
Java, Java, Java
Object-Oriented Problem Solving

Third Edition

R. Morelli and R. Walde
Trinity College
Hartford, CT

June 25, 2017

This work is licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).

This book was previously published by
Pearson Education, Inc.

Preface to the Open Source
Edition

Java, Java, Java, 3e was previously published by Pearson Education, Inc.
The first edition (2000) and the second edition (2003) were published by
Prentice-Hall. In 2010 Pearson Education, Inc. reassigned the copyright to
the authors, and we are happy now to be able to make the book available
under an open source license.

This PDF edition of the book is available under a Creative Commons
Attribution 4.0 International License, which allows the book to be used,
modified, and shared with attribution:
(https://creativecommons.org/licenses/by/4.0/).

– Ralph Morelli and Ralph Walde
– Hartford, CT
– December 30, 2016

i

ii

Preface to the Third Edition

We have designed this third edition of Java, Java, Java to be suitable for
a typical Introduction to Computer Science (CS1) course or for a slightly
more advanced Java as a Second Language course. This edition retains the
“objects first” approach to programming and problem solving that was
characteristic of the first two editions. Throughout the text we emphasize
careful coverage of Java language features, introductory programming
concepts, and object-oriented design principles.

The third edition retains many of the features of the first two editions,
including:

• Early Introduction of Objects

• Emphasis on Object Oriented Design (OOD)

• Unified Modeling Language (UML) Diagrams

• Self-study Exercises with Answers

• Programming, Debugging, and Design Tips.

• From the Java Library Sections

• Object-Oriented Design Sections

• End-of-Chapter Exercises

• Companion Web Site, with Power Points and other Resources

The In the Laboratory sections from the first two editions have been moved
onto the book’s Companion Web Site. Table 1 shows the Table of Contents
for the third edition.

What’s New in the Third Edition

The third edition has the following substantive changes:

• Although the book retains its emphasis on a “running example”
that is revisited in several chapters, the CyberPet examples have
been replaced with a collection of games and puzzle examples. The
CyberPet examples from earlier editions will be available on the
Companion Web Site.

iii

iv

Table 1: Table of Contents for the Third Edition.

Chapter Topic
Chapter 0 Computers, Objects, and Java (revised)
Chapter 1 Java Program Design and Development
Chapter 2 Objects: Defining, Creating, and Using
Chapter 3 Methods: Communicating with Objects (revised)
Chapter 4 Input/Output: Designing the User Interface (new)
Chapter 5 Java Data and Operators
Chapter 6 Control Structures
Chapter 7 Strings and String Processing
Chapter 8 Inheritance and Polymorphism (new)
Chapter 9 Arrays and Array Processing
Chapter 10 Exceptions: When Things Go Wrong
Chapter 11 Files and Streams
Chapter 12 Recursive Problem Solving
Chapter 13 Graphical User Interfaces
Chapter 14 Threads and Concurrent Programming
Chapter 15 Sockets and Networking (expanded)
Chapter 16 Data Structures: Lists, Stacks, and

Queues (revised and expanded)

• Chapters 0 (Computers, Objects, and Java) and 1 (Java Program De-
sign and Development) have been substantially reorganized and
rewritten. The new presentation is designed to reduce the pace
with which new concepts are introduced. The treatment of object-
oriented (OO) and UML concepts has also been simplified, and some
of the more challenging OO topics, such as polymorphism, have
been moved to a new Chapter 8.

• The new Java 1.5 Scanner class is introduced in Chapter 2 and is
used to perform simple input operations.

• Chapter 4 (Input/Output: Designing the User Interface) has been
completely written. Rather than relying primarily on applet inter-
faces, as in the second edition, this new chapter provides indepen-
dent introductions to both a command-line interface and a graphi-
cal user interface (GUI). Instructors can choose the type of interface
that best suits their teaching style. The command-line interface is
based on the BufferedReader class and is used throughout the
rest of the text. The GUI is designed to work with either graphi-
cal applications or applets. Both approaches are carefully presented
to highlight the fundamentals of user-interface design. The chapter
concludes with an optional section that introduces file I/O using the
new Scanner class.

• Much of the discussion of inheritance and polymorphism, which
was previously woven through the first five chapters in the second
edition, has been integrated into a new Chapter 8.

• An optional graphics track is woven throughout the text. Beginning
with simple examples in Chapters 1 and 2, this track also includes

v

some of the examples that were previously presented in Chapter 10
of the second edition.

• Chapter 15, on Sockets and Networking, is expanded to cover some
of the more advanced Java technologies that have emerged, includ-
ing servlets and Java Server Pages.

• Chapter 16, on Data Structures, has been refocused on how to use
data structures. It makes greater use of Java’s Collection Framework,
including the LinkedList and Stack classes and the List inter-
face. It has been expanded to cover some advanced data structures,
such as sets, maps, and binary search trees.

The Essentials Edition

An Essentials Edition of the third edition, which will include Chapters 0-
12, will be published as a separate title. The Essentials Edition will cover
those topics (Chapters 0-9) that are covered in almost all introductory
(CS1) courses, but it will also include topics (Exceptions, File I/O, and
Recursion) that many CS1 instructors have requested.

Why Start with Objects?

The Third Edition still takes an objects-early approach to teaching Java,
with the assumption that teaching beginners the “big picture” early gives
them more time to master the principles of object-oriented programming.
This approach seems now to have gained in popularity as more and more
instructors have begun to appreciate the advantages of the object-oriented
perspective.

Object Orientation (OO) is a fundamental problem solving and design
concept, not just another language detail that should be relegated to the
middle or the end of the book (or course). If OO concepts are introduced
late, it is much too easy to skip over them when push comes to shove in
the course.

The first time I taught Java in our CS1 course I followed the same ap-
proach I had been taking in teaching C and C++ — namely, start with the
basic language features and structured programming concepts and then,
somewhere around midterm, introduce object orientation. This approach
was familiar, for it was one taken in most of the textbooks then available
in both Java and C++.

One problem with this approach was that many students failed to get
the big picture. They could understand loops, if-else constructs, and arith-
metic expressions, but they had difficulty decomposing a programming
problem into a well-organized Java program. Also, it seemed that this
procedural approach failed to take advantage of the strengths of Java’s
object orientation. Why teach an object-oriented language if you’re going
to treat it like C or Pascal?

I was reminded of a similar situation that existed when Pascal was the
predominant CS1 language. Back then the main hurdle for beginners was
procedural abstraction — learning the basic mechanisms of procedure call

vi

and parameter passing and learning how to design programs as a collec-
tion of procedures. Oh! Pascal!, my favorite introductory text, was typical
of a “procedures early” approach. It covered procedures and parameters
in Chapter 2, right after covering the assignment and I/O constructs in
Chapter 1. It then covered program design and organization in Chap-
ter 3. It didn’t get into loops, if-else, and other structured programming
concepts until Chapter 4 and beyond.

Today, the main hurdle for beginners is the concept of object abstraction.
Beginning programmers must be able to see a program as a collection of
interacting objects and must learn how to decompose programming prob-
lems into well-designed objects. Object orientation subsumes both proce-
dural abstraction and structured programming concepts from the Pascal
days. Teaching objects-early takes a top-down approach to these three im-
portant concepts. The sooner you begin to introduce objects and classes,
the better the chances that students will master the important principles
of object orientation.

Java is a good language for introducing object orientation. Its object
model is better organized than C++. In C++ it is easy to “work around”
or completely ignore OO features and treat the language like C. In Java
there are good opportunities for motivating the discussion of object orien-
tation. For example, it’s almost impossible to discuss GUI-based Java ap-
plications without discussing inheritance and polymorphism. Thus rather
than using contrived examples of OO concepts, instructors can use some
of Java’s basic features — the class library, Swing and GUI components —
to motivate these discussions in a natural way.

Organization of the Text

The book is still organized into three main parts. Part I (Chapters 0-4) in-
troduces the basic concepts of object orientation and the basic features of
the Java language. Part II (Chapters 5-9) focuses on remaining language el-
ements, including data types, control structures, string and array process-
ing, and inheritance and polymorphism. Part III (Chapters 10-16) covers
advanced topics, including exceptions, file I/O, recursion, GUIs, threads
and concurrent programming, sockets and networking, data structures,
servlets, and Java Server Pages.

The first two parts make up the topics that are typically covered in an
introductory CS1 course. The chapters in Part III are self-contained and
can be selectively added to the end of a CS1 course if time permits.

The first part (Chapters 0 through 4) introduces the basic concepts of
object orientation, including objects, classes, methods, parameter passing,
information hiding, and a little taste of inheritance, and polymorphism.
The primary focus in these chapters is on introducing the basic idea that
an object-oriented program is a collection of objects that communicate and
cooperate with each other to solve problems. Java language elements are
introduced as needed to reinforce this idea. Students are given the basic
building blocks for constructing Java programs from scratch.

Although the programs in the first few chapters have limited function-
ality in terms of control structures and data types, the priority is placed

vii

Table 2: A one-semester course.

Weeks Topics Chapters
1 Object Orientation, UML Chapter 0

Program Design and Development Chapter 1
2-3 Objects and Class Definitions Chapter 2

Methods and Parameters Chapter 3
Selection structure (if-else)

4 User Interfaces and I/O Chapter 4
5 Data Types and Operators Chapter 5
6–7 Control Structures (Loops) Chapter 6

Structured Programming
8 String Processing (loops) Chapter 7
9 Inheritance and Polymorphism Chapter 8
10 Array Processing Chapter 9
11 Recursion Chapter 12
12 Advanced Topic (Exceptions) Chapter 10
13 Advanced Topic (GUIs) Chapter 11

Advanced Topic (Threads) Chapter 15

on how objects are constructed and how they interact with each other
through method calls and parameter passing.

The second part (Chapters 5 through 9) focuses on the remaining lan-
guage elements, including data types and operators (Chapter 5), control
structures (Chapter 6), strings (Chapter 7), and arrays (Chapter 9). It
also provides thorough coverage of inheritance and polymorphism, the
primary mechanisms of object orientation: (Chapter 8).

Part three (Chapters 10 through 16) covers a variety of advanced topics
(Table 1). Topics from these chapters can be used selectively depending
on instructor and student interest.

Throughout the book, key concepts are introduced through simple,
easy-to-grasp examples. Many of the concepts are used to create a set
of games, which are used as a running example throughout the text. Our
pedagogical approach focuses on design. Rather than starting of with lan-
guage details, programming examples are carefully developed with an
emphasis on the principles of object-oriented design.

Table2 provides an example syllabus from our one-semester CS1
course. Our semester is 13 weeks (plus one reading week during which
classes do not meet). We pick and choose from among the advanced topics
during the last two weeks of the course, depending on the interests and
skill levels of the students.

Ralph Morelli
June 25, 2017

viii

Contents

0 Computers, Objects, and Java 1
0.1 Welcome . 2
0.2 What Is a Computer? . 2
0.3 Networks, the Internet and the World Wide Web 4
0.4 Why Study Programming? . 6
0.5 Programming Languages . 7
0.6 Why Java? . 9
0.7 What Is Object-Oriented Programming? 11

1 Java Program Design and Development 23
1.1 Introduction . 24
1.2 Designing Good Programs . 24
1.3 Designing a Riddle Program 26
1.4 Java Language Elements . 34
1.5 Editing, Compiling, and Running a Java Program 48
1.6 From the Java Library: System and

PrintStream . 52

2 Objects: Using, Creating, and Defining 61
2.1 Introduction . 62
2.2 Using String Objects . 62
2.3 Drawing Shapes with a Graphics Object (Optional) 66
2.4 Class Definition . 69
2.5 CASE STUDY: Simulating a Two-Person Game 76
2.6 From the Java Library: java.util.Scanner. 90

3 Methods: Communicating with Objects 101
3.1 Introduction . 102
3.2 Passing Information to an Object 102
3.3 Constructor Methods . 109
3.4 Retrieving Information from an Object 114
3.5 Passing a Value and Passing a Reference 118
3.6 Flow of Control: Control Structures 121
3.7 Testing an Improved OneRowNim 130
3.8 From the Java Library java.lang.Object 135
3.9 Object-Oriented Design: Inheritance and Polymorphism . . 136
3.10 Drawing Lines and Defining Graphical Methods (Optional) 138

4 Input/Output: Designing the User Interface 149
4.1 Introduction . 150

ix

x CONTENTS

4.2 The User Interface . 150
4.3 A Command-Line Interface 151
4.4 A Graphical User Interface (GUI) 160
4.5 Case Study: The One Row Nim Game 176
4.6 From the Java Library: java.io.File

and File Input (Optional) . 183

5 Java Data and Operators 197
5.1 Introduction . 198
5.2 Boolean Data and Operators 199
5.3 Numeric Data and Operators 205
5.4 From the Java Library java.lang.Math 216
5.5 Numeric Processing Examples 217
5.6 From the Java Library

java.text.NumberFormat 229
5.7 Character Data and Operators 231
5.8 Example: Character Conversions 235
5.9 Problem Solving = Representation + Action 237

6 Control Structures 241
6.1 Introduction . 242
6.2 Flow of Control: Repetition Structures 242
6.3 Counting Loops . 243
6.4 Example: Car Loan . 252
6.5 Graphics Example: Drawing a Checkerboard 255
6.6 Conditional Loops . 259
6.7 Example: Computing Averages 266
6.8 Example: Data Validation . 270
6.9 Principles of Loop Design . 270
6.10 The switch Multiway Selection Structure 273
6.11 OBJECT-ORIENTED DESIGN:

Structured Programming . 277

7 Strings and String Processing 297
7.1 Introduction . 298
7.2 String Basics . 298
7.3 Finding Things Within a String 304
7.4 Example: Keyword Search . 306
7.5 From the Java Library: java.lang.StringBuffer 308
7.6 Retrieving Parts of Strings . 310
7.7 Example: Processing Names and Passwords 312
7.8 Processing Each Character in a String 313
7.9 Comparing Strings . 317
7.10 From the Java Library:

java.util.StringTokenizer . 323
7.11 Handling Text in a Graphics Context

(Optional) . 324

8 Inheritance and Polymorphism 337
8.1 Introduction . 338
8.2 Java’s Inheritance Mechanism 338

CONTENTS xi

8.3 Abstract Classes, Interfaces,
and Polymorphism . 347

8.4 Example: A Toggle Button . 353
8.5 Example: The Cipher Class Hierarchy 357
8.6 Case Study: A Two Player Game Hierarchy 363
8.7 Principles Of Object-Oriented Design 384

9 Arrays and Array Processing 393
9.1 Introduction . 394
9.2 One-Dimensional Arrays . 394
9.3 Simple Array Examples . 401
9.4 Example: Counting Frequencies of Letters 403
9.5 Array Algorithms: Sorting . 406
9.6 Array Algorithms: Searching 414
9.7 Two-Dimensional Arrays . 417
9.8 Multidimensional Arrays (Optional) 426
9.9 OBJECT-ORIENTED DESIGN:

Polymorphic Sorting (Optional) 428
9.10 From the Java Library: java.util.Vector 430
9.11 Case Study: An N-Player Computer Game 431
9.12 A GUI-Based Game (Optional Graphics) 437

10 Exceptions: When Things Go Wrong 459
10.1 Introduction . 460
10.2 Handling Exceptional Conditions 460
10.3 Java’s Exception Hierarchy 462
10.4 Handling Exceptions Within a Program 466
10.5 Error Handling and Robust

Program Design . 477
10.6 Creating and Throwing Your Own

Exceptions . 487
10.7 From the Java Library: JOptionPane 489

11 Files and Streams: Input/Output Techniques 499
11.1 Introduction . 500
11.2 Streams and Files . 500
11.3 CASE STUDY: Reading and Writing Text Files 505
11.4 The File Class . 518
11.5 Example: Reading and Writing Binary Files 521
11.6 Object Serialization: Reading and Writing Objects 530
11.7 From the Java Library

javax.swing.JFileChooser 535
11.8 Using File Data in Programs 536

12 Recursive Problem Solving 545
12.1 Introduction . 546
12.2 Recursive Definition . 549
12.3 Recursive String Methods . 551
12.4 Recursive Array Processing 563
12.5 Example: Drawing (Recursive) Fractals 569

xii CONTENTS

12.6 OBJECT-ORIENTED DESIGN:
Tail Recursion . 573

12.7 OBJECT-ORIENTED DESIGN:
Recursion or Iteration? . 574

12.8 From the Java Library:
javax.swing.JComboBox . 577

13 Graphical User Interfaces 591
13.1 Introduction . 592
13.2 Java GUIs: From AWT to Swing 592
13.3 The Swing Component Set . 595
13.4 OBJECT-ORIENTED DESIGN:

Model-View-Controller Architecture 596
13.5 The Java Event Model . 598
13.6 CASE STUDY: Designing a Basic GUI 602
13.7 Containers and Layout Managers 614
13.8 Checkboxes, Radio Buttons, and Borders 620
13.9 Menus and Scroll Panes . 629

14 Threads and Concurrent Programming 643
14.1 Introduction . 644
14.2 What Is a Thread? . 644
14.3 From the Java Library: java.lang.Thread 648
14.4 Thread States and Life Cycle 654
14.5 Using Threads to Improve

Interface Responsiveness 656
14.6 CASE STUDY: Cooperating Threads 664
14.7 CASE STUDY: The Game of Pong 679

15 Sockets and Networking 693
15.1 Introduction . 694
15.2 An Overview of Networks . 694
15.3 Using Multimedia Network Resources for a Graphical Pro-

gram . 700
15.4 From the Java Library: java.net.URL 701
15.5 The Slide Show Program . 704
15.6 Adding Text Network Resources for an

Application . 708
15.7 Client/Server Communication via Sockets 719
15.8 CASE STUDY: Generic Client/Server Classes 724
15.9 Playing One Row Nim Over the Network 732
15.10Java Network Security Restrictions 741
15.11Java Servlets and Java Server Pages 742

16 Data Structures: Lists, Stacks, and Queues 757
16.1 Introduction . 758
16.2 The Linked List Data Structure 758
16.3 OBJECT-ORIENTED DESIGN:

The List Abstract Data Type (ADT) 770
16.4 The Stack ADT . 776
16.5 The Queue ADT . 778

CONTENTS xiii

16.6 From the Java Library: The Java Collections Framework
and Generic Types . 782

16.7 Using the Set and Map Interfaces 785
16.8 The Binary Search Tree Data Structure 789

A Coding Conventions 801

B The Java Development Kit 809

C The ASCII and Unicode Character Sets 819

D Java Keywords 821

E Operator Precedence Hierarchy 823

F Java Inner Classes 825

G Java Autoboxing and Enumeration 831

H Java and UML Resources 837

xiv CONTENTS

OBJECTIVES
After studying this chapter, you will

• Understand basic computer terminology that will be used throughout the book.
• Become familiar with the notion of programming.
• Understand why Java is a good introductory programming language.
• Become familiar with Java objects and classes.
• Know some of the principles of the object-oriented programming approach.

OUTLINE
0.1 Welcome
0.2 What Is a Computer?

Special Topic: Processors Then and Now
0.3 Networks, the Internet and the World Wide Web
0.4 Why Study Programming?
0.5 Programming Languages
0.6 Why Java?
0.7 What Is Object-Oriented Programming?

Chapter Summary

Exercises

Chapter 0

Computers, Objects, and
Java

1

2 CHAPTER 0 • Computers, Objects, and Java

0.1 Welcome

Welcome to Java, Java, Java, a book that introduces you to object-oriented
programming using the Java language. When considering the purpose
of this text, three important questions might come to mind: Why study
programming? Why study Java? What is object-oriented programming?
This chapter will address these questions. First, we provide a brief in-
troduction to computers and the Internet and World Wide Web (WWW).
Then, we address why someone would study programming and we ex-
amine types of programming languages. We introduce the Java program-
ming language and conclude the chapter by exploring object-oriented pro-
gramming principles and how Java is an object-oriented programming
language.

0.2 What Is a Computer?

A computer is a machine that performs calculations and processes infor-
mation. A computer works under the control of a computer program, a
set of instructions that tell a computer what to do. Hardware refers to the
electronic and mechanical components of a computer. Software refers to
the programs that control the hardware.

A general-purpose computer of the sort that we will be programming can
store many different programs in its memory. That is what gives it the
ability to perform a wide variety of functions, from word processing to
browsing the Internet. This is in contrast to a special-purpose computer, such
as the one that resides in your microwave oven or the one that controls
your digital watch or calculator. These types of computers contain control
programs that are fixed and cannot be changed.

A computer’s hardware is organized into several main subsystems or
components (Fig. 1).

Figure 1: A diagram of the main
functional components in a com-
puter system. The arrows indicate
the flow of information between
various components.

Secondary
Storage

Main Memory

Input Devices

Keyboard

Mouse

Optical

Scanner

Output Devices

Printer

Monitor

Audio

Speakers

Central

Processing

Unit

(CPU)

Disk Drive
CD-ROM
DVD

• Output devices provide a means by which information held in the com-
puter can be displayed in some understandable or usable form. Com-
mon output devices include printers, monitors, and audio speakers.

SECTION 0.2 • What Is a Computer? 3

• Input devices bring data and information into the computer. Some of
the more common input devices are the keyboard, mouse, microphone,
and scanner.

• Primary memory or main memory of a computer is used to store both
data and programs. This type of memory, which is often called RAM,
short for Random Access Memory, is built entirely out of electronic
components—integrated circuit chips—which makes it extremely fast.
A computer’s main memory is volatile, which means that any informa-
tion stored in it is lost when the computer’s power is turned off. In a
sense, main memory acts as the computer’s scratch pad, storing both
programs and data temporarily while a program is running.

• Secondary storage devices are used for long-term or permanent stor-
age of relatively large amounts of information. These devices include
hard drives or magnetic disks, compact disks (CDs), digital video disks
(DVDs), and magnetic tapes. All of these devices are non-volatile, mean-
ing that they retain information when the computer’s power is turned
off. Compared to a computer’s primary memory, these devices are
relatively slow.

• The central processing unit (CPU) is the computer’s main engine. The
CPU is the computer’s microprocessor, such as the Intel Pentium pro-
cessor, which serves as the foundation for most Windows PCs, or the
Power-PC processor, which serves as the foundation for Macintosh
computers. The CPU is designed to perform the fetch-execute cycle, Fetch-execute cycle
whereby it repeatedly gets the next machine instruction from memory
and executes it. Under the direction of computer programs (software),
the CPU issues signals that control the other components that make up
the computer system. One portion of the CPU, known as the arithmetic-
logic unit (ALU), performs all calculations, such as addition and sub-
traction, and all logical comparisons, such as when one piece of data is
compared to another to determine if they are equal.

There are two main types of software:

• Application software refers to programs designed to provide a particular
task or service, such as word processors, computer games, spreadsheet
programs, and Web browsers.

• System software includes programs that perform the basic operations
that make a computer usable. For example, an important piece of
system software is the operating system, which contains programs that
manage the data stored on the computer’s disks.

An operating system assists application software in performing tasks
that are considered primitive or low-level, such as managing the com-
puter’s memory and its input and output devices.

Another important thing that the operating system does is to serve as
an interface between the user and the hardware. The operating system
determines how the user will interact with the system, or conversely, how
the system will look and feel to the user. For example, in command-line
systems, such as Unix and DOS (short for Disk Operating System), a pro-
gram is run by typing its name on the command line. By contrast, in

4 CHAPTER 0 • Computers, Objects, and Java

graphically based systems, such as Windows and Macintosh, a program
is run by clicking on its icon with the mouse. Thus, this “point-and-click”
interface has a totally different “look and feel” but does the same thing.

Special Topic: Processors Then and Now

To give you some idea of how rapidly computer hardware technology
has advanced, let’s compare the first digital processor with one of today’s
models.

The ENIAC (which stood for Electronic Numerical Integrator and Cal-
culator) was developed in 1946 at the University of Pennsylvania primar-
ily for calculating ballistic trajectories for the U.S. Army. ENIAC occupied
more than 640 square feet of floor space and weighed nearly 30 tons. In-
stead of the integrated circuits or chip technology used in today’s comput-
ers, ENIAC’s digital technology was based on over 17,000 vacuum tubes.
ENIAC, which could perform around 300 multiplications per second, ran
more than 500 times faster than other computing machines of that day and
age. To program the ENIAC, you would have to manipulate hundreds of
cables and switches. It took two or three days for a team of several pro-
grammers, most of whom were young women, to set up a single program
that would then run for a few seconds.

One of today’s most advanced and powerful processors for desktop
computers is Intel’s Pentium IV processor. This chip contains 42 million
transistors and runs at speeds over 3 GHz (3 gigahertz or 3 billion cycles
per second). The Pentium processor is small enough to fit in a space the
size of your pinky finger’s fingernail. Despite its size, it executes millions
of instructions per second, thereby enabling it to support a huge range of
multimedia applications, including three-dimensional graphics, stream-
ing audio and video, and speech recognition applications. To write pro-
grams for the Pentium, you can choose from a wide range of high-level
programming languages, including the Java language.

0.3 Networks, the Internet and the World Wide
Web

Most personal computers contain software that enables them to be con-
nected to various-sized networks of computers. Networks allow many in-
dividual users to share costly computer resources, such as a high-speed
printer or a large disk drive or application server that is used to store and
distribute both data and programs to the computers on the network. Net-
works can range in size from local area networks (LANs), which connect
computers and peripherals over a relatively small area, such as within a
lab or a building, through wide area networks (WANs), which can span large
geographic areas, such as cities and nations.

Client/server computing Application servers are just one example of client/server computing, a
computing approach made possible by networks. According to this ap-
proach, certain computers on the network are set up as servers, which pro-
vide certain well-defined services to client computers. For example, one
computer in a network may be set up as the email server, with the responsi-

SECTION 0.3 • Networks, the Internet and the World Wide Web 5

bility of sending, receiving, and storing mail for all users on the network.
To access their email on the email server, individual users employ client
application software that resides on their desktop computers, such as Out-
look Express or Eudora or Pine. Similarly, another server may be set up as
a Web server, with the responsibility of storing and serving up Web pages
for all the users on the network. Users can run Web browsers, another type
of client software, to access Web pages on the server. Java is particularly
well suited for these types of networked or distributed applications, where
part of the application software resides on a server and part resides on the
client computer.

