithmetic operators.

TABLE 5.7 Java’'s increment and decrement operators

Expression Operation Interpretation
j=++k Preincrement k=k+1,j=k;
j=k++ Postincrement j=kik=k+1;
j=——k Predecrement k=k—1,j=k;
j=k—— Postdecrement j=kk=k—1;

I\ QWG OVNC:RNOIME Pre- and Postincrement/Decrement. If
an expression like ++k or ——k occurs in an expression, k is
incremented or decremented before its value is used in the rest of the
expression. If an expression like k++ or k—— occurs in an expression, k
is incremented or decremented after its value is used in the rest of the
expression.

IE\Z:NENCERVVYIYINENNIE [ncrement and Decrement

Operators. Because of their subtle behavior, be careful in how you use
the unary increment and decrement operators. They are most
appropriate and useful for incrementing and decrementing loop
variables, as we'll see later.

SELE-STUDY EXERCISE
5.3.4 Assignment Operators

In addition to the simple assignment operator (=), Java supplies a num-
ber of shortcut assignment operators that allow you to combine an arith-
metic operation and an assignment in one operation. These operations
can be used with either integer or floating-point operands. For example,
the += operator allows you to combine addition and assignment into one
expression. The statement

=]

is equivalent to the statement

[k:k+3'

/

Equals vs. assigns

214 CHAPTER 5 e Java Data and Operators

Similarly, the statement

-
‘r+=3.5+2.0*9.3;
N

is equivalent to

-
tr =r + (3.5 +2.0 % 9.3); // i.e., r =1 + 22.1;

As these examples illustrate, when using the += operator, the expression
on its right-hand side is first evaluated and then added to the current value
of the variable on its left-hand side.

Table 5.8 lists the other assignment operators that can be used in com-
bination with the arithmetic operators. For each of these operations, the
interpretation is the same: Evaluate the expression on the right-hand side

TABLE 5.8 Java’s assignment operators

Operator Operation Example Interpretation
= Simple assignment m=n; m=n;

+= Addition then assignment m+= 3; m=m-+3;
—= Subtraction then assignment = 3; m=m-—73;

= Multiplication then assignment m= 3; m=mx*3;

/= Division then assignment m/=3; m=m/3;

% = Remainder then assignment m%= 3; m=m%?3;

of the operator and then perform the arithmetic operation (such as addi-
tion or multiplication) to the current value of the variable on the left of the
operator.

SELF-STUDY EXERCISES
5.3.5 Relational Operators

There are several relational operations that can be performed on integers:
<, >, <=, >=, ==, and ! =. These correspond to the algebraic operators
<,>,<, >, =,and #. Each of these operators takes two operands (integer
or real) and returns a boolean result. They are defined in Table 5.9.

TABLE 5.9 Relational operators

Operator Operation Java Expression
< Less than 5<10

> Greater than 10 >5

<= Less than or equal to 5<=10

>= Greater than or equal to 10>=5

== Equal to 5==5

1= Not equal to 51=4

Note that several of these relational operators require two symbols in
Java. Thus, the familiar equals sign (=) is replaced in Java by ==. This is so
the equality operator can be distinguished from the assignment operator.

SECTION 5.3 o Numeric Data and Operators 215

Also, less than or equal to (<=), greater than or equal to (>=), and not
equal to (!=) require two symbols, instead of the familiar <, >, and # from
algebra. In each case, the two symbols should be consecutive. It is an error
in Java for a space to appear between the < and =in <=.

JENZ D) S[e[@IN[EPNIY Equality and Assignment. A common
semantic error among beginning programmers is to use the
assignment operator (=) when the equality operator (==) is intended.

Among the relational operators, the inequalities (<, >, <=, and >=)
have higher precedence than the equality operators (== and !=). In an
expression that involves both kinds of operators, the inequalities would be
evaluated first. Otherwise, the expression is evaluated from left to right.

Taken as a group the relational operators have lower precedence than
the arithmetic operators. Therefore, in evaluating an expression that in-
volves both arithmetic and relational operators, the arithmetic operations
are done first. Table 5.10 includes all of the numeric operators introduced
so far.

TABLE 5.10 Numeric operator precedence including relations

Precedence

Order Operator Operation
1) Parentheses
2 ++ —— Increment, decrement
3 * / % Multiplication, division, modulus
4 + — Addition, subtraction
5