The Internet (with a capital I) is a network of networks whose geo-
graphical area covers the entire globe. The World Wide Web (WWW) is
another example of distributed, client/server computing. The WWW is
not a separate physical network. Rather it is a subset of the Internet that
uses the HyperText Transfer Protocol (HTTP). A protocol is a set of rules
and conventions that govern how communication takes place between
two computers. HTTP is a multimedia protocol, which means that it
supports the transmission of text, graphics, sound, and other forms of
information. Certain computers within a network run special software
that enables them to play the role of HTTP (or Web) servers. They store
Web documents and are capable of handling requests for documents
from client browser applications. The servers and clients can be located
anywhere on the Internet.

The documents stored on Web servers are encoded in a special text-
based language known as HyperText Markup Language, or HTML. Web
browsers, such as Netscape’s Navigator and Microsoft’s Internet Explorer,
are designed to interpret documents coded in this language. The language
itself is very simple. Its basic elements are known as tags, which consist
of certain keywords or other text contained within angle brackets, < and
>. For example, if you wanted to italicize text on a Web page, you would
enclose it between the < I > and < /I > tags. Thus, the following HTML
code� �

$<I>$ I t a l i c font$</I>$ can be used for $<I>$emphasis$</I>$.
 	
would be displayed by the Web browser as

Italic font can be used for emphasis.

When you use a Web browser to surf the Internet, you repeatedly instruct
your browser to go to a certain location and retrieve a page that is encoded
in HTML. For example, if you typed the following URL (Uniform Resource
Locator)� �

http : //www. prenhal l . com/m o r e l l i/index . html
 	
into your browser, the browser would send a message to the Web server
www located in the prenhall.com domain—the prenhall portion of
this address specifies Prentice Hall and the com portion specifies the com-
mercial domain of the Internet—requesting that the document named
index.html in the morelli directory be retrieved and sent back to your

6 CHAPTER 0 • Computers, Objects, and Java
Figure 2: WWW: The client’s
browser requests a page from a
Web server. When the HTML doc-
ument is returned, it is interpreted
and displayed by the browser.

Display

Internet
Send a docu

m
ent

Request a document

HTML

document

Server

Client

HTTP

softwareText

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

�

�

�

�y

y

y

y

Browser

software

computer (Fig. 2). The beauty of the Web is that it is possible to embed
text, sound, video, and graphics within an HTML document, making it
possible to download a wide range of multimedia resources through this
(relatively) simple mechanism.

The Web has begun to change business, entertainment, commerce, and
education. The fact that it is possible to download computer games and
other application software from the Web is changing the way software and
other digital products are purchased and distributed. Similarly, as noted
earlier, many businesses have begun to organize their information systems
into intranets—private networks that implement the HTTP protocol. Cur-
rently, one of the biggest areas of development on the Web is commerce.
As consumers become more comfortable that credit-card information can
be securely transmitted over the Web (as it can over a telephone), the Web
will explode as a marketing medium as powerful, perhaps, as television
is today. Because Java has been designed to support secure, distributed,
networked applications, it is ideally suited to be used as the language for
these types of applications.

0.4 Why Study Programming?

A computer program is a set of instructions that directs the computer’s
behavior. Computer programming is the art and science of designing and
writing programs. Years ago it was widely believed that entrance into
the computer age would require practically everyone to learn how to pro-
gram. But this did not prove to be true. Today’s computers come with so
much easy-to-use software that knowing how to use a computer no longer
requires programming skills.

Another reason to study programming might be to enter into a career
as a computer scientist. However, although programming is one of its
primary tools, computer science is a broad and varied discipline, which
ranges from engineering subjects, such as processor design, to mathemat-
ical subjects, such as performance analysis. There are many computer sci-
entists who do little or no programming as part of their everyday work.
If you plan to major or minor in computer science, you will certainly
learn to program, but good careers in the computing field are available
to programmers and nonprogrammers alike.

SECTION 0.5 • Programming Languages 7

One of the best reasons to study programming is because it is a cre-
ative and enjoyable problem-solving activity. This book will teach you to
develop well-designed solutions to a range of interesting problems. One
of the best things about programming is that you can actually see and
experience your solutions as running programs. As many students have
indicated, there’s really nothing like the kick you get from seeing your
program solving a problem you’ve been struggling with. Designing and
building well-written programs provides a powerful sense of accomplish-
ment and satisfaction. What’s more, Java is a language that makes pro-
gramming even more fun, because once they’re finished, many Java pro-
grams can be posted on the World Wide Web (WWW) for all the world to
see!

0.5 Programming Languages

Most computer programs today are written in a high-level language, such
as Java, C, C++, or FORTRAN. A programming language is considered
high level if its statements resemble English-language statements. For
example, all of the languages just mentioned have some form of an “if”
statement, which says, “if some condition holds, then take some action.”

Computer scientists have invented hundreds of high-level program-
ming languages, although relatively few of these have been put to prac-
tical use. Some of the widely used languages have special features that
make them suitable for one type of programming application or another.
COBOL (COmmon Business-Oriented Language), for example, is still
widely used in commercial applications. FORTRAN (FORmula TRANsla-
tor) is still preferred by some engineers and scientists. C and C++ are still
the primary languages used by operating system programmers.

In addition to having features that make them suitable for certain types
of applications, high-level languages use symbols and notation that make
them easily readable by humans. For example, arithmetic operations in
Java make use of familiar operators such as “+” and “−” and “/”, so that
arithmetic expressions look more or less the way they do in algebra. So,
to take the average of two numbers, you might use the expression� �

(a + b) / 2
 	
The problem is that computers cannot directly understand such expres-
sions. In order for a computer to run a program, the program must first
be translated into the computer’s machine language, which is the language
understood by its CPU or microprocessor. Each type of microprocessor
has its own particular machine language. That’s why when you buy soft-
ware it runs either on a Macintosh, which uses the Power-PC chip, or on a
Windows machine, which uses the Pentium chip, but not on both. When a Platform independence
program can run on just one type of chip, it is known as platform dependent.

In general, machine languages are based on the binary code, a two-
valued system that is well suited for electronic devices. In a binary repre-
sentation scheme, everything is represented as a sequence of 1’s and 0’s,
which corresponds closely to the computer’s electronic “on” and “off”
states. For example, in binary code, the number 13 would be repre-

8 CHAPTER 0 • Computers, Objects, and Java

sented as 1101. Similarly, a particular address in the computer’s memory
might be represented as 01100011, and an instruction in the computer’s
instruction set might be represented as 001100.

The instructions that make up a computer’s machine language are very
simple and basic. For example, a typical machine language might in-
clude instructions for ADD, SUBTRACT, DIVIDE, and MULTIPLY, but it
wouldn’t contain an instruction for AVERAGE. In most cases, a single in-
struction, called an opcode, carries out a single machine operation on one
or more pieces of data, called its operands. Therefore, the process of av-
eraging two numbers would have to be broken down into two or more
steps. A machine language instruction itself might have something sim-
ilar to the following format, in which an opcode is followed by several
operands, which refer to the locations in the computer’s primary memory
where the data are stored. The following instruction says ADD the num-
ber in LOCATION1 to the number in LOCATION2 and store the result in
LOCATION3:

Opcode Operand 1 Operand 2 Operand 3

011110 110110 111100 111101
(ADD) (LOCATION 1) (LOCATION 2) (LOCATION 3)

Given the primitive nature of machine language, an expression like
(a+ b)/2 would have to be translated into a sequence of several machine
language instructions that, in binary code, might look as follows:

� �
011110110110111100111101
000101000100010001001101
001000010001010101111011
 	

In the early days of computing, before high-level languages were de-
veloped, computers had to be programmed directly in their machine
languages, an extremely tedious and error-prone process. Imagine how
difficult it would be to detect an error that consisted of putting a 0 in the
preceding program where a 1 should occur!

Fortunately, we no longer have to worry about machine languages, be-
cause special programs can be used to translate a high-level or source
code program into machine language code or object code, which is the
only code that can be executed or run by the computer. In general, a pro-
gram that translates source code to object code is known as a translator
(Fig. 3). Thus, with suitable translation software for Java or C++ we can
write programs as if the computer could understand Java or C++ directly.

Source code translators come in two varieties. An interpreter trans-
lates a single line of source code directly into machine language and ex-
ecutes the code before going on to the next line of source code. A com-
piler translates the entire source code program into executable object code,
which means that the object code can then be run directly without further
translation.

There are advantages and disadvantages to both approaches. Inter-
preted programs generally run less efficiently than compiled programs,

SECTION 0.6 • Why Java? 9

High-level

language

Translator

software

Machine

language

Source

code

Object

code

(a+b)/2
000110101

101000110

101000110

Figure 3: Translator software
translates high-level source code to
machine language object code.

because they must translate and execute each line of the program before
proceeding to the next line. If a line of code is repeated, an interpreter
would have to translate the line each time it is encountered. By contrast,
once compiled, an object program is just executed without any need for
further translation. It is also much easier to refine compiled code to make
it run more efficiently. But interpreters are generally quicker and easier
to develop and provide somewhat better error messages when things go
wrong. Some languages that you may have heard of, such as BASIC, LISP,
and Perl, are mostly used in interpreted form, although compilers are also
available for these languages. Programs written in COBOL, FORTRAN,
C, C++, and Pascal are compiled. As we will see in the next section,
Java programs use both compilation and interpretation in their translation
process.

0.6 Why Java?

Originally named “Oak” after a tree outside the office of its developer,
James Goslin, Java is a relatively young programming language. It was
initially designed by Sun Microsystems in 1991 as a language for em-
bedding programs into electronic consumer devices, such as microwave
ovens and home security systems. However, the tremendous popularity
of the Internet and the World Wide Web (WWW) led Sun to recast Java as
a language for embedding programs into Web-based applications. As you
recall, the Internet is a global computer network, and the WWW is that
portion of the network that provides multimedia access to a vast range of
information. Java has become one of the most important languages for
Web and Internet applications.

Java has also generated significant interest in the business community,
where it is has proved to have tremendous commercial potential. In addi-
tion to being a useful tool for helping businesses to promote their products
and services over the Internet, Java is also a good language for distribut-
ing software and providing services to employees and clients on private
corporate networks or intranets.

Because of its original intended role as a language for programming mi-
croprocessors embedded in consumer appliances, Java has been designed
with a number of interesting features:

• Java is object oriented. Object-oriented languages divide programs
into separate modules, called objects, that encapsulate the program’s
data and operations. Thus, object-oriented programming (OOP) and
object-oriented design (OOD) refer to a particular way of organizing pro- Object-oriented Languages

10 CHAPTER 0 • Computers, Objects, and Java

grams, one which is rapidly emerging as the preferred approach for
building complex software systems. Unlike the C++ language, in which
object-oriented features were grafted onto the C language, Java was
designed from scratch as an object-oriented language.
• Java is robust, meaning that errors in Java programs don’t cause system

crashes as often as errors in other programming languages. Certain
features of the language enable many potential errors to be detected
before a program is run.
• Java is platform independent. A platform, in this context, is just a particu-Platform independence

lar kind of computer system, such as a Macintosh or Windows system.
Java’s trademark is “Write once, run anywhere.” This means that a Java
program can be run without changes on different kinds of computers.
This is not true for other high-level programming languages. This porta-
bility – the ability to run on virtually any platform – is one reason that
Java is well suited for WWW applications.
• Java is a distributed language, which means that its programs can be

designed to run on computer networks. In addition to the language it-
self, Java comes with an extensive collection of code libraries—software
that has been designed to be used directly for particular types of
applications—that make it particularly easy to build software systems
for the Internet and the WWW. This is one of the reasons why Java is so
well suited for supporting applications on corporate networks.
• Java is a secure language. Designed to be used on networks, Java con-

tains features that protect against untrusted code—code that might in-
troduce a virus or corrupt your system in some way. For example,
once they are downloaded into your browser, Web-based Java pro-
grams are prevented from reading and writing information from and
to your desktop computer.

Despite this list of attractive features, perhaps the best reason for choosing
Java as an introductory programming language is its potential for bring-
ing fun and excitement into learning how to program. There are few other
languages in which a beginning programmer can write a computer game
or a graphically based application that can be distributed on a Web page to
just about any computer in the world. The simplicity of Java’s design and
its easily accessible libraries bring such accomplishments within reach of
the most novice programmers.

For example, we will work on projects throughout the text that involve
games and puzzles. We start out in Chapter 2 by designing very simple
games that involve storing and retrieving data. As we learn more sophisti-
cated programming techniques, we gradually build more complexity into
the games and puzzles. For example, we learn how to create interactive,
two-person games in Chapter 4. In Chapter 8, we develop some games
and puzzles that are played on virtual game boards. Finally, in Chapter 14
we learn how to introduce games with multiple players on different com-
puters. To get a look at where we are headed you might want to visit the
authors’ companion Web site:� �

http : //www. cs . t r i n c o l l . edu/˜ram/ j j j /
 	

SECTION 0.7 • What Is Object-Oriented Programming? 11

0.7 What Is Object-Oriented Programming?

Java is an object-oriented (OO) language, and this book takes an object-
oriented approach to programming. So before beginning our discussion
of Java, it is important that we introduce some of the underlying con-
cepts involved in object-oriented programming. We need to talk about
what an object is, how objects are grouped into classes, how classes are
related to each other, and how objects use messages to interact with and
communicate with each other.

0.7.1 Basic Object-Oriented Programming Metaphor:
Interacting Objects

A Java program, and any object-oriented program, is a collection of inter-
acting objects that models a collection of real-world

Figure 4: A model of a kitchen.

objects. Think of the model that a kitchen designer might use to layout
your new kitchen (Fig. 4). It will contain objects that represent the various
kitchen appliances and cabinets. Each object in the model is a simplified
version of the corresponding real object. For example, a rectangle might
be used to represent the refrigerator.

A kitchen model is mostly static. It doesn’t change. Once put into place,
its various objects just stand there in a certain relation to each other. By
contrast, a computer program is dynamic. It changes. It does things and
performs certain actions. The objects in a computer program communi-
cate with each other and they change over time. In this respect, the objects
that make up our computer programs are very anthropomorphic, a big word
that means “like people.” If we are eating together and I want you to pass
me the salt, I say, “Please pass me the salt,” and you invariably comply.
Similarly, when you (Student X) put your ATM card into an ATM machine,
the ATM object asks the bank’s database object “Give me Student X’s bank
account object” and the database invariably complies. If you tell the ATM
you want to withdraw $100 dollars it tells your bank account object to
deduct $100 from your current balance. And so it goes. Both you and
your bank account are changed objects as a result of the transaction.

0.7.2 What is an Object?

So what is an object? Just as in the real world, an object is any thing
whatsoever. An object can be a physical thing, such as a Car, or a mental
thing, such as an Idea. It can be a natural thing, such as an Animal, or
an artificial, human-made thing, such as a ATM. A program that manages
an ATM would involve BankAccounts and Customer objects. A chess
program would involve a Board object and ChessPiece objects.

Throughout this text, we will use the notation shown in Figure 5 to
depict objects and to illustrate object-oriented concepts. The notation is
known as the Unified Modeling Language, or UML for short, and it is a
standard in the object-oriented programming community. As the diagram
shows, an object is represented by a rectangle whose label consists of the
object’s (optional) id and its type. An object’s id is the name by which
it is referred to in the computer program. In this case we show a ATM
object, who’s id is not given, and a ChessPiece object, named pawn1.
An object’s label is always underlined.

12 CHAPTER 0 • Computers, Objects, and Java
Figure 5: In UML, objects are rep-
resented by rectangles that are la-
beled with a two-part label of the
form id:Type. The object’s label is
always underlined.

0.7.3 Attributes and Values
Just as with real objects, the objects in our programs have certain char-
acteristic attributes. For example, an ATM object would have a current
amount of cash that it could dispense. A ChessPiece object might
have a pair of row and column attributes that specify its position on the
chess board. Notice that an object’s attributes are themselves objects. The
ATM’s cash attribute and the chess piece’s row and column attributes
are Numbers.

Figure 6 shows two ATM objects and their respective attributes. As you
can see, an object’s attributes are listed in a second partition of the UML
diagram. Notice that each attribute has a value. So the lobby:ATM has a
$8650.0 in cash, while the drivethru:ATM has only $150.0 in cash.

Figure 6: A second partition of an
object diagram is used to display
the object’s attributes and their
values.

We sometimes refer to the collection of an object’s attributes and values
as its state. For example, the current state of the lobby:ATM is $8650.0 in
cash. Of course, this is a gross simplification of an ATM’s state, which
would also include many other attributes. But, hopefully, you see the
point.

0.7.4 Actions and Messages
In addition to their attributes, objects also have characteristic actions or
behaviors. As we have already said, objects in programs are dynamic.
They do things or have things done to them. In fact, programming in
Java is largely a matter of getting objects to perform certain actions for
us. For example, in a chess program the ChessPieces have the ability to
moveTo() a new position on the chess board. Similarly, when a customer
pushes the “Current Balance” button on an ATM machine, this is telling
the ATM to report() the customer’s current bank balance. (Note how
we use parentheses to distinguish actions from objects and attributes.)

The actions that are associated with an object can be used to send mes-
sages to the objects and to retrieve information from objects. A message
is the passing of information or data from one object to another. Figure 7
illustrates how this works. In UML, messages are represented by arrows.

SECTION 0.7 • What Is Object-Oriented Programming? 13
Figure 7: Messages in UML are
represented by labeled arrows. In
this example, we are telling a
pawn to move from its current po-
sition to row 3 column 4.

In this example, we are telling pawn1:ChessPiece to moveTo(3,4).
The numbers 3 and 4 in this case are arguments that tell the pawn what
square to move to. (A chess board has 8 rows and 8 columns and each
square is identified by its row and column coordinates.) In general, an
argument is a data value that specializes the content of a message in some
way. In this example we are telling the pawn to move forward by 1 row.
If we wanted the pawn to move forward by 2 rows, we would send the
message moveTo(4,4).

The diagram in Figure 8 depicts a sequence of messages representing
an idealized ATM transaction. First, an ATM customer asks the ATM ma-
chine to report his current balance. The ATM machine in turn asks the
customer’s bank account to report the customer’s balance. The ATM re-
ceives the value $528.52 from the bank account and passes it along to the
customer. In this case, the message does not involve an argument. But it
does involve a result. A result is information or data that is returned to
the object that sent the message.

Figure 8: This UML diagram
illustrates an ATM transaction
in which a customer asks the
ATM machine for his current bal-
ance. The ATM gets this informa-
tion from an object representing
the customer’s bank account and
passes it to the customer.

Obviously, in order to respond to a message, an object has to know
how to perform the action that is requested. The pawn has to know how
to move to a designated square. The ATM has to know how to find out
the customer’s current balance. Indeed, an object can only respond to
messages that are associated with its characteristic actions and behaviors.
You can’t tell an ATM to move forward 2 squares. And you can’t ask a
chess piece to tell you your current bank balance.

Responding to a message or performing an action sometimes causes
a change in an object’s state. For example, after performing moveTo(3,
4), the pawn will be on a different square. Its position will have changed.
On the other hand, some messages (or actions) leave the object’s state un-
changed. Reporting the customer’s bank account balance doesn’t change
the balance.

0.7.5 What is a Class?
A class is a template for an object. A class encapsulates the attributes and
actions that characterize a certain type of object. In an object-oriented pro-
gram, classes serve as blueprints or templates for the objects that the pro-

14 CHAPTER 0 • Computers, Objects, and Java
Figure 9: A UML diagram of the
Rectangle class.

gram uses. We say that an object is an instance of a class. A good analogy
here is to think of a class as a cookie cutter and its objects, or instances, as
individual cookies. Just as we use the cookie cutter to stamp out cookies
of a certain type, in an object-oriented program, we use a definition of a
class to create objects of a certain type.

Writing an object-oriented program is largely a matter of designing
classes and writing definitions for those classes in Java. Designing a
class is a matter of specifying all of the attributes and behaviors that are
characteristic of that type of object.

For example, suppose we are writing a drawing program. One type
of object we would need for our program is a rectangle. A Rectangle
object has two fundamental attributes, a length and a width. Given
these attributes, we can define characteristic rectangle actions, such as the
ability to calculate its area and the ability to draw itself. Identifying an
object’s attributes and actions is the kind of design activity that goes into
developing an object-oriented program.

Figure 9 shows a UML diagram of our Rectangle class. Like the sym-
bol for an object, a UML class symbol has up to three partitions. Unlike the
UML object symbol, the label for a UML class gives just the class’s name
and it is not underlined. The second partition lists the class’s attributes
and the third partition lists the classes actions. Our rectangle has four
attributes. The first two, x and y, determine a rectangles position on a
two-dimensional graph. The second two, length and width, determine
a rectangle’s dimensions. Note that the attributes have no values. This is
because the class represents a general type of rectangle. It specifies what
all rectangles have in common, without representing any particular rect-
angle. Like a cookie cutter for a cookie, a class gives the general shape of
an object. The content is not included.

0.7.6 Variables and Methods

Up to this point we have been using the terms attribute and action to de-
scribe an object’s features. We will continue to use this terminology when
talking in general about objects or when talking about an object or class
represented by a UML diagram.

However, when talking about a programming language, the more com-
mon way to describe an object’s features are to talk about its variables
and methods. A variable, which corresponds to an attribute, is a named
memory location that can store a certain type of value. You can think of a
variable as a special container that can only hold objects of a certain type.
For example, as Figure 9 shows, Rectangle’s length and width are

SECTION 0.7 • What Is Object-Oriented Programming? 15

variables that can store a certain type of numeric value known as an int.
An int value is a whole number, such as 76 or -5.

A method, which corresponds to an action or a behavior, is a named
chunk of code that can be called upon or invoked to perform a certain
pre-defined set of actions. For example, in our Rectangle object, the
calculateArea() method can be called upon to calculate the rectan-
gle’s area. It would do this, of course, by multiplying the rectangle’s
length by its width. Similarly, the draw()method can be invoked to draw
a picture of the rectangle. It would take the actions necessary to draw a
rectangle on the console.

0.7.7 Instance versus Class Variables and Methods

Variables and methods can be associated either with objects or their
classes. An instance variable (or instance method) is a variable (or
method) that belongs to an object. By contrast, a class variable (or class
method) is a variable (or method) that is associated with the class itself.
An example will help make this distinction clear.

An instance variable will have different values for different instances.
For example, individual Rectangles will have different values for their
length, width, x, and y variables. So these are examples of instance
variables. The calculateArea() method is an example of an instance
method because it uses the instance’s current length and width values
in its calculation. Similarly, the draw() method is an instance method,
because it uses the object’s length and width to draw the object’s shape.

An example of a class variable would be a variable in the Rectangle
class that is used to keep track of how many individual Rectangles
have been created. (Our drawing program might need this information
to help manage its memory resources.) Suppose we name this variable
nRectangles and suppose we add 1 to it each time a new Rectangle
instance is created.

An example of a method that is associated with the class is a special
method known as a constructor. This is a method used to create an object.
It is used to create an instance of a class. Calling a constructor to create an
object is like pressing the cookie cutter into the cookie dough: the result is
an individual cookie (object).

Figure 10 illustrates these concepts. Note that class variables are un-
derlined in the UML diagram. We have modified the Rectangle class
to include its constructor method, which is named Rectangle(). Note
that it takes four arguments, representing the values that we want to give
as the rectangle’s x, y, length and width respectively. Note also how the
Rectangle class’s nRectangles variable has a value of 2, representing
that two Rectangle instances have been created. These are shown as
members of the Rectangle class.

It won’t be obvious to you at this point, but nRectangles is a value
that has to be associated with the Rectangle class, not with its instances.
To see this let’s imagine what happens when a new Rectangle instance
is created. Figure 11 illustrates the process. When the Rectangle()
constructor is invoked, its arguments (100, 50, 25, 10) are used by the
Rectangle class to create a Rectangle object located at x=100, y=50 and
with a length of 25 and width of 10. The constructor method also increases

16 CHAPTER 0 • Computers, Objects, and Java
Figure 10: The Rectangle class
and two of its instances. Note that
the class variable, nRectangles,
is underlined to distinguish it
from length and width, the in-
stance variables.

the value of nRectangles by 1 as a way of keeping count of how many
objects it has created.

Figure 11: Constructing a
Rectangle instance.

0.7.8 Class Hierarchy and Inheritance
How are classes related to each other? In Java, and in any other object-
oriented language, classes are organized in a class hierarchy. A class hier-
archy is like an upside-down tree. At the very top of the hierarchy is the
most general class. In Java, the most general class is the Object class. The
classes below Object in the hierarchy are known as its subclasses. Since
all of the objects we use in our programs belong to some class or other,
this is like saying that all objects are Objects.

Figure 12 illustrates the concept of a class hierarchy using the classes
that we have described in this section. Notice that the Object class oc-
curs at the top of the hierarchy. It is the most general class. It has fea-
tures that are common to all Java objects. As you move down the hierar-
chy, the classes become more and more specialized. A Rectangle is an
Object but it contains attributes – length and width – that are common
to all rectangles but not to other objects in the hierarchy. For example, an
ATM object does not necessarily have a length and a width. Notice that we
have added a Square class to the hierarchy. A Square is a special type
of Rectangle, namely one who’s length equals its width.

To introduce some important terminology associated with this kind of
hierarchy, we say that the Rectangle class is a subclass of the ObjectSuperclass and subclass

SECTION 0.7 • What Is Object-Oriented Programming? 17
Figure 12: A hierarchy of Java
classes.

class. The Square class is a subclass of both Rectangle and Object.
Classes that occur above a given class in the hierarchy are said to be its
superclasses. Thus Rectangle class is superclass of the Square class.
The Object class is also a superclass of Square. In general, we say that
a subclass extends a superclass, meaning that it adds additional elements
(attributes and/or methods) to those contained in its superclasses. We saw
this in the case of the Square class. It adds the feature that its length and
width are always equal.

Another important concept associated with a class hierarchy is the no- Class inheritance
tion of class inheritance, whereby a subclass inherits elements (attributes
and/or methods) from its superclasses. To take an example from the nat-
ural world, think of the sort of inheritance that occurs between a horse
and a mammal. A horse is a mammal. So horses inherit the characteristic
of being warm blooded by virtue of also being mammals. (This is dif-
ferent from the kind of individual inheritance whereby you inherit your
mother’s blue eyes and your father’s black hair.)

To illustrate how inheritance works, lets go back to our chess program.
There are several different types of ChessPieces. There are Pawns, and
Knights, and Queens and Kings. Figure 13 illustrates the chess piece
hierarchy. A pair of attributes that all chess pieces have in common is
their row and column position on the chess board. Because all chess
pieces have these attributes in common, they are located at the top of the
ChessPiece hierarchy and inherited by all ChessPiece subclasses. Of
course, the row and column attributes are given different values in each
ChessPiece object.

One of the actions that all chess pieces have in common is that they can
moveTo() a given square on the chess board. But different types of chess
pieces have different ways of moving. For example, a Bishop can only
move along diagonals on the chess board, whereas a Rook can only move
along a row or column on the chess board. So, clearly, we can’t describe
a moveTo() method that will work for all ChessPieces. This is why
we put the moveTo() method in all of the ChessPiece subclasses. The
ChessPiece class also has a moveTo() method, but note that its name is
italicized. This indicates that it cannot be completely defined at that level.

Finally, note that in chess, the king has certain special attributes and
actions. Thus only the king can be put in check. This means that the king is
under attack and in danger of being captured, thereby ending the game.
Similarly, only the king has the ability to castle. This is special move that

18 CHAPTER 0 • Computers, Objects, and Java
Figure 13: The ChessPiece hier-
archy.

a king can make together with one of its rooks under certain conditions.
Thus, the reason we show the inCheck attribute and castle() action in
the King class is because these are characteristics that particular to Kings.

In this way, a class hierarchy represents a specialization of classes as you
move from top to bottom. The most general class, ChessPiece, is at the
top of the hierarchy. Its attributes and methods are passed on to (inher-
ited by) its subclasses. However, in addition to the attributes and methods
they inherit from their superclasses, the subclasses define their own spe-
cial attributes and methods. Each of the subclasses, Pawn, Bishop, and
so on, represents some kind of specialization of the superclass. In this ex-
ample, each of the subclasses have their own distinctive ways of moving.
And the King subclass has unique attributes and actions (inCheck and
castle().

0.7.9 Principles of Object-Oriented Design
As we have discussed, an object-oriented program is composed of many
objects communicating with each other. The process of designing an
object-oriented program to solve some problem or other involves several
important principles:

• Divide-and-Conquer Principle. Generally, the first step in designing
a program is to divide the overall problem into a number of objects
that will interact with each other to solve the problem. Thus, an object-
oriented program employs a division of labor much as we do in organiz-
ing many of our real-world tasks. This divide-and-conquer approach is
an important problem-solving strategy.
• Encapsulation Principle. Once the objects are identified, the next step

involves deciding, for each object, what attributes it has and what ac-
tions it will take. The goal here is to encapsulate within each object

SECTION 0.7 • What Is Object-Oriented Programming? 19

the expertise needed to carry out its role in the program. Each object
is a self-contained module with a clear responsibility and the tools (at-
tributes and actions) necessary to carry out its role. Just as a dentist
encapsulates the expertise needed to diagnose and treat a tooth ache, a
well-designed object contains the information and methods needed to
perform its role.
• Interface Principle. In order for objects to work cooperatively and effi-

ciently, we have to clarify exactly how they should interact, or interface,
with one another. An object’s interface should be designed to limit the
way the object can be used by other objects. Think of how the different
interfaces presented by a digital and analog watch determine how the
watches are used. In a digital watch, time is displayed in discrete units,
and buttons are used to set the time in hours, minutes and seconds. In
an analog watch, the time is displayed by hands on a clock face, and
time is set, less precisely, by turning a small wheel.
• Information Hiding Principle. In order to enable objects to work to-

gether cooperatively, certain details of their individual design and per-
formance should be hidden from other objects. To use the watch anal-
ogy again, in order to use a watch we needn’t know how its time keep-
ing mechanism works. That level of detail is hidden from us. Hiding
such implementation details protects the watch’s mechanism, while not
limiting its usefulness.
• Generality Principle. To make objects as generally useful as possible,

we design them not for a particular task but rather for a particular kind
of task. This principle underlies the use of software libraries. As we will
see, Java comes with an extensive library of classes that specialize in
performing certain kinds of input and output operations. For example,
rather than having to write our own method to print a message on the
console, we can use a library object to handle our printing tasks.
• Extensibility Principle. One of the strengths of the object-oriented ap-

proach is the ability to extend an object’s behavior to handle new tasks.
This also has its analogue in the everyday world. If a company needs
sales agents to specialize in hardware orders, it would be more eco-
nomical to extend the skills of its current sales agents instead of train-
ing a novice from scratch. In the same way, in the object-oriented ap-
proach, an object whose role is to input data might be specialized to
input numeric data.
• Abstraction Principle. Abstraction is the ability to focus on the impor-

tant features of an object when trying to work with large amounts of
information. For example, if we are trying to design a floor plan for a
kitchen, we can focus on the shapes and relative sizes of the appliances
and ignore attributes such as color, style, and manufacturer. The ob-
jects we design in our Java programs will be abstractions in this sense
because they ignore many of the attributes that characterize the real
objects and focus only on those attributes that are essential for solving
a particular problem.

These, then, are the principles that will guide our discussion as we learn
how to design and write object-oriented Java programs.

20 CHAPTER 0 • Computers, Objects, and Java

CHAPTER SUMMARY Technical Terms
action (behavior)
argument
attribute
class
class inheritance
class hierarchy
class method
class variable
compiler
computer program

constructor
high-level language
instance
instance method
instance variable
interpreter
method
message
object
object code

object oriented
result
source code
subclass
superclass
Unified Modeling

Language (UML)
variable

Summary of Important Points
• A computer system generally consists of input/output devices, pri-

mary and secondary memory, and a central processing unit. A com-
puter can only run programs in its own machine language, which is
based on the binary code. Special programs known as compilers and in-
terpreters translate source code programs written in a high-level language,
such as Java, into machine language object code programs.
• Application software refers to programs designed to provide a particu-

lar task or service; systems software assists the user in using application
software.
• The client/server model is a form of distributed computing in which part

of the software for a task is stored on a server and part on client comput-
ers.
• HyperText Markup Language (HTML) is the language used to encode

WWW documents.
• A Java program is a set of interacting objects. This is the basic

metaphor of object-oriented programming.
• An object in a Java program encapsulates the program’s attributes (or

variables) and actions (or methods). A variable is a named memory lo-
cation where data of appropriate type can be stored. A method is a
named section of code that can be called (or invoked) when needed.
• An object’s methods are used to pass messages to it.
• A class is an abstract template that defines the characteristics and be-

haviors of all objects of a certain type.
• An object is an instance of a class. An object has instance methods and in-

stance variables. A class method (or class variable) is a method (or variable)
that is associated with the class itself, not with its instances.
• A constructor is a special method that is used to construct objects.
• Java classes are organized into a class hierarchy, with the Object class

at the top of the hierarchy. For a given class, classes that occur below it
in the hierarchy are called its subclasses, while classes that occur above
it are called its superclasses.
• Classes inherit attributes and methods from their superclasses. This is

known as class inheritance.
• The main principles of the object-oriented programming approach are

as follows:
• Divide and Conquer: Successful problem solving involves breaking

a complex problem into objects.

CHAPTER 0 • Exercises 21

• Encapsulation and Modularity: Each object should be assigned a
clear role.
• Public Interface: Each object should present a clear public interface

that determines how other objects will use it.
• Information Hiding: Each object should shield its users from unnec-

essary details of how it performs its role.
• Generality: Objects should be designed to be as general as possible.
• Extensibility: Objects should be designed so that their functionality

can be extended to carry out more specialized tasks.
• Abstraction is the ability to group a large quantity of information into

a single chunk so it can be managed as a single entity.

EXERCISESEXERCISE 0.1 Fill in the blanks in each of the following statements.

a. Dividing a problem or a task into parts is an example of the

principle.

b. Designing a class so that it shields certain parts of an object from other objects

is an example of the principle.

c. Java programs that can run without change on a wide variety of computers is

an example of .

d. The fact that social security numbers are divided into three parts is an example

of the principle.

e. To say that a program is robust means that .

f. An is a separate module that encapsulates a Java program’s

attributes and actions.

EXERCISE 0.2 Explain the difference between each of the following pairs of
concepts.

a. hardware and software
b. systems and application software
c. compiler and interpreter
d. machine language and high-level language
e. general-purpose and special-purpose computer
f. primary and secondary memory
g. the CPU and the ALU
h. the Internet and the WWW
i. a client and a server
j. HTTP and HTML
k. source and object code

EXERCISE 0.3 Fill in the blanks in each of the following statements.

a. A is a set of instructions that directs a computer’s behavior.
b. A disk drive would be an example of a device.
c. A mouse is an example of an device.
d. A monitor is an example of an device.
e. The computer’s functions like a scratch pad.
f. Java is an example of a programming language.
g. The Internet is a network of .

22 CHAPTER 0 • Computers, Objects, and Java

h. The protocol used by the World Wide Web is the protocol.
i. Web documents are written in code.
j. A is a networked computer that is used to store data for other

computers on the network.

EXERCISE 0.4 Identify the component of computer hardware that is responsi-
ble for the following functions.

a. executing the fetch-execute cycle
b. arithmetic operations
c. executing instructions
d. storing programs while they are executing
e. storing programs and data when the computer is off

EXERCISE 0.5 Explain why a typical piece of software, such as a word proces-
sor, cannot run on both a Macintosh and a Windows machine.

EXERCISE 0.6 What advantages do you see in platform independence? What
are the disadvantages?

EXERCISE 0.7 In what sense is a person’s name an abstraction? In what sense
is any word of the English language an abstraction?

EXERCISE 0.8 Analyze the process of writing a research paper in terms of the
divide-and-conquer and encapsulation principles.

EXERCISE 0.9 Analyze your car by using object-oriented design principles. In
other words, pick one of your car’s systems, such as the braking system, and ana-
lyze it in terms of the divide-and-conquer, encapsulation, information-hiding, and
interface principles.

EXERCISE 0.10 Make an object oriented analysis of the interaction between, a
student, librarian, and a library database when a student checks a book out of a
college library.

OBJECTIVES
After studying this chapter, you will

• Know the basic steps involved in program development.
• Understand some of the basic elements of the Java language.
• Know how to use simple output operations in a Java program.
• Be able to distinguish between different types of errors in a

program.
• Understand how a Java program is translated into machine language.
• Understand the difference between a Java console application and a Java

Swing application.
• Know how to edit, compile, and run Java programs.

OUTLINE
1.1 Introduction
1.2 Designing Good Programs
1.3 Designing a Riddle Program

Special Topic: Grace Hopper and the First Computer Bug
1.4 Java Language Elements
1.5 Editing, Compiling, and Running a Java Program
1.6 From the Java Library: System and PrintStream
1.7 From the Java Library: System and PrintStream

Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 1

Java Program Design and
Development

23

24 CHAPTER 1 • Java Program Design and Development

1.1 Introduction

This chapter introduces some of the basic concepts and techniques in-
volved in Java program design and development. We begin by identi-
fying the main steps in designing an object-oriented program. The steps
are illustrated by designing a program that “asks” and “answers” riddles.
As an example of a riddle, consider the question “What is black and white
and read all over?” The answer, of course, is a newspaper. Following
the design phase, we then focus on the steps involved in coding a Java
program, including the process of editing, compiling, and running a pro-
gram. Because Java programs can be text based applications or window
based graphical applications, we describe how the coding process differs
for these two varieties.

Next we begin to familiarize ourselves with Java’s extensive class li-
brary by studying its PrintStream and System classes. These classes
contain objects and methods that enable us to print output from a pro-
gram. By the end of the chapter you will be able to design and write a
Java application that “sings” your favorite song.

1.2 Designing Good Programs

Programming is not simply a question of typing Java code. Rather, it in-
volves a considerable amount of planning and careful designing. Badly
designed programs rarely work correctly. Even though it is tempting for
novice programmers to start entering code almost immediately, one of the
first rules of programming is

JAVA PROGRAMMING TIP The sooner you begin to type code,
the longer the program will take to finish, because careful design of
the program must precede coding. This is particularly true of
object-oriented programs.

In other words, the more thought and care you put into designing a pro-
gram, the more likely you are to end up with one that works correctly. The
following subsections provide a brief overview of the program develop-
ment process.

1.2.1 The Software Engineering Life Cycle
Software engineering is the process of designing and writing software.
The software life cycle refers to the different phases involved in the design
and development of a computer program. Our presentation of examples
in the book will focus on four phases of the overall life cycle. In the spec-
ification phase we provide a statement of the problem and a detailed de-
scription of what the program will do. In the design phase we describe
the details of the various classes, methods, and data that will be used in
the program. The implementation phase refers to the actual coding of the
program into Java. In the testing phase we test the program’s performance
to make sure it is correct, recoding it or redesigning it as necessary.

Figure 1.1 gives a more detailed overview of the program development
process, focusing most of the attention on the design phase of the software

SECTION 1.2 • Designing Good Programs 25

life cycle. It shows that designing an object-oriented program is a matter
of asking the right questions about the classes, data, and methods that
make up the program.

Overall, the program development process can be viewed as one that
repeatedly applies the divide-and-conquer principle. That is, most pro-
gramming problems can be repeatedly divided until you have a collection
of relatively easy-to-solve subproblems, each of which can be handled by
an object. In this way the program is divided into a collection of interact- Divide and conquer
ing objects. For each object we design a class. During class design, each
object is divided further into its variables and methods.

Problem Specification

What exactly is the problem?

How will the program be used?

How will the program behave?

Data Design

What types of instance variables

	 are needed?

Should they be public or private?

Algorithm Design

What information is needed?

What control structures are needed?

Problem Decomposition

What objects will be used and how

	 will they interact with each other?

The problem is divided into

objects. For each object we

design a class.

Program Development

Process

The object's role

decomposes into

tasks. Each task

can be assigned to

a method.

Method design involves

designing an algorithm.

Errors may require

recoding or

redesigning.

Coding into Java

Stepwise refinement

Fixing syntax errors

Testing, Debugging, Revising

Designing test data and test cases

Fixing semantic errors

Class Design

What role or roles will the object perform?

What variables (attributes) will it need?

What methods (behaviors) will it use?

What interface will it present?

What information will it hide?

Method Design

What task will the method perform?

What information will it need?

What algorithm will it use?

What result will it produce?

Figure 1.1: An overview of the
program development process.

When should we stop subdividing? How much of a task should be
assigned to a single object or a single method? The answers to these and
similar questions are not easy. Good answers require the kind of judg-
ment that comes through experience, and frequently there is more than
one good way to design a solution. Here again, as we learn more about

26 CHAPTER 1 • Java Program Design and Development

object-oriented programming, we’ll learn more about how to make these
design decisions.

1.3 Designing a Riddle Program

The first step in the program-development process is making sure you un-
derstand the problem (Fig. 1.1). Thus, we begin by developing a detailed
specification, which should address three basic questions:

• What exactly is the problem to be solved?
• How will the program be used?
• How should the program behave?

In the real world, the problem specification is often arrived at through
an extensive discussion between the customer and the developer. In an
introductory programming course, the specification is usually assigned
by the instructor.

To help make these ideas a little clearer, let’s design an object-oriented
solution to a simple problem.

Problem Specification. Design a class that will represent a riddle with
a given question and answer. The definition of this class should make
it possible to store different riddles and to retrieve a riddle’s question
and answer independently.

1.3.1 Problem Decomposition
Most problems are too big and too complex to be tackled all at once. So
the next step in the design process is to divide the problem into parts thatDivide and conquer
make the solution more manageable. In the object-oriented approach, a
problem is divided into objects, where each object will handle one specific
aspect of the program’s overall job. In effect, each object will become an
expert or specialist in some aspect of the program’s overall behavior.

Note that there is some ambiguity here about how far we should go
in decomposing a given program. This ambiguity is part of the design
process. How much we should decompose the program before its parts
become “simple to solve” depends on the problem we’re trying to solve
and on the problem solver.

One useful design guideline for trying to decide what objects are
needed is the following:

JAVA EFFECTIVE DESIGN Looking for Nouns. Choosing a
program’s objects is often a matter of looking for nouns in the problem
specification.

Again, there’s some ambiguity involved in this guideline. For example,
the key noun in our current problem is riddle, so our solution will involve
an object that serves as a model for a riddle. The main task of this Java
object will be simply to represent a riddle. Two other nouns in the spec-
ification are question and answer. Fortunately, Java has built-in String

SECTION 1.3 • Designing a Riddle Program 27

objects that represent strings of characters such as words or sentences. We
can use two String objects for the riddle’s question and answer. Thus,
for this simple problem, we need only design one new type of object—a
riddle—whose primary role will be to represent a riddle’s question and
answer.

Don’t worry too much if our design decisions seem somewhat myste-
rious at this stage. A good understanding of object-oriented design can
come only after much design experience, but this is a good place to start.

1.3.2 Object Design
Once we have divided a problem into a set of cooperating objects, de-
signing a Java program is primarily a matter of designing and creating
the objects themselves. In our example, this means we must now design
the features of our riddle object. For each object, we must answer the
following basic design questions:

• What role will the object perform in the program?
• What data or information will it need?
• What actions will it take?
• What interface will it present to other objects?
• What information will it hide from other objects?

For our riddle object, the answers to these questions are shown in Fig-
ure 1.2. Note that although we talk about “designing an object,” we are
really talking about designing the object’s class. A class defines the col-
lection of objects that belong to it. The class can be considered the ob-
ject’s type. This is the same as for real-world objects. Thus, Seabiscuit is a
horse—that is, Seabiscuit is an object of type horse. Similarly, an individ-
ual riddle, such as the newspaper riddle, is a riddle. That is, it is an object
of type Riddle.

The following discussion shows how we arrived at the decisions for the
design specifications for the Riddle class, illustrated in Figure 1.2.

• Class Name: Riddle
• Role: To store and retrieve a question and answer
• Attributes (Information)
• question: A variable to store a riddle’s question (private)
• answer: A variable to store a riddle’s answer (private)

• Behaviors
• Riddle(): A method to set a riddle’s question and answer
• getQuestion(): A method to return a riddle’s question
• getAnswer(): A method to return a riddle’s answer

Figure 1.2: Design specification
for the Riddle class.

The role of the Riddle object is to model an ordinary riddle. Because What is the object’s role?
a riddle is defined in terms of its question and answer, our Riddle ob-
ject will need some way to store these two pieces of information. As we
learned in Chapter 0, an instance variable is a named memory location that
belongs to an object. The fact that the memory location is named, makes
it easy to retrieve the data stored there by invoking the variable’s name.
For example, to print a riddle’s question we would say something like
“print question,” and whatever is stored in question would be retrieved
and printed.

28 CHAPTER 1 • Java Program Design and Development

In general, instance variables are used to store the information that an
object needs to perform its role. They correspond to what we have beenWhat information will the object

need? calling the object’s attributes. Deciding on these variables provides the
answer to the question, “What information does the object need?”

Next we decide what actions a Riddle object will take. A useful design
guideline for actions of objects is the following:

JAVA EFFECTIVE DESIGN Looking for Verbs. Choosing the
behavior of an object is often a matter of looking for verbs in the
problem specification.

What actions will the object take?
For this problem, the key verbs are set and retrieve. As specified in Fig-
ure 1.2, each Riddle object should provide some means of setting the
values of its question and answer variables and a means of retrieving each
value separately.

Each of the actions we have identified will be encapsulated in a Java
method. As you recall from Chapter 0, a method is a named section of
code that can be invoked, or called upon, to perform a particular action.
In the object-oriented approach, calling a method (method invocation) is
the means by which interaction occurs among objects. Calling a method
is like sending a message between objects. For example, when we want to
get a riddle’s answer, we would invoke the getAnswer() method. This
is like sending the message “Give me your answer.” One special method,
known as a constructor, is invoked when an object is first created. We will
use the Riddle() constructor to give specific values to riddle’s question
and answer variables.

In designing an object, we must decide which methods should be made
available to other objects. This determines what interface the object shouldWhat interface will it present, and

what information will it hide? present and what information it should hide from other objects. In gen-
eral, those methods that will be used to communicate with an object are
designated as part of the object’s interface. Except for its interface, all
other information maintained by each riddle should be kept “hidden”
from other objects. For example, it is not necessary for other objects to
know where a riddle object stores its question and answer. The fact that
they are stored in variables named question and answer, rather than
variables named ques and ans, is irrelevant to other objects.

JAVA EFFECTIVE DESIGN Object Interface. An object’s interface
should consist of just those methods needed to communicate with or
to use the object.

JAVA EFFECTIVE DESIGN Information Hiding. An object should
hide most of the details of its implementation.

SECTION 1.3 • Designing a Riddle Program 29

Taken together, these various design decisions lead to the specification

Figure 1.3: A UML class diagram
representing the Riddle class.

shown in Figure 1.3. As our discussion has illustrated, we arrived at the
decisions by asking and answering the right questions. In most classes the
attributes (variables) are private. This is represented by a minus sign (−).
In this example, the operations (methods) are public, which is represented
by the plus sign (+). The figure shows that the Riddle class has two
hidden (or private) variables for storing data and three visible (or public)
methods that represent the operations that it can perform.

1.3.3 Data, Methods, and Algorithms
Among the details that must be worked out in designing a riddle object is
deciding what type of data, methods, and algorithms we need. There are
two basic questions involved:

• What type of data will be used to represent the information needed by
the riddle?
• How will each method carry out its task?

Like other programming languages, Java supports a wide range of differ-
ent types of data, some simple and some complex. Obviously a riddle’s What type of data will be used?
question and answer should be represented by text. As we noted earlier,
Java has a String type, which is designed to store text, which can be
considered a string of characters.

In designing a method, you have to decide what the method will do. In How will each method carry out its
task?order to carry out its task, a method will need certain information, which

it may store in variables. Plus, it will have to carry out a sequence of
individual actions to perform the task. This is called its algorithm, which
is a step-by-step description of the solution to a problem. And, finally, you
must decide what result the method will produce. Thus, as in designing
objects, it is important to ask the right questions:

• What specific task will the method perform?
• What information will it need to perform its task?
• What algorithm will the method use?
• What result will the method produce?

Methods can be thought of as using an algorithm to complete a required
action. The algorithm required for the Riddle() constructor is very sim-
ple but also typical of constructors for many classes. It takes two strings
and assigns the first to the question instance variable and then assigns
the second to the answer instance variable. The algorithms for the other
two methods for the Riddle class are even simpler. They are referred to
as get methods that merely return or produce the value that is currently
stored in an instance variable.

Not all methods are so simple to design, and not all algorithms are so
simple. Even when programming a simple arithmetic problem, the steps Algorithm design
involved in the algorithm will not always be as obvious as they are when
doing the calculation by hand. For example, suppose the problem were
to calculate the sum of a list of numbers. If we were telling our classmate
how to do this problem, we might just say, “add up all the numbers and
report their total.” But this description is far too vague to be used in a
program. By contrast, here’s an algorithm that a program could use:

1. Set the initial value of the sum to 0.

30 CHAPTER 1 • Java Program Design and Development

2. If there are no more numbers to total, go to step 5.
3. Add the next number to the sum.
4. Go to step 2.
5. Report the sum.

Note that each step in this algorithm is simple and easy to follow. It would
be relatively easy to translate it into Java. Because English is somewhat
imprecise as an algorithmic language, programmers frequently write al-
gorithms in the programming language itself or in pseudocode, a hy-Pseudocode
brid language that combines English and programming language struc-
tures without being too fussy about programming language syntax. For
example, the preceding algorithm might be expressed in pseudocode as
follows:� �

sum = 0
while (more numbers remain)

add next number to sum
p r i n t the sum
 	
Of course, it is unlikely that an experienced programmer would take

the trouble to write out pseudocode for such a simple algorithm. But
many programming problems are quite complex and require careful de-
sign to minimize the number of errors that the program contains. In such
situations, pseudocode could be useful.

Another important part of designing an algorithm is to trace it—that is,
to step through it line by line—on some sample data. For example, we
might test the list-summing algorithm by tracing it on the list of numbers
shown in the margin.

Sum List of Numbers

0 54 30 20
54 30 20
84 20

104 -

Initially, the sum starts out at 0 and the list of numbers contains 54,
30, and 20. On each iteration through the algorithm, the sum increases
by the amount of the next number, and the list diminishes in size. The
algorithm stops with the correct total left under the sum column. While
this trace didn’t turn up any errors, it is frequently possible to find flaws
in an algorithm by tracing it in this way.

1.3.4 Coding into Java
Once a sufficiently detailed design has been developed, it is time to start
generating Java code. The wrong way to do this would be to type the en-
tire program and then compile and run it. This generally leads to dozens
of errors that can be both demoralizing and difficult to fix.

The right way to code is to use the principle of stepwise refinement.
The program is coded in small stages, and after each stage the code isStepwise refinement
compiled and tested. For example, you could write the code for a single
method and test that method before moving on to another part of the pro-
gram. In this way, small errors are caught before moving on to the next
stage.

The code for the Riddle class is shown in Figure 1.4. Even though
we have not yet begun learning the details of the Java language, you
can easily pick out the key parts in this program: the instance variables
question and answer of type String, which are used to store the
riddle’s data; the Riddle() constructor and the getQuestion() and

SECTION 1.3 • Designing a Riddle Program 31� �
/∗
∗ F i l e : R i d d l e . j a v a

∗ A u t h o r : J a v a , J a v a , J a v a

∗ D e s c r i p t i o n : D e f i n e s a s i m p l e r i d d l e .

∗/

public c l a s s Riddle extends Object // C l a s s h e a d e r

{ // B e g i n c l a s s b o d y

private S t r i n g quest ion ; // I n s t a n c e v a r i a b l e s

private S t r i n g answer ;

public Riddle (S t r i n g q , S t r i n g a) // C o n s t r u c t o r m e t h o d

{
quest ion = q ;
answer = a ;

} // R i d d l e ()

public S t r i n g getQuestion () // I n s t a n c e m e t h o d

{
return quest ion ;

} // g e t Q u e s t i o n ()

public S t r i n g getAnswer () // I n s t a n c e m e t h o d

{
return answer ;

} // g e t A n s w e r ()

} // R i d d l e c l a s s // E n d c l a s s b o d y
 	
Figure 1.4: The Riddle class definition.

getAnswer() methods make up the interface. The specific language de-
tails needed to understand each of these elements will be covered in this
and the following chapter.

1.3.5 Syntax and Semantics

Writing Java code requires that you know its syntax and semantics. A
language’s syntax is the set of rules that determines whether a partic- Syntax
ular statement is correctly formulated. As an example of a syntax rule,
consider the following two English statements:� �

The r a i n in Spain f a l l s mainly on the pla in . // V a l i d

Spain r a i n the mainly in on the f a l l s p la in . // I n v a l i d
 	
The first sentence follows the rules of English syntax (grammar), and it
means that it rains a lot on the Spanish plain. The second sentence does
not follow English syntax, and, as a result, it is rendered meaningless. An
example of a Java syntax rule is that a Java statement must end with a
semicolon.

However, unlike in English, where one can still be understood even
when one breaks a syntax rule, in a programming language the syntax
rules are very strict. If you break even the slightest syntax rule—for ex-

32 CHAPTER 1 • Java Program Design and Development

ample, if you forget just a single semicolon—the program won’t work at
all.

Similarly, the programmer must know the semantics of the language—Semantics
that is, the meaning of each statement. In a programming language, a
statement’s meaning is determined by what effect it will have on the pro-
gram. For example, to set the sum to 0 in the preceding algorithm, an as-
signment statement is used to store the value 0 into the memory location
named sum. Thus, we say that the statement� �

sum = 0 ;
 	
assigns 0 to the memory location sum, where it will be stored until some
other part of the program needs it.

Learning Java’s syntax and semantics is a major part of learning to
program. This aspect of learning to program is a lot like learning a for-
eign language. The more quickly you become fluent in the new language
(Java), the better you will be at expressing solutions to interesting pro-
gramming problems. The longer you struggle with Java’s rules and con-
ventions, the more difficult it will be to talk about problems in a common
language. Also, computers are a lot fussier about correct language than
humans, and even the smallest syntax or semantic error can cause tremen-
dous frustration. So, try to be very precise in learning Java’s syntax and
semantics.

1.3.6 Testing, Debugging, and Revising
Coding, testing, and revising a program is an repetitive process, one
that may require you to repeat the different program-development stages
shown in (Fig. 1.1). According to the stepwise-refinement principle, the
process of developing a program should proceed in small, incremental
steps, where the solution becomes more refined at each step. However,
no matter how much care you take, things can still go wrong during the
coding process.

A syntax error is an error that breaks one of Java’s syntax rules. Such er-
rors will be detected by the Java compiler. Syntax errors are relatively easySyntax errors
to fix once you understand the error messages provided by the compiler.
As long as a program contains syntax errors, the programmer must correct
them and recompile the program. Once all the syntax errors are corrected,
the compiler will produce an executable version of the program, which
can then be run.

When a program is run, the computer carries out the steps specified
in the program and produces results. However, just because a program
runs does not mean that its actions and results are correct. A running
program can contain semantic errors, also called logic errors. A semanticSemantic errors
error is caused by an error in the logical design of the program causing it
to behave incorrectly, producing incorrect results.

Unlike syntax errors, semantic errors cannot be detected automatically.
For example, suppose that a program contains the following statement for
calculating the area of a rectangle:� �

return length + width ;
 	

SECTION 1.3 • Designing a Riddle Program 33

Because we are adding length and width instead of multiplying them,
the area calculation will be incorrect. Because there is nothing syntacti-
cally wrong with the expression length + width, the compiler won’t
detect an error in this statement. Thus, the computer will still execute this
statement and compute the incorrect area.

Semantic errors can only be discovered by testing the program and they
are sometimes very hard to detect. Just because a program appears to run
correctly on one test doesn’t guarantee that it contains no semantic errors.
It might just mean that it has not been adequately tested.

Fixing semantic errors is known as debugging a program, and when sub-
tle errors occur it can be the most frustrating part of the whole program
development process. The various examples presented will occasionally
provide hints and suggestions on how to track down bugs, or errors, in
your code. One point to remember when you are trying to find a very sub-
tle bug is that no matter how convinced you are that your code is correct
and that the bug must be caused by some kind of error in the computer,
the error is almost certainly caused by your code!

1.3.7 Writing Readable Programs
Becoming a proficient programmer goes beyond simply writing a pro-
gram that produces correct output. It also involves developing good pro- Programming style
gramming style, which includes how readable and understandable your
code is. Our goal is to help you develop a programming style that satisfies
the following principles:

• Readability. Programs should be easy to read and understand. Com-
ments should be used to document and explain the program’s code.
• Clarity. Programs should employ well-known constructs and standard

conventions and should avoid programming tricks and unnecessarily
obscure or complex code.
• Flexibility. Programs should be designed and written so that they are

easy to modify.

Special Topic: Grace Hopper and
the First Computer Bug

Rear Admiral Grace Murray Hopper (1906–1992) was a pioneer computer
programmer and one of the original developers of the COBOL program-
ming language, which stands for COmmon Business-Oriented Language.
Among her many achievements and distinctions, Admiral Hopper also
had a role in coining the term computer bug.

In August 1945, she and a group of other programmers were working
on the Mark I, an electro-mechanical computer developed at Harvard that
was one of the ancestors of today’s electronic computers. After several
hours of trying to figure out why the machine was malfunctioning, some-
one located and removed a two-inch moth from one of the computer’s
circuits. From then on whenever anything went wrong with a computer,
Admiral Hopper and others would say “it had bugs in it.” The first bug
itself is still taped to Admiral Hopper’s 1945 log book, which is now in the
collection of the Naval Surface Weapons Center.

34 CHAPTER 1 • Java Program Design and Development

In 1991, Admiral Hopper was awarded the National Medal of Tech-
nology by President George Bush. To commemorate and honor Admiral
Hopper’s many contributions, the U.S. Navy recently named a warship
after her. For more information on Admiral Hopper, see the Web site at� �

http : //www. chips . navy . mil/
 	
1.4 Java Language Elements

In this section we will introduce some of the key elements of the Java
language by describing the details of a small program. We will look at how
a program is organized and what the various parts do. Our intent is to
introduce important language elements, many of which will be explained
in greater detail in later sections.

The program we will study is a Java version of the traditional Hel-
loWorld program—”traditional” because practically every introductory
programming text begins with it. When it is run, the HelloWorld program
(Fig. 1.5) just displays the greeting “Hello, World!” on the console.� �

1 /∗
2 ∗ F i l e : H e l l o W o r l d . j a v a

3 ∗ A u t h o r : J a v a J a v a J a v a

4 ∗ D e s c r i p t i o n : P r i n t s H e l l o , W o r l d ! g r e e t i n g .

5 ∗/

6 public c l a s s HelloWorld extends Object // C l a s s h e a d e r

7 { // S t a r t c l a s s b o d y

8 private S t r i n g g r e e t i n g = ” Hello , World ! ” ;
9 public void g r e e t () // M e t h o d d e f i n i t i o n

10 { // S t a r t m e t h o d b o d y

11 System . out . p r i n t l n (g r e e t i n g) ; // O u t p u t s t a t e m e n t

12 } // g r e e t () // E n d m e t h o d b o d y

13 public s t a t i c void main (S t r i n g args []) // M e t h o d h e a d e r

14 {
15 HelloWorld hel loworld ; // d e c l a r e

16 helloworld = new HelloWorld () ; // c r e a t e

17 helloworld . g r e e t () ; // M e t h o d c a l l

18 } // m a i n ()

19 } // H e l l o W o r l d // E n d c l a s s b o d y
 	
Figure 1.5: The HelloWorld application program.

1.4.1 Comments
The first thing to notice about the HelloWorld program is the use of com-
ments. A comment is a non-executable portion of a program that is used
to document the program. Because comments are not executable instruc-
tions they are just ignored by the compiler. Their sole purpose is to make
the program easier for the programmer to read and understand.

The HelloWorld program contains examples of two types of Java
comments. Any text contained within /* and */ is considered a comment.

SECTION 1.4 • Java Language Elements 35

As you can see in HelloWorld, this kind of comment can extend over
several lines and is sometimes called a multiline comment. A second type
of comment is any text that follows double slashes (//) on a line. This is
known as a single-line comment because it cannot extend beyond a single
line.

When the compiler encounters the beginning marker (/*) of a multiline
comment, it skips over everything until it finds a matching end marker
(*/). One implication of this is that it is not possible to put one multiline
comment inside of another. That is, one comment cannot be nested, or con-
tained, within another comment. The following code segment illustrates
the rules that govern the use of /* and */:� �

/∗ T h i s f i r s t c o m m e n t b e g i n s a n d e n d s o n t h e s a m e l i n e . ∗/

/∗ A s e c o n d c o m m e n t s t a r t s o n t h i s l i n e . . .

a n d g o e s o n . . .

a n d t h i s i s t h e l a s t l i n e o f t h e s e c o n d c o m m e n t .

∗/

/∗ A t h i r d c o m m e n t s t a r t s o n t h i s l i n e . . .

/∗ T h i s i s NOT a f o u r t h c o m m e n t . I t i s j u s t

p a r t o f t h e t h i r d c o m m e n t .

And t h i s i s t h e l a s t l i n e o f t h e t h i r d c o m m e n t .

∗/

∗/ This i s an e r r o r because i t i s an unmatched end marker .
 	
As you can see from this example, it is impossible to begin a new com-
ment inside an already-started comment because all text inside the first
comment, including /*, is ignored by the compiler.

JAVA LANGUAGE RULE Comments. Any text contained within
/* and */, which may span several lines, is considered a comment and
is ignored by the compiler. Inserting double slashes (//) into a line
turns the rest of the line into a comment.

Multiline comments are often used to create a comment block that pro-
vides useful documentation for the program. In HelloWorld, the pro-
gram begins with a comment block that identifies the name of file that
contains the program and its author and provides a brief description of
what the program does.

For single-line comments, double slashes (//) can be inserted any-
where on a line of code. The result is that the rest of the line is ignored by Single-line comment
the compiler. We use single-line comments throughout the HelloWorld
program to provide a running commentary of its language elements.

JAVA PROGRAMMING TIP Use of Comments. A well-written
program should begin with a comment block that provides the name
of the program, its author, and a description of what the program does.

36 CHAPTER 1 • Java Program Design and Development

1.4.2 Program Layout
Another thing to notice about the program is how neatly it is arranged
on the page. This is done deliberately so that the program is easy to read
and understand. In Java, program expressions and statements may be ar-
ranged any way the programmer likes. They may occur one per line, sev-
eral per line, or one per several lines. But the fact that the rules governing
the layout of the program are so lax makes it all the more important that
we adopt a good programming style, one that will help make programs
easy to read.

So look at how things are presented in HelloWorld. Notice how
beginning and ending braces, and , are aligned, and note how we use
single-line comments to annotate ending braces. Braces are used to mark
the beginning and end of different blocks of code in a Java program and
it can sometimes be difficult to know which beginning and end braces
are matched up. Proper indentation and the use of single-line comments
make it easier to determine how the braces are matched up.

Similarly, notice how indentation is used to show when one element
of the program is contained within another element. Thus, the elements
of the HelloWorld class are indented inside of the braces that mark the
beginning and end of the class. And the statements in the main()method
are indented to indicate that they belong to that method. Use of indenta-
tion in this way, to identify the program’s structure, makes the program
easier to read and understand.

JAVA PROGRAMMING TIP Use of Indentation. Indent the code
within a block and align the block’s opening and closing braces. Use a
comment to mark the end of a block of code.

1.4.3 Keywords and Identifiers
The Java language contains 48 predefined keywords (Table 1.1). These
are words that have special meaning in the language and whose use is
reserved for special purposes. For example, the keywords used in the
HelloWorld program (Fig. 1.5) are: class, extends, private, public,
static, and void.

Table 1.1: Java keywords.

abstract default goto package this
boolean do if private throw
break double implements protected throws
byte enum import public transient
case elses instanceof return try
catch extend int short void
char final interface static volatile
class finally long super while
const float native switch
continue for new synchronized

SECTION 1.4 • Java Language Elements 37

Because their use is restricted, keywords cannot be used as the names
of methods, variables, or classes. However, the programmer can make up
his or her own names for the classes, methods, and variables that occur in
the program, provided that certain rules and conventions are followed.

The names for classes, methods, and variables are called identifiers,
which follow certain syntax rules: Identifier syntax

JAVA LANGUAGE RULE Identifier. An identifier must begin with
a capital or lowercase letter and may be followed by any number of
letters, digits, underscores (), or dollar signs ($). An identifier may not
be identical to a Java keyword.

Names in Java are case sensitive, which means that two different identifiers
may contain the same letters in the same order. For example, thisVar
and ThisVar are two different identifiers.

In addition to the syntax rule that governs identifiers, Java program- Identifier style
mers follow certain style conventions in making up names for classes,
variables, and methods. By convention, class names in Java begin with
a capital letter and use capital letters to distinguish the individual words
in the name—for example, HelloWorld and TextField. Variable and Java naming conventions
method names begin with a lowercase letter but also use capital letters
to distinguish the words in the name—for example, main(), greeting,
greet(), getQuestion(), and getAnswer(). The advantage of this
convention is that it is easy to distinguish the different elements in a
program—classes, methods, variables—just by how they are written. (For
more on Java style conventions, see Appendix A.).

Another important style convention followed by Java programmers
is to choose descriptive identifiers when naming classes, variables, and
methods. This helps to make the program more readable.

JAVA PROGRAMMING TIP Choice of Identifiers. To make your
program more readable, choose names that describe the purpose of the
class, variable, or method.

1.4.4 Data Types and Variables
A computer program wouldn’t be very useful if it couldn’t manipulate
different kinds of data, such as numbers and strings. The operations that
one can do on a piece of data depend on the data’s type. For example, you
can divide and multiply numbers, but you cannot do this with strings.
Thus, every piece of data in a Java program is classified according to its
data type.

Broadly speaking, there are two categories of data in Java: various
types of objects and eight different types of built-in primitive data types.
In addition to new types of objects that are created by programmers, Java
has many different types of built-in objects. Two types that we will en-
counter in this chapter are the String and PrintStream objects. Java’s
primitive types include three integer types, three real number types, a Primitive types
character type, and a boolean type with values true and false. The names

38 CHAPTER 1 • Java Program Design and Development

of the primitive types are keywords like int for one integer type, double
for one real number type, and boolean.

As we noted in Chapter 0, a variable is a named storage location that
can store a value of a particular type. Practically speaking, you can think
of a variable as a special container into which you can place values, but
only values of a certain type (Fig. 1.6). For example, an int variable
can store values like 5 or -100. A String variable can store values like
“Hello”. (Actually, this is not the full story, which is a little more compli-
cated, but we will get to that in Chapter 2.)

In the HelloWorld class, the instance variable greeting (line 8)

Figure 1.6: Variables are like typed
containers.

stores a value of type String. In the main() method, the variable
helloworld is assigned a HelloWorld object (line 16).

A literal value is an actual value of some type that occurs in a program.
For example, a string enclosed in double quotes, such as ”Hello, World!”,
is known as a String literal. A number such as 45.2 would be an example
of a literal of type double, and -72 would be an example of a literal of
type int. Our HelloWorld program contains just a single literal value,
the ”HelloWorld!” String.

1.4.5 Statements
A Java program is a collection of statements. A statement is a segment ofExecuting a program
code that takes some action in the program. As a program runs, we say
it executes statements, meaning it carries out the actions specified by those
statements. In our HelloWorld program, statements of various types
occur on lines 8, 11, 15, 16, and 17. Notice that all of these lines end with a
semicolon. The rule in Java is that statements must end with a semicolon.
Forgetting to do so would cause a syntax error.

A declaration statement is a statement that declares a variable of a par-
ticular type. In Java, a variable must be declared before it can be used in a
program. Failure to do so would cause a syntax error. In its simplest form,
a declaration statement begins with the variable’s type, which is followedDeclaration statement
by the variable’s name, and ends with a semicolon:

Type VariableName ;

A variable’s type is either one of the primitive types we mentioned, such
as int, double, or boolean, or for objects, it is the name of the object’s
class, such as String or HelloWorld. A variable’s name may be any
legal identifier, as defined earlier, although the convention in Java is to be-
gin variable names with a lowercase letter. In our HelloWorld program,
an example a simple declaration statement occurs on line 15:� �

HelloWorld helloworld ;
 	
This example declares a variable for an object. The variable’s name is
helloworld and its type is HelloWorld, the name of the class that is
being defined in our example. To take another example the following
statements declare two int variables, named int1 and int2:� �

i n t i n t 1 ;
i n t i n t 2 ;
 	

SECTION 1.4 • Java Language Elements 39

As we noted, an int is one of Java’s primitive types and the word int is a
Java keyword.

Without going into too much detail at this point, declaring a variable
causes the program to set aside enough memory for the type of data that
will be stored in that variable. So in this example, Java would reserve
enough space to store an int.

An assignment statement is a statement that stores (assigns) a value
in a variable. An assignment statement uses the equal sign (=) as an as-
signment operator. In its simplest form, an assignment statement has a
variable on the left hand side of the equals sign and some type of value on
the right hand side. Like other statements, an assignment statement ends
with a semicolon:

VariableName = Value ;

When it executes an assignment statement, Java will first determine what
value is given on the right hand side and then assign (store) that value to
(in) the variable on the left hand side. Here are some simple examples:

Figure 1.7: This illustrates how
the state of the variables num1 and
num2 changes over the course of
the three assignments, (a), (b), (c),
given in the text.

� �
g r e e t i n g = ” Hello , World” ;
num1 = 5 0 ; // (a) A s s i g n 5 0 t o num1

num2 = 10 + 1 5 ; // (b) A s s i g n 2 5 t o num2

num1 = num2 ; // (c) C o p y num2 ’ s v a l u e (2 5) i n t o num1
 	
In the first case, the value on the right hand side is the string literal ”Hello,
World!”, which gets stored in greeting. Of course, greeting has to be
the right type of container–in this case, a String variable. In the next
case, the value on the right hand side is 50. So that is the value that gets
stored in num1, assuming that num1 is an int variable. The situation
after this assignment is shown in the top drawing in Figure 1.7. In the
third case, the value on the right hand side is 25, which is determined
by adding 10 and 15. So the value that gets assigned to num2 is 25. After
this assignment we have the situation shown in the middle drawing in the
figure. Of course, this assumes that num2 is an int variable. In the last
case, the value on the right hand side is 25, the value that we just stored in
the variable num2. So, 25 gets stored in num1. This is the bottom drawing
in the accompanying figure.

The last of these examples� �
num1 = num2 ; // C o p y num2 ’ s v a l u e i n t o num1
 	

can be confusing to beginning programmers, so it is worth some addi-
tional comment. In this case, there are variables on both the left and right
of the assignment operator. But they have very different meaning. The
variable on the right is treated as a value. If that variable is storing 25,
then that is its value. In fact, whatever occurs on the right hand side of an
assignment operator is treated as a value. The variable on the left hand
side is treated as a memory location. It is where the value 25 will be stored
as a result of executing this statement. The effect of this statement is to
copy the value stored in num2 into num1, as illustrated in Figure 1.8.

Figure 1.8: In the assignment
num1 = num2;, num2’s value is
copied into num1.

Java has many other kinds of statements and we will be learning
about these in subsequent examples. The following examples from the

40 CHAPTER 1 • Java Program Design and Development

HelloWorld program are examples of statements in which a method is
called:� �

System . out . p r i n t l n (g r e e t i n g) ; // C a l l p r i n t l n () m e t h o d

helloworld . g r e e t () ; // C a l l g r e e t () m e t h o d
 	
We will discuss these kinds of statements in greater detail as we go along.
One final type of statement that should be mentioned at this point is the
compound statement (or block), which is a sequence of statements con-
tained within braces (). We see three examples of this in the HelloWorld
program. The body of a class definition extends from lines 7 through 19.
The body of the greet() method is a block that extends from lines 10
through 12. The body of the main() method is a block that extends from
lines 14 to 19.

1.4.6 Expressions and Operators

The manipulation of data in a program is done by using some kind of ex-
pression that specifies the action. An expression is Java code that specifies
or produces a value in the program. For example, if you want to add two
numbers, you would use an arithmetic expression, such as num1+num2. If
you want to compare two numbers, you would use a relation expression
such as num1 < num2. As you can see, these and many other expressions
in Java involve the use of special symbols called operators. Here we see
the addition operator (+) and the less-than operator (<). We have already
talked about the assignment operator (=).

Java expressions and operators have a type that depends on the type
of data that is being manipulated. For example, when adding two int
values, such as 5+10, the expression itself produces an int result. When
comparing two numbers with the less than operator, num1 < num2, the
expression itself produces a boolean type, either true or false.

It is important to note that expressions cannot occur on their own.
Rather they occur as part of the program’s statements. Here are some
additional examples of expressions:� �

num = 7 // An a s s i g n m e n t e x p r e s s i o n o f t y p e i n t

num = square (7) // An m e t h o d c a l l e x p r e s s i o n o f t y p e i n t

num == 7 // An e q u a l i t y e x p r e s s i o n o f t y p e b o o l e a n
 	
The first of these is an assignment expression. It has a value of 7, because
it is assigning 7 to num. The second example is also an assignment expres-
sion, but this one has a method call, square(7), on its right hand side.
(We can assume that a method named square() has been appropriately
defined in the program.) A method call is just another kind of expression.
In this case, it has the value 49. Note that an assignment expression can
be turned into a stand-alone assignment statement by placing a semicolon
after it.

The third expression is an equality expression, which has the value
true, assuming that the variable on its left is storing the value 7. It is

SECTION 1.4 • Java Language Elements 41

important to note the difference between the assignment operator (=) and
the equality operator (==).

JAVA LANGUAGE RULE Equality and Assignment. Be careful not
to confuse = and ==. The symbol = is the assignment operator. It
assigns the value on its right-hand side to the variable on its left-hand
side. The symbol == is the equality operator. It evaluates whether the
expressions on its left- and right-hand sides have the same value and
returns either true or false.

SELF-STUDY EXERCISES
EXERCISE 1.1 What is stored in the variable num after the following

two statements are executed?
int num = 11;
num = 23 - num;

EXERCISE 1.2 Write a statement that will declare a variable of type int
called num2, and store in it the sum of 711 and 712.

1.4.7 Class Definition
A Java program consists of one or more class definitions. In the
HelloWorld example, we are defining the HelloWorld class, but there
are also three predefined classes involved in the program. These are the
Object, String, and System classes all of which are defined in the
Java class library. Predefined classes, such as these, can be used in any
program.

As the HelloWorld program’s comments indicate, a class definition
has two parts: a class header and a class body. In general, a class header Class header
takes the following form, some parts of which are optional (opt):

ClassModifiersopt class ClassName Pedigreeopt

The class header for the HelloWorld class is:� �
public c l a s s HelloWorld extends Object
 	

The purpose of the header is to give the class its name (HelloWorld),
identify its accessibility (public as opposed to private), and describe
where it fits into the Java class hierarchy (as an extension of the Object
class). In this case, the header begins with the optional access modi-
fier, public, which declares that this class can be accessed by any other
classes. The next part of the declaration identifies the name of the class,
HelloWorld. And the last part declares that HelloWorld is a subclass
of the Object class. We call this part of the definition the class’s pedigree.

As you recall from Chapter 0, the Object class is the top class of the
entire Java hierarchy. By declaring that HelloWorld extends Object,
we are saying that HelloWorld is a direct subclass of Object. In fact, it
is not necessary to declare explicitly that HelloWorld extends Object
because that is Java’s default assumption. That is, if you omit the extends
clause in the class header, Java will automatically assume that the class is
a subclass of Object.

42 CHAPTER 1 • Java Program Design and Development

The class’s body, which is enclosed within curly brackets (), contains Class body
the declaration and definition of the elements that make up the objects of
the class. This is where the object’s attributes and actions are defined.

1.4.8 Declaring an Instance Variable
There are generally two kinds of elements declared and defined in the
class body: variables and methods. As we described in Chapter 0, an
instance variable is a variable that belongs to each object, or instance, of
the class. That is, each instance of a class has its own copies of the class’s
instance variables. The HelloWorld class has a single instance variable,
(greeting), which is declared as follows:� �

private S t r i n g g r e e t i n g = ” Hello , World ! ” ;
 	
In general, an instance variable declaration has the following syntax, some
parts of which are optional:

Modifiersopt Type VariableName InitializerExpressionopt

Thus, a variable declaration begins with optional modifiers. In declaring
the greeting variable, we use the access modifier, private, to declare
that greeting, which belongs to the HelloWorld class, cannot be di-
rectly accessed by other objects. The next part of the declaration is the
variable’s type. In this case, the greeting variable is a String, whichInformation hiding
means that it can store a string object. The type is followed by the name
of the variable, in this case (greeting). This is the name that is used to
refer to this memory location throughout the class. For example, notice
that the variable is referred to on line 11 where it is used in a println()
statement.

The last part of the declaration is an optional initializer expression. In
this example, we use it to assign an initial value, “Hello, World!,” to the
greeting variable.

1.4.9 Defining an Instance Method
Recall that a method is a named section of code that can be called or in-
voked to carry out an action or operation. In a Java class, the methods
correspond to the object’s behaviors or actions. The HelloWorld pro-
gram has two method definitions: the greet() method and the main()
method.

A method definition consists of two parts: the method header and the
method body. In general, a method header takes the following form,
including some parts which are optional:

Modifiersopt ReturnType MethodName (ParameterListopt)

As with a variable declaration, a method definition begins with optional
modifiers. For example, the definition of the greet() method on line
9 uses the access modifier, public, to declare that this method can be
accessed or referred to by other classes. The main() method, whose def-
inition begins on line 13, is a special method, and is explained in the next
section.

SECTION 1.4 • Java Language Elements 43

The next part of the method header is the method’s return type. This
is the type of value, if any, that the method returns. Both of the methods
in HelloWorld have a return type of void. This means that they don’t
return any kind of value. Void methods just execute the sequence of state-
ments given in their bodies. For an example of a method that does return a
value, take a look again at the declaration of the getQuestion()method
in the Riddle class, which returns a String (Fig. 1.4).

The method’s name follows the method’s return type. This is the name
that is used when the method is called. For example, the greet()method
is called on line 17.

Following the method’s name is the method’s parameter list. A param-
eter is a variable that temporarily stores data values that are being passed
to the method when the method is called. Some methods, such as the
greet() method, do not have parameters, because they are not passed
any information. For an example of a method that does have parameters,
see the Riddle() constructor, which contains parameters for the riddle’s
question and answer (Fig. 1.4).

The last part of method definition is its body, which contains a sequence
of executable statements. An executable statement is a Java statement
that takes some kind of action when the program is run. For example, the
statement in the greet() method,� �

System . out . p r i n t l n (g r e e t i n g) ; // O u t p u t s t a t e m e n t
 	
prints a greeting on the console.

1.4.10 Java Application Programs

The HelloWorld program is an example of a Java application program,
or a Java application, for short. An application program is a stand-alone
program, “stand-alone” in the sense that it does not depend on any other
program, like a Web browser, for its execution. Every Java application pro-
gram must contain a main() method, which is where the program begins
execution when it is run. For a program that contains several classes, it is
up to the programmer to decide which class should contain the main()
method. We don’t have to worry about that decision for the HelloWorld,
because it contains just a single class.

Because of its unique role as the starting point for every Java applica-
tion program, it is very important that the header for the main method be
declared exactly as shown in the HelloWorld class:� �

public s t a t i c void main (S t r i n g args [])
 	
It must be declared public so it can be accessed from outside the class
that contains it. The static modifier is used to designate main() as Class method
a class method. As you might recall from Chapter 0, a class method is
a method that is associated directly with the class that contains it rather
than with the objects of the class. A class method is not part of the class’s
objects. Unlike instance methods, which are invoked through a class’s ob-
jects, a class method is called through the class itself. Thus, a class method
can be called even before the program has created objects of that class.

44 CHAPTER 1 • Java Program Design and Development

Because of main()’s special role as the program’s starting point, it is nec-
essary for main() to be a class method because it is called, by the Java
runtime system, before the program has created any objects.

The main() method has a void return type, which means it does not
return any kind of value. Finally, notice that main()’s parameter list con-
tains a declaration of some kind of String parameter named args. This is
actually an array that can be used to pass string arguments to the program
when it is started up. We won’t worry about this feature until our chapter
on arrays.

1.4.11 Creating and Using Objects
The body of the main() method is where the HelloWorld program cre-
ates its one and only object. Recall that when it is run the HelloWorld
program just prints the “Hello World!” greeting. As we noted earlier,
this action happens in the greet() method. So in order to make this ac-
tion happen, we need to call the greet() method. However, because the
greet() method is an instance method that belongs to a HelloWorld
object, we first need to create a HelloWorld instance. This is what
happens in the body of the main() method (Fig. 1.5).

The main() method contains three statements:� �
HelloWorld helloworld ; // V a r i a b l e d e c l a r a t i o n

helloworld = new HelloWorld () ; // O b j e c t i n s t a n t i a t i o n

helloworld . g r e e t () ; // M e t h o d i n v o c a t i o n
 	
The first statement declares a variable of type HelloWorld, which is
then assigned a HelloWorld object. The second statement creates a
HelloWorld object. This is done by invoking the HelloWorld() con-
structor method. Creating an object is called object instantiation because
you are creating an instance of the object. Once a HelloWorld instance
is created, we can use one of its instance methods to perform some task
or operation. Thus, in the third statement, we call the greet() method,
which will print “Hello World!” on the console.

If you look back at the HelloWorld program in Figure 1.5 you won’t
find a definition of a constructor method. This is not an error because JavaDefault constructor
will provide a default constructor if a class does not contain a constructor
definition. The default constructor is a trivial constructor method, “triv-
ial” because its body contains no statements. Here is what the default
HelloWorld() constructor would look like:� �

public HelloWorld () { } // D e f a u l t c o n s t r u c t o r
 	
For most of the classes we design, we will design our own constructors,
just as we did in the Riddle class (Fig. 1.4). We will use constructors to
assign initial values to an object’s instance variables or to perform other
kinds of tasks that are needed when an object is created. Because the
HelloWorld object doesn’t require any startup tasks, we can make do
with the default constructor.

The HelloWorld program illustrates the idea that an object-orientedInteracting objects
program is a collection of interacting objects. Although we create just a
single HelloWorld object in the main() method, there are two other ob-

SECTION 1.4 • Java Language Elements 45

jects used in the program. One is the greeting, which is a String ob-
ject consisting of the string “Hello, World!”. The other is the System.out
object, which is a special Java system object used for printing.

1.4.12 Java JFrames
Java cann run a program in a JFrame so that the output and interaction
occurs in a Window (or Frame). Figure 1.9 shows a Java program named
HelloWorldSwing. This program does more or less the same thing as
the HelloWorld application—it displays the “Hello, World!” greeting.� �

/∗ ∗ F i l e : H e l l o W o r l d S w i n g p r o g r a m ∗/

import j avax . swing . JFrame ; // I m p o r t c l a s s n a m e s

import j ava . awt . Graphics ;
import j ava . awt . Canvas ;

public c l a s s HelloWorldCanvas extends Canvas // C l a s s h e a d e r

{
// S t a r t o f b o d y

public void paint (Graphics g)
// T h e p a i n t m e t h o d

{
g . drawString (” Hello , World ! ” , 10 , 1 0) ;

} // E n d o f p a i n t

public s t a t i c void main (S t r i n g [] args){
HelloWorldCanvas c = new HelloWorldCanvas () ;
JFrame f = new JFrame () ;
f . add (c) ;
f . s e t S i z e (1 5 0 , 5 0) ;
f . s e t V i s i b l e (t rue) ;

}
} // E n d o f H e l l o W o r l d C a n v a s
 	

Figure 1.9: HelloWorldCanvas program.

The difference is that it displays the greeting within a Window rather than
directly on the console.

As in the case of the HelloWorld console application program,
HelloWorldCanvas consists of a class definition. It contains a single
method definition, the paint() method, which contains a single exe-
cutable statement:� �

g . drawString (” Hello , World ! ” , 1 0 , 1 0) ;
 	
This statement displays the “Hello, World!” message directly in a Win-
dow. The drawString() method is one of the many drawing and paint-
ing methods defined in the Graphics class. Every Java Canvas comes
with its own Graphics object, which is referred to here simply as g.
Thus, we are using that object’s drawString() method to draw on the
window. Don’t worry if this seems a bit mysterious now. We’ll explain it
more fully when we take up graphics examples again.

46 CHAPTER 1 • Java Program Design and Development

The HelloWorldSwing also contains some elements, such as the
import statements, that we did not find in the HelloWorld application.
We will now discuss those features.

1.4.13 Java Library Packages
Recall that the HelloWorld application program used two pre-defined
classes, the String and the System classes. Both of these classes are
basic language classes in Java. The HelloWorldSwing program also uses
pre-defined classes, such as JFrame and Graphics. However, these two
classes are not part of Java’s basic language classes. To understand the
difference between these classes, it will be necessary to talk briefly about
how the Java class library is organized.

A package is a collection a inter-related classes in the Java class library.
For example, the java.lang package contains classes, such as Object,
String, and System, that are central to the Java language. Just about
all Java programs use classes in this package. The java.awt package
provides classes, such as Button, TextField, and Graphics, that are
used in graphical user interfaces (GUIs). The java.net package provides
classes used for networking tasks, and the java.io package provides
classes used for input and output operations.

All Java classes belong to some package, including those that are pro-
grammer defined. To assign a class to a package, you would provide a
package statement as the first statement in the file that contains the class
definition. For example, the files containing the definitions of the classes
in the java.lang package all begin with the following statement.� �

package j ava . lang ;
 	
If you omit package statement, as we do for the programs in this book,
Java places such classes into an unnamed default package.

Thus, for any Java class, its full name includes the name of the
package that contains it. For example, the full name for the System
class is java.lang.System and the full name for the String class is
java.lang.String. Similarly, the full name for the Graphics class is
java.awt.Graphics. In short, the full name for a Java class takes the
following form:

package.class

In other words, the full name of any class provides its package name as a
prefix.

Of all the packages in the Java library, the java.lang package is the
only one whose classes are available by their shorthand names to all
Java programs. This means that when a program uses a class from the
java.lang package, it can refer to it simply by its class name. For exam-
ple, in the HelloWorld program we referred directly to the String class
rather than to java.lang.String.

1.4.14 The import Statement
The import statement makes Java classes available to programs under
their abbreviated names. Any public class in the Java class library is avail-
able to a program by its fully qualified name. Thus, if a program was using

SECTION 1.4 • Java Language Elements 47

the Graphics class, it could always refer to it as java.awt.Graphics.
However, being able to refer to Graphics by its shorthand name, makes
the program a bit shorter and more readable.

The import statement doesn’t actually load classes into the program.
It just makes their abbreviated names available. For example, the im-
port statements in HelloWorldSwing allow us to refer to the JFrame,
Canvas, and Graphics classes by their abbreviated names (Fig. 1.9).

The import statement takes two possible forms:

import package.class

import package.*

The first form allows a specific class to be known by its abbreviated name.
The second form, which uses the asterisk as a wildcard characters (’*’),
allows all the classes in the specified package to be known by their short
names. The import statements in HelloWorldSwing are examples of
the first form. The following example,� �

import j ava . lang . ∗ ;
 	
allows all classes in the java.lang package to be referred to by their class
names alone. In fact, this particular import statement is implicit in every
Java program.

1.4.15 Qualified Names in Java
In the previous subsections we have seen several examples of names in
Java programs that used dot notation. A qualified name is a name that is
separated into parts using Java’s dot notation. Examples include package
names, such as java.awt, class names, such as javax.swing.JFrame,
and even method names, such as helloworld.greet().

Just as in our natural language, the meaning of a name within a
Java program depends on the context. For example, the expression
helloworld.greet() refers to the greet() method, which belongs to
the HelloWorld class. If we were using this expression from within that
class, you wouldn’t need to qualify the name in this way. You could just
refer to greet() and it would be clear from the context which method
you meant.

This is no different than using someone’s first name (“Kim”) when
there’s only one Kim around, but using a full name (“Kim Smith”) when
the first name alone would be too vague or ambiguous.

One thing that complicates the use of qualified names is that they are
used to refer to different kinds of things within a Java program. But
this is no different, really, than in our natural language, where names
(“George Washington”) can refer to people, bridges, universities, and so
on. Here again, just as in our natural language, Java uses the context
to understand the meaning of the name. For example, the expression
java.lang.System refers to the System class in the java.lang pack-
age, whereas the expression System.out.print() refers to a method
in the System.out object.

How can you tell these apart? Java can tell them apart because the
first one occurs as part of an import statement, so it must be referring

48 CHAPTER 1 • Java Program Design and Development

to something that belongs to a package. The second expression would
only be valid in a context where a method invocation is allowed. You
will have to learn a bit more about the Java language before you’ll be able
to completely understand these names, but the following provide some
naming rules to get you started.

JAVA LANGUAGE RULE Library Class Names. By convention,
class names in Java begin with an uppercase letter. When referenced as
part of a package, the class name is the last part of the name. For
example, java.lang.System refers to the System class in the
java.lang package.

JAVA LANGUAGE RULE Dot Notation. Names expressed in Java’s
dot notation depend for their meaning on the context in which they are
used. In qualified names—that is, names of the form X.Y.Z—the last
item in the name (Z) is the referent—that is, the element being referred
to. The items that precede it (X.Y.) are used to qualify or clarify the
referent.

The fact that names are context dependent in this way certainly compli-
cates the task of learning what’s what in a Java program. Part of learn-
ing to use Java’s built-in classes is learning where a particular object or
method is defined. It is a syntax error if the Java compiler can’t find the
object or method that you are referencing.

JAVA DEBUGGING TIP Not Found Error. If Java cannot find the
item you are referring to, it will report an “X not found” error, where X
is the class, method, variable, or package being referred to.

1.5 Editing, Compiling, and Running a Java Pro-
gram

In this section we discuss the nuts and bolts of how to compile and run
a Java program. Because we are exploring two different varieties of Java
programs, console applications and Swing applications, the process dif-
fers slightly for each variety. We have already discussed some of the main
language features of console and Swing applications, so in this section we
focus more on features of the programming environment itself. Because
we do not assume any particular programming environment in this book,
our discussion will be somewhat generic. However, we do begin with
a brief overview of the types of programming environments one might
encounter.

SECTION 1.5 • Editing, Compiling, and Running a Java Program 49
Figure 1.10: Editing, compiling,
and running HelloWorld.java.

text editor

javac
javac generates

a list of error

messages

syntax

errors

?

Editor creates the source

program in a disk file.

javac creates the bytecode

in a disk file.

appletviewer

or Web

browser

java

javac

HelloWorld.class

Hello.html

Applet Programming

Applets require

an HTML file.

HelloWorld.java

The Java Virtual Machine

loads the class file into

memory and interprets and

runs the bytecode.

User types program into a file

using a standard text editor.

Correct the syntax errors

N

Y

1.5.1 Java Development Environments
A Java programming environment typically consists of several pro-
grams that perform different tasks required to edit, compile, and run
a Java program. The following description will be based on the
software development environment provided by Oracle, the company
that owns and maintains Java. It is currently known as the Java
Platform, Standard Edition 8.0 (Java SE 8). Versions of Java SE are
available for various platforms, including Linux, Windows, and ma-
cOS computers. Free downloads are available at Sun’s Web site at
http://www.oracle.com/technetwork/java/. (For more details
about the Java SE, see Appendix B.)

In some cases, the individual programs that make up the Java SE are
available in a single program development environment, known as an
integrated development environment (IDE). Some examples include Eclipse,
jGrasp, and Oracle’s own NetBeans IDE. Each of these provides a com-
plete development package for editing, compiling, and running Java ap-
plications on a variety of platforms, including Linux, macOS, and Win-
dows.

Figure 1.10 illustrates the process involved in creating and running a
Java program. The discussion that follows here assumes that you are us-

50 CHAPTER 1 • Java Program Design and Development

ing the Java SE as your development environment to edit, compile and run
the example program. If you are using some other environment, you will
need to read the documentation provided with the software to determine
exactly how to edit, compile, and run Java programs in that environment.

1.5.2 Editing a Program
Any text editor may be used to edit the program by merely typing the
program and making corrections as needed. Popular Unix and Linux
editors include vim and emacs. These editors are also available on ma-
cOS and Windows. However, free macOS editors include TextMate and
TextWrangler, and Windows has Notepad++ for free.

As we have seen, a Java program consists of one or more class def-
initions. We will follow the convention of placing each class definition
in its own file. (The rule in Java is that a source file may contain only
one public class definition.) The files containing these classes’ defini-
tions must be named ClassName.java where ClassName is the name of the
public Java class contained in the file.

JAVA LANGUAGE RULE File Names. A file that defines a public
Java class named ClassName must be saved in a text file named
ClassName.java. Otherwise an error will result.

For example, in the case of our HelloWorld application program, the file
must be named HelloWorld.java, and for HelloWorldSwing, it must
be named HelloWorldSwing.java. Because Java is case sensitive, which
means that Java pays attention to whether a letter is typed uppercase or
lowercase, it would be an error if the file containing the HelloWorld
class were named helloworld.java or Helloworld.java. The er-
ror in this case would be a semantic error. Java would not be able to
find the HelloWorld class because it will be looking for a file named
HelloWorld.java.

JAVA LANGUAGE RULE Case Sensitivity. Java is case sensitive,
which means that it treats helloWorld and Helloworld as different
names.

1.5.3 Compiling a Program
Recall that before you can run a Java source program you have to com-
pile it into the Java bytecode, the intermediate code understood by the
Java Virtual Machine (JVM). Source code for both applets and applica-
tions must be compiled. To run a Java program, whether an applet or an
application, the JVM is then used to interpret and execute the bytecode.

The Java SE comes in two parts, a runtime program, called the Java
Runtime Environment (JRE) and a development package, called the Software
Development Kit (SDK). If you are just going to run Java programs, you
need only install the JRE on your computer. In order to run Java applets,
browsers, such as Internet Explorer and Netscape Navigator, must contain
a plugin version of the JRE. On the other hand, if you are going to be
developing Java programs, you will need to install the SDK as well.

SECTION 1.5 • Editing, Compiling, and Running a Java Program 51

The Java SDK compiler is named javac. In some environments—
such as within Linux or at the Windows command prompt —
HelloWorld.java would be compiled by typing the following com-
mand at the system prompt:� �

j a v a c HelloWorld . java
 	
As Figure 1.10 illustrates, if the HelloWorld.java program does not
contain errors, the result of this command is the creation of a Java bytecode
file named HelloWorld.class—a file that has the same prefix as the
source file but with the suffix .class rather than .java. By default,
the bytecode file will be placed in the same directory as the source file.
If javac detects errors in the Java code, a list of error messages will be
printed.

1.5.4 Running a Java Application Program
In order to run (or execute) a program on any computer, the program’s
executable code must be loaded into the computer’s main memory. For
Java environments, this means that the program’s .class file must be
loaded into the computer’s memory, where it is then interpreted by the
Java Virtual Machine. To run a Java program on Linux systems or at the
Windows command prompt, type� �

j ava HelloWorld
 	
on the command line. This command loads the JVM, which will then
load and interpret the application’s bytecode (HelloWorld.class). The
“HelloWorld” string will be displayed on the command line.

On Macintosh systems, or within an IDE, which do not typically have a
command line interface, you would select the compile and run commands
from a menu. Once the code is compiled, the run command will cause the
JVM to be loaded and the bytecode to be interpreted. The “Hello, World!”
output would appear in a text-based window that automatically pops
up on your computer screen. In any case, regardless of the system you
use, running the HelloWorld console application program will cause the
“Hello, World!” message to be displayed on some kind of standard output
device (Fig. 1.11).

Figure 1.11: Compiling and Run-
ning the HelloWorld.java con-
sole application program.

1.5.5 Running a Java Swing Program
When you run a Java Swing Program, there is typically no console output.
You only see your output in the Window (JFrame) that your Graphics are
displayed in. This makes automated testing more difficult since you need
to visually inspect that the program is working correctly.

When you run� �
j ava HelloWorldSwing
 	

A window will open, and you won’t be able to type in the console until
you close the window, quit the program, or type ctl-c to send a kill signal
to the Swing program. The result of running, as shown in Figure 1.12,

52 CHAPTER 1 • Java Program Design and Development

is that the “Hello, World!” message will be displayed within it’s own
window.

1.6 From the Java Library: System and
PrintStream

java.sun.com/j2se/1.5.0/docs/api/
Java comes with a library of classes that can be used to perform common
tasks. The Java class library is organized into a set of packages, where each
package contains a collection of related classes. Throughout the book we
will identify library classes and explain how to use them. In this section
we introduce the System and PrintStream classes, which are used for
printing a program’s output.

Java programs need to be able to accept input and to display output.
Deciding how a program will handle input and output (I/O) is part of
designing its user interface, a topic we take up in detail in Chapter 4. The
simplest type of user interface is a command-line interface, in which input
is taken from the command line through the keyboard, and output is dis-
played on the console. Some Java applications use this type of interface.
Another type of user interface is a Graphical User Interface (GUI), which
uses buttons, text fields, and other graphical components for input and
output. Java applets use GUIs as do many Java applications. Because we
want to be able to write programs that generate output, this

Figure 1.12: Running
HelloWorldSwing.java
graphical program.

section describes how Java handles simple console output.
In Java, any source or destination for I/O is considered a stream of bytes

or characters. To perform output, we insert bytes or characters into the
stream. To perform input, we extract bytes or characters from the stream.
Even characters entered at a keyboard, if considered as a sequence of
keystrokes, can be represented as a stream.

There are no I/O statements in the Java language. Instead, I/O is han-
dled through methods that belong to classes contained in the java.io
package. We have already seen how the output method println()
is used to output a string to the console. For example, the following
println() statement� �

System . out . p r i n t l n (” Hello , World”) ;
 	
prints the message “Hello, World” on the Java console. Let’s now exam-
ine this statement more carefully to see how it makes use of the Java I/O
classes.

The java.io.PrintStream class is Java’s printing expert, so to
speak. It contains a variety of print() and println() methods that
can be used to print all of the various types of data we find in a Java pro-
gram. A partial definition of PrintStream is shown in Figure 1.13. Note
that in this case the PrintStream class has no attributes, just operations

+print(in data : String)
+print(in data : boolean)
+print(in data : int)
+println(in data : String)
+println(in data : boolean)
+println(in data : int)

PrintStream

Figure 1.13: A UML class diagram
of the PrintStream class.

or methods.
Because the various print() and println() methods are instance

methods of a PrintStream object, we can only use them by finding a

SECTION 1.6 • From the Java Library: System and PrintStream 53

PrintStream object and “telling” it to print data for us. As shown in
Figure 1.15, Java’s java.lang.System class contains three predefined
streams, including two PrintStream objects. This class has public (+)
attributes. None of its public methods are shown here.

Both the System.out and System.err objects can be used to write
output to the console. As its name suggests, the err stream is used
primarily for error messages, whereas the out stream is used for other
printed output. Similarly, as its name suggests, the System.in object can
be used to handle input, which will be covered in Chapter 2.

The only difference between the print() and println() methods
is that println() will also print a carriage return and line feed after
printing its data, thereby allowing subsequent output to be printed on a
new line. For example, the following statements� �

System . out . p r i n t (” h e l l o ”) ;
System . out . p r i n t l n (” h e l l o again ”) ;
System . out . p r i n t l n (”goodbye”) ;
 	

would produce the following output:� �
h e l l o h e l l o again
goodbye
 	

+out : PrintStream

+err : PrintStream

+in : InputStream

System

Figure 1.14: The System class.
Now that we know how to use Java’s printing expert, let’s use it to “sing”
a version of “Old MacDonald Had a Farm.” As you might guess, this
program will simply consist of a sequence of System.out.println()
statements each of which prints a line of the verse. The complete Java
application program is shown in Figure 1.15.� �
public c l a s s OldMacDonald
{

public s t a t i c void main (S t r i n g args [])
// M a i n m e t h o d

{
System . out . p r i n t l n (”Old MacDonald had a farm”) ;
System . out . p r i n t l n (”E I E I O. ”) ;
System . out . p r i n t l n (”And on hi s farm he had a duck . ”) ;
System . out . p r i n t l n (”E I E I O. ”) ;
System . out . p r i n t l n (”With a quack quack here . ”) ;
System . out . p r i n t l n (”And a quack quack there . ”) ;
System . out . p r i n t l n (”Here a quack , there a quack , ”) ;
System . out . p r i n t l n (”Everywhere a quack quack . ”) ;
System . out . p r i n t l n (”Old MacDonald had a farm”) ;
System . out . p r i n t l n (”E I E I O. ”) ;

} // E n d o f m a i n

} // E n d o f O l d M a c D o n a l d
 	
Figure 1.15: The OldMacDonald.java class.

This example illustrates the importance of using the Java class library.
If there’s a particular task we want to perform, one of the first things we

54 CHAPTER 1 • Java Program Design and Development

should ask is whether there is already an “expert” in Java’s class library
that performs that task. If so, we can use methods provided by the expert
to perform that particular task.

JAVA EFFECTIVE DESIGN Using the Java Library. Learning how to
use classes and objects from the Java class library is an important part
of object-oriented programming in Java.

SELF-STUDY EXERCISES**********
* ** ** *
* ** *
* * * *
* **** *

EXERCISE 1.3 One good way to learn how to write programs is to
modify existing programs. Modify the OldMacDonald class to “sing”
one more verse of the song.

EXERCISE 1.4 Write a Java class that prints the design shown on the
left.

CHAPTER SUMMARY Technical Terms
algorithm
applet
application program
assignment

statement
comment
compound statement

(block)
data type

declaration statement
default constructor
executable statement
expression
identifier
literal value
object instantiation
operator
package

parameter
primitive data type
pseudocode
qualified name
semantics
statement
stepwise refinement
syntax

Summary of Important Points

• Good program design requires that each object and method have a
well-defined role and clear definition of what information is needed
for the task and what results will be produced.
• Good program design is important; the sooner you start coding, the

longer the program will take to finish. Good program design strives
for readability, clarity, and flexibility.
• Testing a program is very important and must be done with care, but it

can only reveal the presence of bugs, not their absence.
• An algorithm is a step-by-step process that solves some problem. Al-

gorithms are often described in pseudocode, a hybrid language that
combines English and programming language constructs.
• A syntax error occurs when a statement breaks a Java syntax rules. Syn-

tax errors are detected by the compiler. A semantic error is an error in
the program’s design and cannot be detected by the compiler.
• Writing Java code should follow the stepwise refinement process.

CHAPTER 1 • Chapter Summary 55

• Double slashes (//) are used to make a single-line comment. Com-
ments that extend over several lines must begin with /* and end with
*/.
• An identifier must begin with a letter of the alphabet and may consist

of any number of letters, digits, and the special characters and $. An
identifier cannot be identical to a Java keyword. Identifiers are case
sensitive.
• A keyword is a term that has special meaning in the Java language

(Table 1.1).
• Examples of Java’s primitive data types include the int, boolean, and
double types.
• A variable is a named storage location. In Java, a variable must be

declared before it can be used.
• A literal value is an actual value of some type, such as a String

(”Hello”) or an int (5).
• A declaration statement has the form: Type VariableName ;
• An assignment statement has the form:VariableName = Expression ;

When it is executed it determines the value of the Expression on the
right of the assignment operator (=) and stores the value in the variable
named on the left.
• Java’s operators are type dependent, where the type is dependent on

the data being manipulated. When adding two int values (7+8), the
+ operation produces an int result.
• A class definition has two parts: a class header and a class body. A

class header takes the form of optional modifiers followed by the word
class followed by an identifier naming the class followed, optionally,
by the keyword extends and the name of the class’s superclass.
• There are generally two kinds of elements declared and defined in the

class body: variables and methods.
• Object instantiation is the process of creating an instance of a class using

the new operator in conjunction with one of the class’s constructors.
• Dot notation takes the form qualifiers.elementName. The expression
System.out.print("hello") uses Java dot notation to invoke the
print() method of the System.out object.
• A Java application program runs in stand-alone mode. A Java applet is

a program that runs within the context of a Java-enabled browser. Java
applets are identified in HTML documents by using the <applet> tag.
• A Java source program must be stored in a file that has a .java exten-

sion. A Java bytecode file has the same name as the source file but a
.class extension. It is an error in Java if the name of the source file is
not identical to the name of the public Java class defined within the file.
• Java programs are first compiled into bytecode and then interpreted by

the Java Virtual Machine (JVM).

56 CHAPTER 1 • Java Program Design and Development

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 1.1 The value 12 is stored in num.

SOLUTION 1.2 int num2 = 711 + 712;

SOLUTION 1.3 The definition of the OldMacDonald class is:� �
public c l a s s OldMacDonald
{

public s t a t i c void main (S t r i n g args [])
// M a i n m e t h o d

{
System . out . p r i n t l n (”Old MacDonald had a farm”) ;
System . out . p r i n t l n (”E I E I O. ”) ;
System . out . p r i n t l n (”And on hi s farm he had a duck . ”) ;
System . out . p r i n t l n (”E I E I O. ”) ;
System . out . p r i n t l n (”With a quack quack here . ”) ;
System . out . p r i n t l n (”And a quack quack there . ”) ;
System . out . p r i n t l n (”Here a quack , there a quack , ”) ;
System . out . p r i n t l n (”Everywhere a quack quack . ”) ;
System . out . p r i n t l n (”Old MacDonald had a farm”) ;
System . out . p r i n t l n (”E I E I O. ”) ;

System . out . p r i n t l n (”Old MacDonald had a farm”) ;
System . out . p r i n t l n (”E I E I O. ”) ;
System . out . p r i n t l n (”And on hi s farm he had a pig . ”) ;
System . out . p r i n t l n (”E I E I O. ”) ;
System . out . p r i n t l n (”With an oink oink here . ”) ;
System . out . p r i n t l n (”And an oink oink there . ”) ;
System . out . p r i n t l n (”Here an oink , there an oink , ”) ;
System . out . p r i n t l n (”Everywhere an oink oink . ”) ;
System . out . p r i n t l n (”Old MacDonald had a farm”) ;
System . out . p r i n t l n (”E I E I O. ”) ;

} // E n d o f m a i n

} // E n d o f O l d M a c D o n a l d
 	
SOLUTION 1.4 The definition of the Pattern class is:� �
public c l a s s Pat tern
{

public s t a t i c void main (S t r i n g args []) // M a i n m e t h o d

{
System . out . p r i n t l n (”∗∗∗∗∗∗∗∗∗∗”) ;
System . out . p r i n t l n (”∗ ∗∗ ∗∗ ∗”) ;
System . out . p r i n t l n (”∗ ∗∗ ∗”) ;
System . out . p r i n t l n (”∗ ∗ ∗ ∗”) ;
System . out . p r i n t l n (”∗ ∗∗∗∗ ∗”) ;
System . out . p r i n t l n (”∗∗∗∗∗∗∗∗∗∗”) ;

} // E n d o f m a i n

} // E n d o f P a t t e r n
 	

CHAPTER 1 • Exercises 57

EXERCISESEXERCISE 1.1 Fill in the blanks in each of the following statements.

a. A Java class definition contains an object’s and .

b. A method definition contains two parts, a and a .

EXERCISE 1.2 Explain the difference between each of the following pairs of
concepts.

a. Application and applet.
b. Single-line and multiline comment.
c. Compiling and running a program.
d. Source code file and bytecode file.
e. Syntax and semantics.
f. Syntax error and semantic error.
g. Data and methods.
h. Variable and method.
i. Algorithm and method.
j. Pseudocode and Java code.
k. Method definition and method invocation.

EXERCISE 1.3 For each of the following, identify it as either a syntax error or a
semantic error. Justify your answers.

a. Write a class header as public Class MyClass.
b. Define the init() header as public vid init().
c. Print a string of five asterisks by System.out.println("***");.
d. Forget the semicolon at the end of a println() statement.
e. Calculate the sum of two numbers as N − M.

EXERCISE 1.4 Suppose you have a Java program stored in a file named
Test.java. Describe the compilation and execution process for this program,
naming any other files that would be created.

EXERCISE 1.5 Suppose N is 15. What numbers would be output by the fol-
lowing pseudocode algorithm? Suppose N is 6. What would be output by the
algorithm in that case?� �
0 . P r i n t N.
1 . I f N equals 1 , stop .
2 . I f N i s even , divide i t by 2 .
3 . I f N i s odd , t r i p l e i t and add 1 .
4 . Go to step 0 .
 	
EXERCISE 1.6 Suppose N is 5 and M is 3. What value would be reported by the
following pseudocode algorithm? In general, what quantity does this algorithm
calculate?� �
0 . Write 0 on a piece of paper .
1 . I f M equals 0 , repor t what ’ s on the paper and stop .
2 . Add N to the quant i ty wri t ten on the paper .
3 . S ubt rac t 1 from M.
4 . Go to step 1 .
 	

58 CHAPTER 1 • Java Program Design and Development

EXERCISE 1.7 Puzzle Problem: You are given two different length ropes that
have the characteristic that they both take exactly one hour to burn. However,
neither rope burns at a constant rate. Some sections of the ropes burn very fast;
other sections burn very slowly. All you have to work with is a box of matches
and the two ropes. Describe an algorithm that uses the ropes and the matches to
calculate when exactly 45 minutes have elapsed.

EXERCISE 1.8 Puzzle Problem: A polar bear that lives right at the North Pole
can walk due south for one hour, due east for one hour, and due north for one
hour, and end up right back where it started. Is it possible to do this anywhere
else on earth? Explain.

EXERCISE 1.9 Puzzle Problem: Lewis Carroll, the author of Alice in Wonder-
land, used the following puzzle to entertain his guests: A captive queen weighing
195 pounds, her son weighing 90 pounds, and her daughter weighing 165 pounds,
were trapped in a very high tower. Outside their window was a pulley and rope
with a basket fastened on each end. They managed to escape by using the baskets
and a 75-pound weight they found in the tower. How did they do it? The problem
is that anytime the difference in weight between the two baskets is more than 15
pounds, someone might get hurt. Describe an algorithm that gets them down
safely.

EXERCISE 1.10 Puzzle Problem: Here’s another Carroll favorite: A farmer
needs to cross a river with his fox, goose, and a bag of corn. There’s a rowboat
that will hold the farmer and one other passenger. The problem is that the fox will
eat the goose if they are left alone on the river bank, and the goose will eat the corn
if they are left alone on the river bank. Write an algorithm that describes how he
got across without losing any of his possessions.

EXERCISE 1.11 Puzzle Problem: Have you heard this one? A farmer lent the
mechanic next door a 40-pound weight. Unfortunately, the mechanic dropped
the weight and it broke into four pieces. The good news is that, according to the
mechanic, it is still possible to use the four pieces to weigh any quantity between
one and 40 pounds on a balance scale. How much did each of the four pieces
weigh? (Hint: You can weigh a 4-pound object on a balance by putting a 5-pound
weight on one side and a 1-pound weight on the other.)

EXERCISE 1.12 Suppose your little sister asks you to show her how to use a
pocket calculator so that she can calculate her homework average in her science
course. Describe an algorithm that she can use to find the average of 10 homework
grades.

EXERCISE 1.13 A Caesar cipher is a secret code in which each letter of the al-
phabet is shifted by N letters to the right, with the letters at the end of the alphabet
wrapping around to the beginning. For example, if N is 1, when we shift each
letter to the right, the word daze would be written as ebaf. Note that the z has
wrapped around to the beginning of the alphabet. Describe an algorithm that can
be used to create a Caesar encoded message with a shift of 5.

EXERCISE 1.14 Suppose you received the message, “sxccohv duh ixq,” which
you know to be a Caesar cipher. Figure out what it says and then describe an
algorithm that will always find what the message said regardless of the size of the
shift that was used.

EXERCISE 1.15 Suppose you’re talking to your little brother on the phone and
he wants you to calculate his homework average. All you have to work with is
a piece of chalk and a very small chalkboard—big enough to write one four-digit
number. What’s more, although your little brother knows how to read numbers,
he doesn’t know how to count very well so he can’t tell you how many grades
there are. All he can do is read the numbers to you. Describe an algorithm that
will calculate the correct average under these conditions.

CHAPTER 1 • Exercises 59

EXERCISE 1.16 Write a header for a public applet named SampleApplet.

EXERCISE 1.17 Write a header for a public method named getName.

EXERCISE 1.18 Design a class to represent a geometric rectangle with a given
length and width, such that it is capable of calculating the area and the perimeter
of the rectangle.

EXERCISE 1.19 Modify the OldMacDonald class to “sing” either “Mary Had a
Little Lamb” or your favorite nursery rhyme.

EXERCISE 1.20 Define a Java class, called Patterns, modeled after OldMac-
Donald, that will print the following patterns of asterisks, one after the other
heading down the page:� �
∗∗∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗
∗∗∗∗ ∗ ∗ ∗ ∗ ∗
∗∗∗ ∗ ∗ ∗ ∗
∗∗ ∗ ∗ ∗ ∗ ∗
∗ ∗∗∗∗∗ ∗∗∗∗∗
 	

EXERCISE 1.21 Write a Java class that prints your initials as block letters, as
shown in the example in the margin. ****** * *

* * ** **
* * * * * *
****** * * * *
** * * *
* * * *
* * * *
* * * *

EXERCISE 1.22 Challenge: Define a class that represents a Temperature ob-
ject. It should store the current temperature in an instance variable of type
double, and it should have two public methods, setTemp(double t), which
assigns t to the instance variable, and getTemp(), which returns the value of
the instance variable. Use the Riddle class as a model.

EXERCISE 1.23 Challenge: Define a class named TaxWhiz that computes the
sales tax for a purchase. It should store the current tax rate as an instance
variable. Following the model of the Riddle class, you can initialize the rate
using a TaxWhiz() method. This class should have one public method,
calcTax(double purchase), which returns a double, whose value is
purchases times the tax rate. For example, if the tax rate is 4 percent, 0.04, and
the purchase is $100, then calcTax() should return 4.0.

EXERCISE 1.24 What is stored in the variables num1 and num2 after the follow-
ing statements are executed?
int num1 = 5;
int num2 = 8;
num1 = num1 + num2;
num2 = nmm1 + num2;

EXERCISE 1.25 Write a series of statements that will declare a variable
of type int called num and store in it the difference between 61 and 51.

UML EXERCISES

EXERCISE 1.26 Modify the UML diagram of the Riddle class to con-
tain a method named getRiddle() that would return both the riddle’s
question and answer.

EXERCISE 1.27 Draw a UML class diagram representing the follow-
ing class: The name of the class is Circle. It has one attribute, a
radius that is represented by a double value. It has one operation,
calculateArea(), which returns a double. Its attributes should be
designated as private and its method as public.

60 CHAPTER 1 • Java Program Design and Development

EXERCISE 1.28 To represent a triangle we need attributes for each of
its three sides and operations to create a triangle, calculate its area, and
calculate its perimeter. Draw a UML diagram to represent this triangle.

EXERCISE 1.29 Try to give the Java class definition for the class de-
scribed in

+printName()

+printPhone()

-name : String

-phone : String

Person

Figure 1.16: The Person class.

the UML diagram shown in Figure 1.17.

OBJECTIVES
After studying this chapter, you will

• Be familiar with using variables to store and manipulate simple data.
• Be familiar with creating and using objects.
• Understand the relationship between classes and objects.
• Understand the difference between objects and data of primitive type.
• Understand the difference between static and and instance elements of a class.
• Be able to understand and design a simple class in Java.
• Understand some of the basic principles of object-oriented programming.

OUTLINE
2.1 Introduction
2.2 Using String Objects
2.3 Drawing Shapes with the Graphics Object (Optional)
2.4 Class Definition
2.5 Case Study: Simulating a Two-Person Game
2.6 From the Java Library: java.util.Scanner

Special Topic: Alan Kay and the Smalltalk Language
Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 2

Objects: Using, Creating,
and Defining

61

62 CHAPTER 2 • Objects: Using, Creating, and Defining

2.1 Introduction

This chapter introduces some more of the basic principles of object-
oriented programming. We begin by looking at some examples of creat-
ing and using objects of type String and Graphics. Then, we examine
how user defined classes are used by doing a detailed walk-through of the
Riddle class we saw in Chapter 1. We focus on the basic Java language
elements involved. By the end of these sections, you should know how to
identify the key elements that make up a Java program.

We then present a detailed example of the programming development
process by designing a class that models a certain two person game and
implements the class. The design is represented using UML notation.

2.2 Using String Objects

As we know, a Java program is a collection of interacting objects, where
each object is a module that encapsulates a portion of the program’s at-
tributes and actions. Objects belong to classes, which serve as templates
or blueprints for creating objects. Think again of the cookie cutter analogy.
A class is like a cookie cutter. Just as a cookie cutter is used to shape and
create individual cookies, a class definition is used to shape and create
individual objects.

Programming in Java is primarily a matter of designing and defining
class definitions, which are then used to construct objects. The objects
perform the program’s desired actions. To push the cookie cutter analogy
a little further, designing and defining a class is like building the cookie
cutter. Obviously, very few of us would bake cookies if we first had to
design and build the cookie cutters. We’d be better off using a pre-built
cookie cutter. By the same token, rather than designing our own classes,
it will be easier to get into “baking” programs if we begin by using some
predefined Java classes.

The Java library contains many pre-defined classes that we will use in
our programs. So let’s begin our study of programming by using two of
these classes, the String and Graphics classes.

2.2.1 Creating and Combining Strings
Strings are very useful objects in Java and in all computer programs. They

Figure 2.1: A partial representa-
tion of the String class.

are used for inputting and outputting all types of data. Therefore, it
essential that we learn how to create and use String objects.

Figure 2.1 provides an overview of a very small part of Java’s String
class. In addition to the two String() constructor methods, which are
used to create strings, it lists several useful instance methods that can
be used to manipulate strings. The String class also has two instance
variables. One stores the String’s value, which is a string of characters
such as “Hello98”, and the other stores the String’s count, which is the
number of characters in its string value.

Recall from Chapter 0 that in order to get things done in a program we
send messages to objects. The messages must correspond to the object’s
instance methods. Sending a message to an object is a matter of calling
one of its instance methods. In effect, we use an object’s methods to get the

SECTION 2.2 • Using String Objects 63

object to perform certain actions for us. For example, if we have a String,
named str and we want to find out how many characters it contains, we
can call its length() method, using the expression str.length(). If
we want to print str’s length, we can embed this expression in a print
statement:� �

System . out . p r i n t l n (s t r . length ()) ; // P r i n t s t r ’ s l e n g t h
 	
In general, to use an object’s instance method, we refer to the method in Dot notation
dot notation by first naming the object and then the method:

objectName.methodName() ;

The objectName refers to a particular object, and the methodName() refers
to one of its instance methods.

As this example makes clear, instance methods belong to objects, and in
order to use a method, you must first have an object that has that method.
So, to use one of the String methods in a program, we must first create
a String object.

To create a String object in a program, we first declare a String
variable.� �

S t r i n g s t r ; // D e c l a r e a S t r i n g v a r i a b l e n a m e d s t r
 	
We then create a String object by using

Figure 2.2: A String object stores
a sequence of characters and a
count giving the number of char-
acters.

the new keyword in conjunction with one of the String() construc-
tors. We assign the new object to the variable we declared:� �

s t r = new S t r i n g (” Hello ”) ; // C r e a t e a S t r i n g o b j e c t
 	
This example will create a String that contains, as its value, the word
”Hello” that is passed in by the constructor. The String object that this
creates is shown in Figure 2.2.

We can also use a constructor with an empty parameter list. Note that
in this case we combine the variable declaration and the object creation into
one statement:� �

S t r i n g s t r 2 = new S t r i n g () ; // C r e a t e a S t r i n g
 	
This example will create a String object that contains the empty string
as its value. The empty string has the literal value ”” – that is, a pair of
double quotes that contain no characters. Because the empty string has no
characters, the count variable stores a zero (Fig. 2.3).

Figure 2.3: The empty string has a
value of ”” and a its length is 0.

Note that we use a constructor to assign an initial value to a variable of
type String (or of a type equal to any other class). This differs from how
we assign an initial value to variables of primitive type, for which we use
a simple assignment operator. This difference is related to an important
difference in the way Java treats these two types of variables. Variables
of primitive type are names for memory locations where values of prim-
itive type are stored. As soon as they are declared they are assigned a
default value of that primitive type. The default value for int is 0 and

64 CHAPTER 2 • Objects: Using, Creating, and Defining

the default value for boolean is false. On the other hand, variables
that are declared to be of a type equal to a class name are designed to store
a reference to an object of that type. (A reference is also called a pointer
because it points to the memory address where the object itself is stored.)
A constructor creates an object somewhere in memory and supplies a ref-
erence to it that is stored in the variable. For that reason, variables that
are declared as a type equal to a class name are said to be variables of
reference type or reference variables. Reference variables have a special
default value called null after they are declared and before they are as-
signed a reference. It is possible to check whether or not a reference vari-
able contains a reference to an actual object by checking whether or not it
contains this null pointer.

Once you have constructed a String object, you can use any of the
methods shown in Figure 2.1 on it. As we already saw, we use dot no-
tation to call one of the methods. Thus, we first mention the name of the
object followed by a period (dot), followed by the name of the method. For
example, the following statements print the lengths of our two strings:� �

System . out . p r i n t l n (s t r . length ()) ;
System . out . p r i n t l n (s t r 2 . length ()) ;
 	
Another useful String method is the concat(String) method,

which can be used to concatenate two strings. This method takes a String
argument. It returns a String that combines the String argument to the
String that the method is called on. Consider this example:� �

S t r i n g s1 = new S t r i n g (”George ”) ;
S t r i n g s2 = new S t r i n g (”Washington”) ;
System . out . p r i n t l n (s1 . concat (s2)) ;
 	

In this case, the concat() method adds the String s2 to the end of the
String s1. The result, which gets printed, will be the String ”George
Washington”.

Because strings are so important, Java allows a number of shortcuts
to be used when creating and concatenating strings. For example, you
don’t have to use new String() when creating a new string object. The
following code will also work:� �

S t r i n g s1 = ”George ” ;
S t r i n g s2 = ”Washington” ;
 	

Similarly, an easier way to concatenate two String objects is to use the
plus sign (+), which serves as a concatenation operator in Java:� �

System . out . p r i n t l n (s1 + s2) ;
 	
Another useful String method is the equals() method. This is

a boolean method, which is used to compare two Strings. If both
Strings have the same characters, in the same order, it will return true.

SECTION 2.2 • Using String Objects 65

Otherwise it will return false. For example, consider the following code
segment:� �

S t r i n g s1 = ” Hello ” ;
S t r i n g s2 = ” Hello ” ;
S t r i n g s3 = ” h e l l o ” ;
 	

In this case, the expression s1.equals(s2)will be true, but s1.equals(s3)
will be false.

It is important to note that the empty string is not the same as a String
variable that contains null. Executing the statements:� �

S t r i n g s1 ;
S t r i n g s2 = ”” ;
System . out . p r i n t l n (s1 . equals (s2)) ;
 	

will not only not print out true; it will cause the the program to terminate
abnormally. It is an error to use the method of a String variable, or any
other variable whose type is a class, before it has been assigned an object.
When the above code is executed, it will report a null pointer exception,
one of the most common runtime errors. When you see that error mes-
sage, it means that some method was executed on a variable that does not
refer to an object. On the other hand, the empty string is a perfectly good
String object which just happens to contain zero characters.

Figure 2.4 shows a program that uses string concatenation to create

� �
public c l a s s StringPuns
{

public s t a t i c void main (S t r i n g args [])
{ S t r i n g s = new S t r i n g (” s t r i n g ”) ;

S t r i n g s1 = s . concat (” puns . ”) ;
System . out . p r i n t l n (”Here are the top 5 ” + s1) ;
S t r i n g s2 = ” 5 . Hey baby , wanna ” ;
S t r i n g s3 = s + ” along with me. ” ;
System . out . p r i n t l n (s2 + s3) ;
System . out . p r i n t l n (” 4 . I ’ ve got the world on a ” +

s + ” . ”) ;
S t r i n g s4 = new S t r i n g (”two”) ;
S t r i n g s5 = ” . You have more c l a s s than a ” ;
System . out . p r i n t (s4 . length ()) ;
System . out . p r i n t l n (s5 + s + ” of p e a r l s . ”) ;
System . out . p r i n t (” 2 . I t i s ”) ;
System . out . p r i n t (s . equals (” s t r i n g ”)) ;
System . out . p r i n t l n (” t h a t I am no ” + s + ” bean . ”) ;
S t r i n g s6 = ” q u i n t e t . ” ;
System . out . p r i n t l n (” 1 . These puns form a ” + s + s6) ;

} // m a i n ()

} // S t r i n g P u n s c l a s s
 	
Figure 2.4: A program that prints silly string puns.

66 CHAPTER 2 • Objects: Using, Creating, and Defining

some silly sentences. The programs declares a number of string variables,
named s, s1, and so on, and it instantiates a String object for each vari-
able to refer to. It then prints out a top-five list using the concatenation
operator to combine strings. Can you figure out what it prints without
running it?

SELF-STUDY EXERCISES
EXERCISE 2.1 What is the output to the console window when the

following Java code fragment is executed:� �
S t r i n g s = ” ing ” ;
System . out . p r i n t l n (”The s ” + s + s + ” k” + s + ” . ”) ;
 	
2.3 Drawing Shapes with a Graphics Object

(Optional)

All of the instance methods of the String class that we examined return
values. The length() method return an int value, and the concat()
method returned a String. It is also very common for classes to define
instance methods that perform actions but do not return a value. The
Graphics object, g, that appears in Chapter 1’s HelloWorldSwing is
one example. The program is reproduced in Figure 2.5� �

/∗ ∗ F i l e : H e l l o W o r l d S w i n g p r o g r a m ∗/

import j avax . swing . JFrame ; // I m p o r t c l a s s n a m e s

import j ava . awt . Graphics ;
import j ava . awt . Canvas ;

public c l a s s HelloWorldCanvas extends Canvas // C l a s s h e a d e r

{
// S t a r t o f b o d y

public void paint (Graphics g)
// T h e p a i n t m e t h o d

{
g . drawString (” Hello , World ! ” , 10 , 1 0) ;

} // E n d o f p a i n t

public s t a t i c void main (S t r i n g [] args){
HelloWorldCanvas c = new HelloWorldCanvas () ;
JFrame f = new JFrame () ;
f . add (c) ;
f . s e t S i z e (1 5 0 , 5 0) ;
f . s e t V i s i b l e (t rue) ;

}
} // E n d o f H e l l o W o r l d C a n v a s
 	

Figure 2.5: HelloWorldCanvas program source code.

SECTION 2.3 • Drawing Shapes with a GraphicsObject (Optional) 67

At this point we will not worry about the language features that en-
able the paint() method to draw on the Java Swing window. We
will focus instead on the information needed to make good use of the
g.drawString()method. The first thing you should know is that, when
the paint() method is executed, its parameter, g, refers to an instance of
the Graphics class. Unlike our other examples involving variables that
refer to objects, in this case there is no need to use a constructor to create
an object of type Graphics. We can assume g already refers to such an
object.

We already know that the statement� �
g . drawString (” Hello , World ! ” , 1 0 , 1 0) ;
 	

displays the String “Hello, World!” in the program window. More gen-
erally, if str is a literal String value or a reference to a String object
and x and y are literal int values or int variables then� �

g . drawString (s t r , x , y)
 	
displays the String str from left to right in the program window be-
ginning at a point which is x pixels from the left edge of the window and
y pixels down from the top edge of the window. In a graphics window,
the point with coordinates (0,0) is at the top-left corner. The horizontal
axis grows positively from left to right. The vertical axis grows positively
from top to bottom (Fig. 2.6).

Figure 2.6: Coordinate system of a
Java window.

(A pixel is a dot on the console window that can be set to a certain
color.) Notice that increasing the value of y will cause str to be displayed
lower. This is the opposite of the usual x and y coordinate system used in
mathematics where increasing the y value designates a higher point.

With this information about g.drawString(), we can calculate
where to display any message in the program window. For example, if
we wish to display the message “Welcome to Java” 25 pixels below where
“Hello, World!” is displayed we could use the statements� �

g . drawString (” Hello , World ! ” , 1 0 , 1 0) ;
g . drawString (”Welcome to Java ” , 1 0 , 3 5) ;
 	

in the body of HelloWorldCanvas’s paint() method. The result of
these statements would appear as shown in Figure 2.7.

2.3.1 Graphics Drawing Methods

The Graphics class discussed in the previous section also has methods
that can be used to draw geometric shapes in different colors. These meth-
ods can be used to create graphical user interfaces that are more interest-
ing or to give a visual representation of data, such as a pie chart or a bar
graph.

There are two Graphicsmethods for drawing rectangles, fillRect()
and drawRect() (Fig. 2.8). The first draws a rectangle and fills it with the
current drawing color and the second just draws the outline of the rectan-
gle. Using the Graphics object, g, each of these is called in the same way

68 CHAPTER 2 • Objects: Using, Creating, and Defining
Figure 2.7: “Hello, World!” is
drawn at coordinate (10, 10) and
“Welcome to Java” at (10, 35) on
the JFrame.

as the drawString() method from the previous example. Each of these
methods takes four int arguments, which specify the rectangle’s location

Figure 2.8: Some of the drawing
methods in the Graphics class.

and size. Thus, a call to fillRect() would take the form� �
g . f i l l R e c t (x , y , width , height) ;
 	

where x and y arguments specify the location of the upper left corner of
the rectangle as being x pixels from the left edge of the window and y
pixels down from the top edge of the window. The width and height
arguments specify the width and height of the rectangle in pixels. The
drawRect() method also takes the same four arguments.

A Graphics object stores a single color for use in drawing shapes or
displaying strings with drawString(). If we wish to draw an interesting
scene in the JFrame, we need to understand how to use colors.

For a given Graphics object, such as g, the setColor() method will
set its color for all subsequent drawing commands. The setColor()
method takes, as an argument, an object of type Color. All we need
to know about the Color class is that it is contained in the java.awt
package and that it contains 13 constant Color objects corresponding to
13 common colors. Table 2.1 lists the 13 Color constants. Each name
corresponds to the color it will represent in the program.

Color.black Color.green Color.red
Color.blue Color.lightGreen Color.white
Color.cyan Color.magenta Color.yellow
Color.darkGray Color.orange
Color.gray Color.pink

Table 2.1: Predefined color constants in the Color class.

To demonstrate how the new Graphics methods can be used for cre-
ating more interesting graphical programs, let’s develop a plan for dis-
playing the two messages, “Hello, World!” and “Welcome to Java.”, on
an JFrame, but this time we will draw the first inside a colored rectan-
gle and the second inside a colored oval. For the rectangle, let’s use the

SECTION 2.4 • Class Definition 69

drawRect() method to create its border. We can choose some arbitrary
colors, say, cyan for filling the rectangle, blue for its border, and black
for the string itself. In order to have the message visible we should fill a
rectangle with the color cyan first, then draw the border of the rectangle
in blue and, finally, display the message in black.

Drawing and filling a Graphics oval is very similar to drawing
and filling a rectangle. Notice in Figure 2.8 that the fillOval() and
drawOval() methods take the same four arguments as the correspond-
ing rectangle methods. An oval is inscribed within an enclosing rectangle.
The x and y arguments give the coordinates of the enclosing rectangle’s
top left point. And the width and height arguments give the enclosing
rectangles dimensions.

All that remains is to choose the location and dimensions of the rect-
angles. We could specify one rectangle as having its upper left corner 25
pixels to the right of the left edge of the JFrame and 25 pixels down from
the top edge. A medium sized rectangle could have a width of 140 pixels
and a height of 40 pixels. The statement� �

g . f i l l R e c t (2 5 , 25 , 140 , 4 0) ;
 	
will fill this rectangle with whatever color happens to be g’s current color.
A location 25 pixels to the right of the left edge of the rectangle and 25
pixels down from the top edge of the rectangle would have coordinates
x = 50 and y = 50. Thus, the statement� �

g . drawString (” Hello , World ! ” , 50 , 5 0) ;
 	
will display “Hello, World!” inside the rectangle. We can use similar
planning to locate the oval and its enclosed message.

Thus, we now have sufficient information to finish the paint()
method for accomplishing our plan. The completed program is displayed
in Figure 2.9. Note how we repeatedly use the g.setColor() method to
change g’s current color before drawing each element of our picture.

Figure 2.10 shows what this program looks like. To experiment with
this Java Swing application, download its sourcecode from the book’s Web
site and compile and run it on your computer. Additional drawing capa-
bilities will be explored throughout the text in sections that can either be
covered or skipped.

2.4 Class Definition

To program in Java the main thing you do is write class definitions for the The class as template
various objects that will make up the program. A class definition encapsu-
lates its objects’ data and behavior. Once a class has been defined, it serves
as a template, or blueprint, for creating individual objects or instances of the
class.

A class definition contains two types of elements: variables and meth-
ods. Variables are used to store the object’s information. Methods are used Variables and methods

70 CHAPTER 2 • Objects: Using, Creating, and Defining� �
import j ava . awt . ∗ ;
import j avax . swing . JFrame ;

public c l a s s HelloWorldGraphic extends Canvas
{

// c a l l e d a f t e r s e t V i s i b l e (t r u e)

public void paint (Graphics g) {
g . se tColor (Color . cyan) ; // S e t c o l o r

g . f i l l R e c t (2 5 , 25 , 140 , 4 0) ; // F i l l r e c t a n g l e

g . se tColor (Color . blue) ; // S e t c o l o r

g . drawRect (2 5 , 25 , 140 , 4 0) ; // O u t l i n e r e c t a n g l e

g . se tColor (Color . black) ; // S e t c o l o r

g . drawString (” Hello , World ! ” , 50 , 5 0) ; // D i s p l a y s t r i n g

g . se tColor (Color . yellow) ;
g . f i l l O v a l (2 5 , 75 , 140 , 4 0) ; // F i l l o v a l

g . se tColor (Color . red) ;
g . drawOval (2 5 , 75 , 140 , 4 0) ; // O u t l i n e o v a l

g . se tColor (Color . black) ;
g . drawString (”Welcome to Java ” , 50 , 1 0 0) ;

}// p a i n t ()

// t h e p r o g r a m

public s t a t i c void main (S t r i n g [] args){
HelloWorldCanvas c = new HelloWorldCanvas () ;
JFrame f = new JFrame () ;
f . add (c) ;
f . s e t S i z e (1 5 0 , 5 0) ;
f . s e t V i s i b l e (t rue) ;

}
} // H e l l o W o r l d G r a p h i c
 	
Figure 2.9: The HelloWorldGraphic class is a Java Swing program that
shows how to use color and drawing methods.

to process the information. To design an object you need to answer five
basic questions:

1. What role will the object perform in the program?
2. What data or information will it need?
3. What actions will it take?
4. What interface will it present to other objects?
5. What information will it hide from other objects?

Figure 2.11: The Riddle class.

2.4.1 The Riddle Class
Recall our definition of the Riddle class from Chapter 1, which is sum-
marized in the UML diagram in Figure 2.11. A Riddle has two attributes,
question and answer. Each of these variables stores a string of charac-
ters, which Java treats as data of type String. The Riddle class contains
three methods. The Riddle() constructor method assigns initial values
(q and a) to its question and answer variables. The getQuestion()
and getAnswer() methods return the data stored in question ands
answer respectively.

SECTION 2.4 • Class Definition 71
Figure 2.10: This is how the
HelloWorldGraphic program
will look when run.

The instance variables question and answer are designated as
private (−), but the Riddle(), getQuestion() and getAnswer()
methods are designated as public (+). These designations follow two
important object-oriented design conventions, whose justification will be-
come apparent as we discuss the Riddle class:

JAVA EFFECTIVE DESIGN Private Variables. Instance variables are
usually declared private so that they cannot be directly accessed by
other objects.

JAVA EFFECTIVE DESIGN Public Methods. An object’s public
methods can be used by other objects to interact with the object. The
public methods and variables of an object make up its interface.

Figure 2.12 shows the Java class definition that corresponds to the de-
sign given in the UML diagram. It contains the two private instance
variables and defines the three public methods listed in the UML dia-
gram. In a Java class definition, access to a class element, such as a vari-
able or a method, is controlled by labeling it with either the private, or
public access modifier. An access modifier is a declaration that controls Access modifier
access to a class or one of its elements. Note also that the Riddle class
itself is declared public. This lets other classes have access to the class
and to its public variables and methods.

Recall that a class is like a blueprint or a cookie cutter. The Riddle class
defines the type of information (attributes) that each individual Riddle
has, but it doesn’t contain any actual values. It defines the methods (op-
erations) that each Riddle can perform, but it doesn’t actually perform
the methods. In short, a class serves as a template, providing a detailed
blueprint of the objects (or instances) of that class. Class as blueprint

72 CHAPTER 2 • Objects: Using, Creating, and Defining� �
public c l a s s Riddle
{ private S t r i n g quest ion ; // I n s t a n c e v a r i a b l e s

private S t r i n g answer ;

public Riddle (S t r i n g q , S t r i n g a) // C o n s t r u c t o r

{ quest ion = q ;
answer = a ;

} // R i d d l e c o n s t r u c t o r

public S t r i n g getQuestion () // I n s t a n c e m e t h o d

{ return quest ion ;
} // g e t Q u e s t i o n ()

public S t r i n g getAnswer () // I n s t a n c e m e t h o d

{ return answer ;
} // g e t A n s w e r ()

} // R i d d l e c l a s s
 	
Figure 2.12: Definition of the Riddle class.

2.4.2 The RiddleUser Class
Now that we have defined the Riddle class, we can test that it works
correctly by creating Riddle objects and “asking” them to tell us their
riddles. To do this we need to define a main() method, which can be
defined either within the Riddle class itself or in a second class named
something like RiddleUser.

One advantage of using a second class is that it gets us in the habit ofUser interface
thinking about the need for a separate class to serve as a user interface,
with a separate set of tasks from the Riddle class. A user interface is an
object or class that handles the interaction between a program’s user and
the rest of the program’s computational tasks. This concept is illustrated
in Figure 2.13. Note that we use the general term computational object to
distinguish the rest of the program’s computations from the user interface.
Obviously, the exact nature of the computation will vary from program to
program, just as will the details of the user interface. The computation
done by our Riddle class is just the storing and displaying of a riddle’s
question and answer.

Figure 2.13: The user interfaces
handles interaction between the
user and the rest of the program.

By separating user interface tasks from riddle tasks this design em-
ploys the divide-and-conquer principle: the RiddleUser class will cre-
ate Riddle objects and handle interactions with the user, and the Riddle
class will handle the storing and transmission of riddle information. Thus,
as shown in Figure 2.14, this particular Java program will involve inter-
action between two types of objects: a RiddleUser and one or more
Riddles. Note that we characterize the relationship between Riddle
and RiddleUser with a one-way arrow labeled “Uses.” This is because
the RiddleUser will create an instance of Riddle and use its methods
to display (for the user) a riddle.

Because almost all of our programs will involve some form of a user in-
terface, we can generalize this design approach and follow it throughout
the book. One way to think about this approach is as a division of labor

SECTION 2.4 • Class Definition 73
Figure 2.14: This UML class di-
agram represents an association
between the RiddleUser and
Riddle classes. The Riddle-
User class will use one or more
objects of the Riddle class.

between a user interface class and a second computational class, which per-
forms whatever computations are needed by the particular program. In
this case the computations are the simple Riddle methods that we have
defined. In subsequent programs the computations will become more
complex, which will make all the more clear that they should be separated
from the user interface.

2.4.3 Object Instantiation: Creating Riddle Instances
Figure 2.15 shows the complete definition of the RiddleUser class,
which serves as a very simple user interface. It creates two Riddle ob-
jects, named riddle1 and riddle2. It then asks each object to request
each riddle’s question and answer and displays them on the console.� �
public c l a s s RiddleUser
{

public s t a t i c void main (S t r i n g argv [])
{ Riddle r i d d l e 1 = new Riddle (

”What i s black and white and red a l l over ? ” ,
”An embarrassed zebra . ”) ;

Riddle r i d d l e 2 = new Riddle (
”What i s black and white and read a l l over ? ” ,
”A newspaper . ”) ;

System . out . p r i n t l n (”Here are two r i d d l e s : ”) ;
System . out . p r i n t l n (r i d d l e 1 . getQuestion ()) ;
System . out . p r i n t l n (r i d d l e 2 . getQuestion ()) ;
System . out . p r i n t l n (”The answer to the f i r s t r i d d l e i s : ”) ;
System . out . p r i n t l n (r i d d l e 1 . getAnswer ()) ;
System . out . p r i n t l n (”The answer to the second i s : ”) ;
System . out . p r i n t l n (r i d d l e 2 . getAnswer ()) ;

} // m a i n ()

} // R i d d l e U s e r
 	
Figure 2.15: The RiddleUser class.

74 CHAPTER 2 • Objects: Using, Creating, and Defining

Let’s now discuss the statements that make up RiddleUser’s main()
method. The following statements use the Riddle() constructor to cre-
ate, or instantiate, two instances of the Riddle class:� �

Riddle r i d d l e 1 = new Riddle (
”What i s black and white and red a l l over ? ” ,
”An embarrassed zebra . ”) ;

Riddle r i d d l e 2 = new Riddle (
”What i s black and white and read a l l over ? ” ,

”A newspaper . ”) ;
 	
Note how the constructor gives each object a pair of Strings that serve
as the values of their two instance variables. Each object has its own
question and its own answer, and each object has its own unique name,
riddle1 and riddle2.

2.4.4 Interacting with Riddles
Once we have created Riddle instances with values assigned to their
question and answer instance variables, we can ask each riddle to tell
us either of its values. The following expression is an example of a method
call:� �

r i d d l e 1 . getQuestion ()
 	
Calling (or invoking) a method is a means of executing its code. The aboveMethod call
method call just gets the String value that is stored in the question
instance variable of riddle1.

JAVA PROGRAMMING TIP Method Call versus Method
Definition. Don’t confuse method calls with method definitions. The
definition specifies the method’s actions. The method call takes those
actions.

If we want to display the value of riddle1’s question, we can embed
this method call within a println() statement� �

System . out . p r i n t l n (r i d d l e 1 . getQuestion ()) ;
 	
This tells the System.out object to execute its println() method,
which displays the string given to it by riddle1 on the console. Thus,
the output produced by this statement will be� �

What i s black and white and red a l l over ?
 	
2.4.5 Define, Create, Use
As our Riddle example illustrates, writing a Java program is a matter of
three basic steps:

• Define one or more classes (class definition).

SECTION 2.4 • Class Definition 75

• Create objects as instances of the classes (object instantiation).
• Use the objects to do tasks (object use).

The Java class definition determines what information will be stored in
each object and what methods each object can perform. Instantiation cre-
ates an instance and associates a name with it in the program. The ob-
ject’s methods can then be called as a way of getting the object to perform
certain tasks.

76 CHAPTER 2 • Objects: Using, Creating, and Defining

SELF-STUDY EXERCISES
EXERCISE 2.2 Identify the following elements in the Riddle class

(Fig. 2.12):

• The name of the class.

• The names of two instance variables.

• The names of three methods.

EXERCISE 2.3 Identify the following elements in the RiddleUser
class (Fig. 2.15):

• The names of two Riddle instances.

• All six method calls of the Riddle objects in the program.

• Two examples of qualified names.

2.5 CASE STUDY: Simulating a Two-Person
Game

In this section, we will design and write the definition for a class that keeps
track of the details of a well known, two-person game. We will focus on
details of designing the definition of a class in the Java language. Our
objective is to understand what the program is doing and how it works
without necessarily understanding why it works the way it does. We will
get to “why” later in the book.

The game we will consider is played by two persons with a row of
sticks or coins or other objects. The players alternate turns. A player must
remove one, two, or three sticks from the row on his or her turn. The
player who removes the last stick from the row loses. The game can be
played with any number of sticks but starting with twenty one sticks is
quite common. This game is sometimes referred to as the game of ”Nim”,
but there is a similar game involving multiple rows of sticks that is more
frequently given that name. Thus we will refer to this game as ”One Row
Nim”.

2.5.1 Designing a OneRowNim class
Problem Specification

Let’s design a class named OneRowNim that simulates the game of One
Row Nim with a row of sticks. An object constructed with this class
should manage data that corresponds to having some specified number
of sticks when the game begins. It should keep track of whose turn it is
and it should allow a player to diminish the number of sticks remaining by
one, two, or three. Finally, a OneRowNim object should be able to decide
when the game is over and which player has won.

Problem Decomposition

Let’s design OneRowNim so that it can be used in with different kinds of
user interfaces. One user interface could manage a game played by two
persons who alternately designate their moves to the computer. Another
user interface could let a human player play against moves made by the

SECTION 2.5 • CASE STUDY: Simulating a Two-Person Game 77

computer. In either of these cases we could have a human player desig-
nate a move by typing from the keyboard after being prompted in a con-
sole window or, alternatively, by inputting a number into a text field or se-
lecting a radio button on a window. In this chapter, we will be concerned
only with designing an object for managing the game. We will design user
interfaces for the game in subsequent chapters.

Class Design: OneRowNim

As we saw in the Riddle example, class definitions can usually be broken
down into two parts: (1) the information or attributes that the object needs
which must be stored in variables, and (2) the behavior or actions the ob-
ject can take which are defined in methods. In this chapter, we will focus
on choosing appropriate instance variables and on designing methods as
blocks of reusable code. Recall that a parameter is a variable that tem-
porarily stores data values that are being passed to a method when that
method is called. In this chapter, we will restrict our design to methods
that do not have parameters and do not return values. We will return to
the problem of designing changes to this class in the next chapter after an
in-depth discussion of method parameters and return values.

The OneRowNim object should manage two pieces of information that What data do we need?
vary as the game is played. One is the number of sticks remaining in the
row and the other is which player has the next turn. Clearly, the number
of sticks remaining corresponds to a positive integer that can be stored in
a variable of type int. One suitable name for such a variable is nSticks.
For this chapter, let us assume that the game starts with 7 sticks, rather
than 21, to simplify discussion of the program.

Data designating which player takes the next turn could be stored in
different ways. One way to do this is to think of the players as player one
and player two and store a 1 or 2 in an int variable. Let’s use player as
the name for such a variable and assume that player one has the first turn.

The values of these two variable for a particular OneRowNim object at a
particular time describes the object’s state. An object’s state at the begin-
ning of a game is a 7 stored in nSticks and 1 stored in player. After
player one removes, say, two sticks on the first turn, the values 5 and 2
will be stored in the two variables.

Method Decomposition

Now that we have decided what information the OneRowNim object
should manage, we need to decide what actions it should be able to per-
form. We should think of methods that would be needed to communicate
with a user interface that is both prompting some human players as well
as receiving moves from them. Clearly, methods are needed for taking a What methods do we need?
turn in the game. If a message to a OneRowNim object has no argument
to indicate the number of sticks taken, there will need to be three meth-
ods corresponding to taking one, two, or three sticks. The method names
takeOne(), takeTwo(), and takeThree() are descriptive of this ac-
tion. Each of these methods will be responsible for reducing the value of
nSticks as well as changing the value of player.

78 CHAPTER 2 • Objects: Using, Creating, and Defining

We should also have a method that gives the information that a user
needs when considering a move. Reporting the number of sticks remain-
ing and whose turn it is to the console window would be an appropriate
action. We can use report() as a name for this action.

Figure 2.16 is a UML class diagram that summarizes this design of the

Figure 2.16: A UML class diagram
for OneRowNim.

OneRowNim class. Note that the methods are declared public (+) and
will thereby form the interface for a OneRowNim object. These will be the
methods that other objects will use to interact with it. Similarly, we have
followed the convention of designating an object’s instance variables—the
OneRowNim’s instance variables—be kept hidden from other objects, and
so we have designated them as private(−).

2.5.2 Defining the OneRowNim Class
Given our design of the OneRowNim class as described in Figure 2.16,
the next step in building our simulation is to begin writing the Java class
definition.

The Class Header

We need a class header, which will give the class a name and will spec-
ify its relationship to other classes. Like all classes that are designed to
create objects that could be used by other objects or classes, the class
OneRowNim should be preceded by the public modifier. Because the
class OneRowNim has not been described as having any relationship to
any other Java class, its header can omit the extends clause so it will
be a direct subclass of Object (Figure 2.17). Thus, the class header for

Figure 2.17: By default,
OneRowNim is a subclass of
Object.

OneRowNim will look like:� �
public c l a s s OneRowNim // C l a s s h e a d e r

{ // B e g i n n i n g o f c l a s s b o d y

} // E n d o f c l a s s b o d y
 	
The Class’s Instance Variables

The body of a class definition consists of two parts: the class-level vari-Variables and methods
ables and the method definitions. A class-level variable is a variable
whose definition applies to the entire class in which it is defined. Instance
variables, which were introduced in Chapter 1, are one kind of class-level
variable.

In general, a class definition will take the form shown in Figure 2.18.
Although Java does not impose any particular order on variable and

method declarations, in this book we’ll define the class’s class-level vari-
ables at the beginning of the class definition, followed by method defini-
tions. Class-level variables are distinguished from local variables. A localClass-level vs. local variables
variable is a variable that is defined within a method. Examples would
be the variables q and a that were defined in the Riddle(String q,
String a) constructor (Fig. 2.12). As we will see better in Chapter 3,
Java handles each type of variable differently.

A declaration for a variable at class level must follow the rules for
declaring variables that were described in Section 1.4.8 with the added

SECTION 2.5 • CASE STUDY: Simulating a Two-Person Game 79� �
public c l a s s ClassName
{ // I n s t a n c e a n d c l a s s v a r i a b l e s

V a r i a b le D e c l a r a t i o n 1
V a r i a b le D e c l a r a t i o n 2
. . .

// I n s t a n c e a n d c l a s s m e t h o d s

MethodDefinition1
MethodDefinition2
. . .

} // E n d o f c l a s s
 	
Figure 2.18: A template for constructing a Java class definition.

restriction that they should be modified by one of the access modifiers
public, private, or protected. The rules associated with these access
modifiers are:

• A private class-level variable cannot be accessed outside the class
in which it is declared.

• A public class-level variable can be referenced and, hence, modi-
fied by any other class.

• A protected class-level variable can only be accessed by sub-
classes of the class in which it is declared or by other classes that
belong to the same package.

When a class, instance variable, or method is defined, you can declare it
public, protected, or private. Or you can leave its access unspeci-
fied, in which case Java’s default accessibility will apply.

Java determines accessibility in a top-down manner. Instance vari-
ables and methods are contained in classes, which are contained in pack-
ages. To determine whether a instance variable or method is accessible,
Java starts by determining whether its containing package is accessible,
and then whether its containing class is accessible. Access to classes, in-
stance variables, and methods is defined according to the rules shown in
Table 2.2.

TABLE 2.2 Java’s accessibility rules.

Element Modifier Rule

Class public Accessible if its package is accessible.
by default Accessible only within its package.

Instance variable public Accessible to all other objects.
or protected Accessible to its subclasses and to
instance method other classes in its package.

private Accessible only within the class.
by default Accessible only within the package.

Recall the distinction we made in Chapter 0 between class variables
and instance variables. A class variable is associated with the class it-

80 CHAPTER 2 • Objects: Using, Creating, and Defining

self, whereas an instance variable is associated with each of the class’s in-
stances. In other words, each object contains its own copy of the class’s in-
stance variables, but only the class itself contains the single copy of a class
variable. To designate a variable as a class variable it must be declared
static.

The Riddle class that we considered earlier has the following two
examples of valid declarations of instance variables:� �

private S t r i n g quest ion ;
private S t r i n g answer ;
 	

Class Level Variables for OneRowNim

Let’s now consider how to declare the class level variables for the
OneRowNim class. The UML class diagram for OneRowNim in Figure 2.16
contains all the information we need. The variables nSticks and player
will store data for playing one game of One Row Nim, so they should
clearly be private instance variables. They both will store integer values,
so they should be declared as variables of type int. Because we wish
to start a game of One Row Nim using 7 sticks with player one making
the first move, we will assign 7 as the initial value for nSticks and 1 as
the initial value for player. If we add the declarations for our instance
variable declarations to the class header for the OneRowNim class, we get
the following:� �

public c l a s s OneRowNim
{

private i n t n S t i c k s = 7 ;
private i n t player = 1 ;

// M e t h o d d e f i n i t i o n s g o h e r e

} // OneRowNim
 	
To summarize, despite its apparent simplicity, a class level variable

declaration actually accomplishes five tasks:

1. Sets aside a portion of the object’s memory that can be used to store a
certain type of data.

2. Specifies the type of data that can be stored in that location.
3. Associates an identifier (or name) with that location.
4. Determines which objects have access to the variable’s name.
5. Assigns an initial value to the location.

OneRowNim’s Methods

Designing and defining methods is a form of abstraction. By defining a
certain sequence of actions as a method, you encapsulate those actions
under a single name that can be invoked whenever needed. Instead of
having to list the entire sequence again each time you want it performed,
you simply call it by name. As you recall from Chapter 1, a method def-
inition consists of two parts, the method header and the method body.

SECTION 2.5 • CASE STUDY: Simulating a Two-Person Game 81

The method header declares the name of the method and other general
information about the method. The method body contains the executable
statements that the method performs.� �

public void methodName () // M e t h o d h e a d e r

{ // B e g i n n i n g o f m e t h o d b o d y

} // E n d o f m e t h o d b o d y
 	
The Method Header

The method header follows a general format that consists of one or
more MethodModifiers, the method’s ResultType, the MethodName, and the
method’s FormalParameterList, which is enclosed in parentheses. The fol-
lowing table illustrates the method header form, and includes several ex-
amples of method headers that we have already encountered. The method
body follows the method header.

MethodModifiersopt ResultType MethodName (FormalParameterList)

public static void main (String argv[])
public void paint (Graphics g)
public Riddle (String q, String a)
public String getQuestion ()
public String getAnswer ()

The rules on method access are the same as the rules on instance vari-
able access: private methods are accessible only within the class it-
self, protected methods are accessible only to subclasses of the class
in which the method is defined and to other classes in the same package,
and public methods are accessible to all other classes.

JAVA EFFECTIVE DESIGN Public versus Private Methods. If a
method is used to communicate with an object, or if it passes
information to or from an object, it should be declared public. If a
method is intended to be used solely for internal operations within the
object, it should be declared private. These methods are sometimes
called utility methods or helper methods.

Recall the distinction from Chapter 0 between instance methods and
class methods. Methods declared at the class level are assumed to be in-
stance methods unless they are also declared static. The static modifier
is used to declare that a class method or variable is associated with the
class itself, rather than with its instances. Just as for static variables,
methods that are declared static are associated with the class and are
therefore called class methods. As its name implies, an instance method can
only be used in association with an object (or instance) of a class. Most
of the class-level methods we declare will be instance methods. Class
methods are used only rarely in Java and mainly in situations where it

82 CHAPTER 2 • Objects: Using, Creating, and Defining

is necessary to perform some kind calculation before objects of the class
are created. We will see examples of class methods when we discuss the
Math class, which has such methods as sqrt(N) to calculate the square
root of N.

JAVA PROGRAMMING TIP Class versus Instance Methods. If a
method is designed to be used by an object, it is referred to as an
instance method. No modifier is needed to designate an instance
method. Class methods, which are used infrequently compared to
instance methods, must be declared static.

All four of the methods in the OneRowNim class are instance methods
(Fig. 2.19). They all perform actions associated with a particular instance� �
public c l a s s OneRowNim
{ private i n t n S t i c k s = 7 ; // S t a r t w i t h 7 s t i c k s .

private i n t player = 1 ; // P l a y e r 1 p l a y s f i r s t .

public void takeOne () { } // M e t h o d b o d i e s n e e d

public void takeTwo () { } // t o b e d e f i n e d .

public void takeThree () { }
public void repor t () { }

} // OneRowNim c l a s s
 	
Figure 2.19: The Instance variables and method headers for the
OneRowNim class.

of OneRowNim. That is, they are all used to manage a particular One Row
Nim game. Moreover, all four methods should be declared public, be-
cause they are designed for communicating with other objects rather than
for performing internal calculations. Three of the methods are described
as changing the values of the instance variables nSticks and player
and the fourth, report(), writes information to the console. All four
methods will receive no data when being called and will not return any
values. Thus they should all have void as a return type and should all
have empty parameter lists.

Given these design decisions, we now can add method headers to our
class definition of OneRowNim, in Figure 2.19. The figure displays the class
header, instance variable declarations, and method headers.

The Method Body

The body of a method definition is a block of Java statements enclosedDesigning a method is an application
of the encapsulation principle. by braces, , which are executed in sequence when the method is called.

The description of the action required of the takeOne() method is typ-
ical of many methods that change the state of an object. The body of
the takeOne() method should use a series of assignment statements
to reduce the value stored in nSticks by one and change the value in

SECTION 2.5 • CASE STUDY: Simulating a Two-Person Game 83

player from 2 to 1 or from 1 to 2. The first change is accomplished in a
straightforward way by the assignment:� �

n S t i c k s = n S t i c k s − 1 ;
 	
This statement says subtract 1 from the value stored in nSticks and
assign the new value back to nSticks.

Deciding how to change the value in player is more difficult because
we do not know whether its current value is 1 or 2. If its current value is 1,
its new value should be 2; if its current value is 2, its new value should be
1. Notice, however, that in both cases the current value plus the desired
new value are equal to 3. Therefore, the new value of player is equal to
3 minus its current value. Writing this as an assignment we have:� �

player = 3 − player ;
 	
One can easily verify that this clever assignment assigns 2 to player if its
current value is 1 and assigns 1 to it if its current value is 2. In effect, this
assignment will toggle the value off player between 1 and 2 each time
it is executed. In the next chapter we will introduce the if-else control
structure that would allow us to accomplish this same toggling action in
a more straightforward manner. The complete definition of takeOne()
method becomes:� �

public void takeOne ()
{

n S t i c k s = n S t i c k s − 1 ; // T a k e o n e s t i c k

player = 3 − player ; // C h a n g e t o o t h e r p l a y e r

}
 	
The takeTwo() and takeThree() methods are completely analogous
to the takeOne() method with the only difference being the amount
subtracted from nSticks.

The body of the report() method must merely print the cur-
rent values of the instance variables to the console window with
System.out.println(). To be understandable to someone using a
OneRowNim object, the values should be clearly labeled. Thus the body
of report() could contain:� �

System . out . p r i n t l n (”Number of s t i c k s l e f t : ” + n S t i c k s) ;
System . out . p r i n t l n (”Next turn by player ” + player) ;
 	

This completes the method bodies of the OneRowNim class. The com-
pleted class definition is shown in Figure 2.20. We will discuss alterna-
tive methods for this class in the next chapter. In Chapter 4, we will de-
velop several One Row Nim user interface classes that will facilitate a user
indicating certain moves to make.

84 CHAPTER 2 • Objects: Using, Creating, and Defining� �
public c l a s s OneRowNim
{ private i n t n S t i c k s = 7 ; // S t a r t w i t h 7 s t i c k s .

private i n t player = 1 ; // P l a y e r 1 p l a y s f i r s t .

public void takeOne ()
{ n S t i c k s = n S t i c k s − 1 ;

player = 3 − player ;
} // t a k e O n e ()

public void takeTwo ()
{ n S t i c k s = n S t i c k s − 2 ;

player = 3 − player ;
} // t a k e T w o ()

public void takeThree ()
{ n S t i c k s = n S t i c k s − 3 ;

player = 3 − player ;
} // t a k e T h r e e ()

public void repor t ()
{ System . out . p r i n t l n (”Number of s t i c k s l e f t : ” + n S t i c k s) ;

System . out . p r i n t l n (”Next turn by player ” + player) ;
} // r e p o r t ()

} // OneRowNim1 c l a s s
 	
Figure 2.20: The OneRowNim class definition.

2.5.3 Testing the OneRowNim Class

Recall our define, create, and use mantra from Section 2.4.5. Now that we
have defined the OneRowNim class, we can test whether it works correctly
by creating OneRowNim objects and using them to perform the actions as-
sociated with the game. At this point, we can test OneRowNim by defining
a main() method. Following the design we used in the riddle example,
we will locate the main() method in separate, user interface class, named
OneRowNimTester.

The body of main() should declare a variable of type OneRowNim and
create an object for it to refer to. The variable can have any name, but a
name like game would be consistent with it recording moves in a single
game. To test the OneRowNim class, we should make a typical series of
moves. For example, three moves taking 3, 3, and 1 sticks respectively
would be one way that the 7 sticks could be removed. Also, executing
the report() method before the first move and after each move should
display the current state of the game in the console window so that we can
determine whether it is working correctly.

The following pseudocode outlines an appropriate sequence of state-
ments in a main() method:

SECTION 2.5 • CASE STUDY: Simulating a Two-Person Game 85

1. Declare a variable of type OneRowNim named game.
2. Instantiate a OneRowNim object to which game refers.
3. Command game to report.
4. Command game to remove three sticks.
5. Command game to report.
6. Command game to remove three sticks.
7. Command game to report.
8. Command game to remove one stick.
9. Command game to report.

It is now an easy task to convert the steps in the pseudocode outline
into Java statements. The resulting main() method is shown with the
complete definition of the OneRowNimTester class:� �

public c l a s s OneRowNimTester
{ public s t a t i c void main (S t r i n g args [])
{ OneRowNim1 game = new OneRowNim () ;

game . repor t () ;
game . takeThree () ;
game . repor t () ;
game . takeThree () ;
game . repor t () ;
game . takeOne () ;
game . repor t () ;

} // m a i n ()

}
 	
When it is run, OneRowNimTester produces the following output:� �

Number of s t i c k s l e f t : 7
Next turn by player 1
Number of s t i c k s l e f t : 4
Next turn by player 2
Number of s t i c k s l e f t : 1
Next turn by player 1
Number of s t i c k s l e f t : 0
Next turn by player 2
 	

This output indicates that player 1 removed the final stick and so player 2
is the winner of this game.

SELF-STUDY EXERCISES
EXERCISE 2.4 Add a new declaration to the Riddle class for a
private String instance variable named hint. Assign the variable
an initial value of "This riddle is too easy for a hint".

EXERCISE 2.5 Write a header for a new method definition for Riddle
named getHint(). Assume that this method requires no parameters
and that it simply returns the String value stored in the hint instance
variable. Should this method be declared public or private?

86 CHAPTER 2 • Objects: Using, Creating, and Defining

EXERCISE 2.6 Write a header for the definition of a new public
method for Riddle named setHint() which sets the value of the hint
instance variable to whatever String value it receives as a parameter.
What should the result type be for this method?

EXERCISE 2.7 Create a partial definition of a Student class. Create
instance variables for the first name, last name, and an integer student
identification number. Write the headers for three methods. One method
uses three parameters to set values for the three instance variables. One
method returns the student identification number. The last method re-
turns a String containing the student’s first name and last name. Write
only the headers for these methods.

2.5.4 Flow of Control: Method Call and Return
A program’s flow of control is the order in which its statements are ex-
ecuted. In an object-oriented program, control passes from one object to
another during the program’s execution. It’s important to have a clear
understanding of this process.

In order to understand a Java program, it is necessary to understand the
method call and return mechanism. We will encounter it repeatedly. A
method call causes a program to transfer control to a statement located in
another method. Figure 2.21 shows the method call and return structure.

Figure 2.21: The method call and
return control structure. It’s im-
portant to realize that method1()
and method2() may be con-
tained in different classes.

method1()

method2();

nextstatement1;

method2()

statement1;

return;

In this example, we have two methods. We make no assumptions about
where these methods are in relation to each other. They could be defined
in the same class or in different classes. The method1() method executes
sequentially until it calls method2(). This transfers control to the first
statement in method2(). Execution continues sequentially through the
statements in method2() until the return statement is executed.

JAVA LANGUAGE RULE Return Statement. The return
statement causes a method to return control to the calling
statement—that is, to the statement that called the method in the first
place.

Recall that if a void method does not contain a return statement, then
control will automatically return to the calling statement after the invokedDefault returns
method executes its last statement.

2.5.5 Tracing the OneRowNim Program
To help us understand the flow of control in OneRowNim, we will perform
a trace of its execution. Figure 2.22 shows all of the Java code involved in
the program. In order to simplify our trace, we have moved the main()
method from OneRowNimTester to the OneRowNim class. This does not

SECTION 2.5 • CASE STUDY: Simulating a Two-Person Game 87� �
public c l a s s OneRowNim

2 { private i n t n S t i c k s = 7 ; // S t a r t w i t h 7 s t i c k s .

3 private i n t player = 1 ; // P l a y e r 1 p l a y s f i r s t .

public void takeOne ()
20 { n S t i c k s = n S t i c k s − 1 ;
21 player = 3 − player ;

} // t a k e O n e ()

public void takeTwo ()
{ n S t i c k s = n S t i c k s − 2 ;

player = 3 − player ;
} // t a k e T w o ()

public void takeThree ()
8 ,14 { n S t i c k s = n S t i c k s − 3 ;
9 ,15 player = 3 − player ;

} // t a k e T h r e e ()

public void repor t ()
5 ,11 ,17 ,23 { System . out . p r i n t l n (”Number of s t i c k s l e f t : ” + n S t i c k s) ;
6 , 12 ,18 ,24 System . out . p r i n t l n (”Next turn by player ” + player) ;

} // r e p o r t ()

public s t a t i c void main (S t r i n g args [])
1 { OneRowNim1 game = new OneRowNim1 () ;
4 game . repor t () ;
7 game . takeThree () ;
10 game . repor t () ;
13 game . takeThree () ;
16 game . repor t () ;
19 game . takeOne () ;
22 game . repor t () ;
23 } // m a i n ()

} // OneRowNim1 c l a s s
 	
Figure 2.22: A trace of the OneRowNim program.

affect the program’s order of execution in any way. But keep in mind that
the code in the main() method could just as well appear

in the OneRowNimTester class. The listing in Figure 2.22 also adds
line numbers to the program to show the order in which its statements are
executed.

Execution of the OneRowNim program begins with the first statement
in the main() method, labeled with line number 1. This statement de-
clares a variable of type OneRowNim named game and calls a constructor
OneRowNim() to create and initialize it. The constructor, which in this
case is a default constructor, causes control to shift to the declaration of

nSticks : int=7

player : int=1

game : OneRowNim

Figure 2.23: The initial state of
game, a OneRowNim object.

the instance variables nSticks and player in statements 2 and 3, and as-
signs them initial values of 7 and 1 respectively. Control then shifts back to
the second statement in main(), which has the label 4. At this point, game
refers to an instance of the OneRowNim class with an initial state shown in
Figure 2.23. Executing statement 4 causes control to shift to the report()

88 CHAPTER 2 • Objects: Using, Creating, and Defining

method where statements 5 and 6 use System.out.println() to write
the following statements to the console.� �

Number of s t i c k s l e f t : 7
Next turn by player 1
 	

Control shifts back to statement 7 in the main() method, which calls
the takeThree() method, sending control to the first statement of that
method. Executing statement 8 causes 3 to be subtracted from the int
value stored in the instance variable nSticks of game, leaving the value
of 4. Executing statement 9 subtracts the value stored in the player vari-
able, which is 1, from 3 and assigns the result (the value 2) back to player.
The state of the object game, at this point, is shown in Figure 2.24. Tracing

nSticks : int=4

player : int=2

game : OneRowNim

Figure 2.24: The state of game af-
ter line 9 is executed.

the remainder of the program follows in a similar manner. Notice that
the main() method calls game.report() four different times so that
the two statements in the report() method are both executed on four
different occasions. Note also that there is no call of game.takeTwo()
in main(). As a result, the two statements in that method are never
executed.

2.5.6 Object-Oriented Design: Basic Principles
We complete our discussion of the design and this first implementation
of the OneRowNim class with a brief review of some of the object-oriented
design principles that were employed in this example.

• Encapsulation. The OneRowNim class was designed to encapsulate a
certain state and a certain set of actions. It was designed to simulate
playing the One Row Nim game. In addition, OneRowNim’s methods
were designed to encapsulate the actions that make up their particular
tasks.
• Information Hiding. OneRowNim’s instance variables, nSticks and
player are declared private so other objects can only change the
values of these variables with the public methods of a OneRowNim in-
stance. The bodies of the public methods are also hidden from users
of OneRowNim instances. An instance and its methods can be used
without any knowledge of method definitions.
• Clearly Designed Interface. OneRowNim’s interface is defined in terms

of the public methods. These methods constrain the way users can in-
teract with OneRowNim objects and ensures that OneRowNim instances
remain in a valid state. Those are the main purposes of a good interface.
• Generality and Extensibility. There is little in our design of
OneRowNim that limits its use and its extensibility. Moreover, as we
will see later, we can create several different kinds of user interfaces
which interact with OneRowNim objects.

The OneRowNim class has some obvious shortcomings that are a result
of our decision to limit methods to those without parameters or return
values. These shortcomings include:

• A OneRowNim object cannot communicate to another object the number
of remaining sticks, which player makes the next turn, or whether the
game is over. It can only communicate by writing a report to the console
window.

SECTION 2.5 • CASE STUDY: Simulating a Two-Person Game 89

• The takeOne(), takeTwo() and takeThree() methods all have
similar definitions. It would be a better design if a single method could
take away a specified number of sticks.
• There is no way to play a OneRowNim game starting with a different

number of sticks than 7. It would be nice to have a way of playing a
game that starts with any number of sticks.
• In order to for a user to play a OneRowNim game, a user interface

class would need to be developed that would allow the user to receive
information about the state of the game and to input moves to make.

As we study other features of Java in the next two chapters, we will
modify the OneRowNim class to address these identified shortcomings.

Special Topic: Alan Kay and
the Smalltalk Language

Although Simula was the first programming language to use the con-
cept of an object, the first pure object-oriented language was Smalltalk.
Smalltalk was first started by Alan Kay in the late 1960s. Kay is an
innovative thinker who has had a hand in the development of several
advances, including windowing interfaces, laser printing, and the clien-
t/server model, all of which are now commonplace today.

One of the abiding themes throughout Kay’s career has been the idea
that computers should be easy enough for kids to use. In the late 1960s,
while still in graduate school, Kay designed a computer model that con-
sisted of a notebook-sized portable computer with a keyboard, screen,
mouse, and high-quality graphics interface. He had become convinced
that graphics and icons were a far better way to communicate with a
computer than the command-line interfaces that were prevalent at the
time.

In the early 1970s Kay went to work at the Xerox Palo Alto Research
Center (PARC), where he developed a prototype of his system known as
the Dynabook. Smalltalk was the computer language Kay developed for
this project. Smalltalk was designed along a biological model, in which
individual entities or “objects” communicate with each other by passing
messages back and forth. Another goal of Smalltalk was to enable children
to invent their own concepts and build programs with them—hence, the
name Smalltalk.

Xerox’s management was unable to see the potential in Kay’s innova-
tions. However, during a visit to Xerox in 1979, Steve Jobs, the founder
of Apple Computer, was so impressed by Kay’s work that he made it the
inspiration of the Macintosh computer, which was first released in 1984.

Kay left Xerox in 1983 and became an Apple Fellow in 1984. In ad-
dition to working for Apple, Kay spent considerable time teaching kids
how to use computers at his Open School in West Hollywood. In 1996
Kay became a Fellow (an “Imagineer”) at the Walt Disney Imagineering’s
Research and Development Organization, where he continues to explore
innovative ways to enhance the educational and entertainment value of
computers.

90 CHAPTER 2 • Objects: Using, Creating, and Defining

2.6 From the Java Library: java.util.Scanner.

If we wish to write useful interactive programs, we must be able to re-
ceive information from the user as well as send information to him or
her. We saw, in the previous chapter, that output from a program can be
sent to the console window by simply using the System.out.print()
and System.out.println() statements. In this section we describe
two simple ways that Java can handle keyboard input. Receiving input
from the keyboard, together with sending output to the console window,
creates one of the standard user interfaces for programs.

Recall, that in Java, any source or destination for I/O is considered a
stream of bytes or characters. To perform keyboard input, we will extract
characters from System.in, the input stream connected to the keyboard.
Getting keyboard input from System.in involves two complications that
are not present in dealing with System.out.println(). First, normal
keyboard input data requested of a user consists of a sequence of char-
acters or digits which represent a word, phrase, integer, or real number.
Normally, an entire sequence of characters typed by the user will repre-
sent data to be stored in a single variable with the user hitting the return
or enter key to signal the end of a piece of requested data. Java has a spe-
cial class, BufferedReader, that uses an input stream and has a method
that collects characters until it reads the character or characters that corre-
spond to hitting the return or enter key. A second complication for reading

Figure 2.25: The Scanner class,
with a partial list of its public
methods.

input involves the problem of how to handle receiving data that is not in
the same format as expected. The BufferedReader class handles this
problem by using certain exceptions, a special kind of error message, that
must be handled by the programmer. Chapter 11 is devoted to exceptions
and we will avoid their use, as far as possible, until that time.

There is an alternate way to handle keyboard input in the Java 2 Plat-
form Standard Edition 5.0 (Java SE 5.0). A Scanner class has been added
to the java.util package which permits keyboard input without forc-
ing the programmer to handle exceptions. We introduce the Scanner
class in the next subsection and then describe how a user defined class
introduced in Chapter 4 can function in an equivalent fashion to permit
simple keyboard input.

2.6.1 Keyboard Input with the Scanner Class

A partial definition of Scanner is shown in Figure 2.25. Note that the
Scanner methods listed are but a small subset of the public methods of
this class. The Scanner class is in the java.util package so classes that
use it should import it with the following statement:� �

import j ava . u t i l . Scanner ;
 	
The Scanner class is designed to be a very flexible way to recognize
chunks of data that fit specified patterns from any input stream. To use
the Scanner class for keyboard input, we must create a Scanner in-

SECTION 2.6 • From the Java Library: java.util.Scanner. 91

stance and associate it with System.in. The class has a constructor for
this purpose, so the statement� �

Scanner sc = new Scanner (System . in) ;
 	
declares and instantiates an object that can be used for keyboard input.
After we create a Scanner object, we can make a call to nextInt(),
nextDouble(), or next() to read, respectively, an integer, real number,
or string from the keyboard. The program in Figure 2.26 demonstrates
how an integer would be read and used. When the nextInt() method

� �
import j ava . u t i l . Scanner ;

public c l a s s TestScanner
{

public s t a t i c void main (S t r i n g [] args)
{ // C r e a t e S c a n n e r o b j e c t

Scanner sc = new Scanner (System . in) ;
System . out . p r i n t (” Input an i n t e g e r : ”) ; // P r o m p t

i n t num = sc . n e x t I n t () ; // R e a d a n i n t e g e r

System . out . p r i n t l n (num + ” squared = ” + num∗num) ;
} // m a i n ()

} // T e s t S c a n n e r c l a s s
 	
Figure 2.26: A very brief program with a Scanner object used for keyboard
input

is executed, no further statements are executed until an int value is re-
turned by the method. Normally this does not happen until the user has
typed in the digits of an integer and hit the return or enter key. Thus ex-
ecuting the main() method of the TestScanner class will result in the
output� �

Input an i n t e g e r :
 	
to the console window and the program will wait for the user to type in
an integer and hit the return or enter key. After this has been done the
output will look something like:� �

Input an i n t e g e r : 1 2 3
123 squared = 15129
 	

Keyboard input of real numbers and strings are handled in a similar
manner.

92 CHAPTER 2 • Objects: Using, Creating, and Defining

Keyboard input will allow us to create examples of command line
interfaces for interactive programs. For example, the code� �

Scanner sc = new Scanner (System . in) ;
Riddle r i d d l e = new Riddle (

”What i s black and white and red a l l over ? ” ,
”An embarrassed zebra . ”) ;

System . out . p r i n t l n (”Here i s a r i d d l e : ”) ;
System . out . p r i n t l n (r i d d l e . getQuestion ()) ;
System . out . p r i n t (”To see the answer , ”) ; // P r o m p t

System . out . p r i n t l n (” type a l e t t e r and enter . ”) ;
S t r i n g s t r = sc . next () ; // W a i t f o r i n p u t

System . out . p r i n t l n (r i d d l e . getAnswer ()) ;
 	
will display a riddle question and prompt the user to type a letter and to
hit the enter key to see the answer. In the next chapter, we will develop
new methods for the OneRowNim class that will be able to use int values
input from the keyboard for the next move.

We must mention that, since the Scanner class is designed as a flexi-
ble tool for recognizing chunks of data from any input stream, it has some
properties that may be unexpected and not totally compatible with sim-
ple keyboard input. A Scanner object has a set of character strings that
separate or delimit the chunks of data that it is looking for. By default,
this set of delimiters consists of any non-empty sequence of white space
characters, that is, the space, tab, return, and newline characters. This will
allow a user to input several integers separated by spaces before hitting
the enter key. This might be handled by code like:� �

System . out . p r i n t (” Input two i n t e g e r s and an enter : ”) ;
i n t num1 = sc . n e x t I n t () ;
i n t num2 = sc . n e x t I n t () ;
 	

White space as delimiters also means that the next() method cannot re-
turn an empty string nor can it return a string that contains any spaces.
For example, consider the code:� �

System . out . p r i n t (” Input the f i r s t pres ident of the USA: ”) ;
S t r i n g s t r = sc . next () ;
 	

If one types ”George Washington” and hits the enter key, the string str
will store only ”George”. In order to get a Scanner object to read strings
that contain spaces, we must use the useDelimiter() method to de-
fine the set of delimiters as just that character string generated by hitting
the enter key. For example, for some Windows operating systems, the
statement� �

sc = sc . useDel imiter (”\ r\n”) ;
 	

SECTION 2.6 • From the Java Library: java.util.Scanner. 93

will result in the next() method returning the entire string of charac-
ters input from the keyboard up to but not including those generated by
hitting the enter key.

You should also be aware that just because we can use a Scanner object
to write Java code that ignores exceptions does not mean that exceptions
will not be generated by keyboard input. If the user enters letters rather
than digits for the nextInt() method to process, the program will be
terminated with an error message.

It must be stressed that the strategy for handling keyboard input out-
lined above is a temporary strategy until the topic of exceptions is cov-
ered in Chapter 11. Real software applications that use keyboard input
should carefully handle the possibility that a user will enter something
unexpected. In Java, this can only be done by handling exceptions.

2.6.2 Keyboard Input with the KeyboardReader Class

Figure 2.27: A UML class diagram
of the KeyboardReader class.

If you are using an older version of Java that does not have the Scanner
class, a user-defined class can be used instead. A KeyboardReader
class that uses the BufferedReader class will be developed in Chap-
ter 4. It has methods that read data from the keyboard in a manner very
similar to those of the Scanner class. A partial list of its public meth-
ods is given in the UML class diagram shown in Figure 2.27. To use
the KeyboardReader class for keyboard input, copy the source code
KeyboardReader.java from Chapter 4 into the same directory as the
source code of your current Java class (and add it to your current project
if you are using a integrated development environment).

To use a KeyboardReader object, we need to create an instance of
the class with a constructor. Then calling one of the three methods will
return an int, double, or String when data is input from the keyboard.
Any of the three methods of a KeyboardReader object will attempt to
process the entire string input from the keyboard up to the point that the
enter key is hit. That is, the character or characters generated by hitting
the return or enter key is the delimiter used by KeyboardReader. The
TestKeyboardReader class definition in Figure 2.28 reads an integer

� �
public c l a s s TestKeyboardReader
{

public s t a t i c void main (S t r i n g [] args)
{ // C r e a t e K e y b o a r d R e a d e r o b j e c t

KeyboardReader kb = new KeyboardReader () ;
System . out . p r i n t (” Input an i n t e g e r : ”) ; // P r o m p t

i n t num = kb . getKeyboardInteger () ; // R e a d a n i n t e g e r

System . out . p r i n t l n (num + ” squared = ” + num∗num) ;
} // m a i n ()

} // T e s t K e y b o a r d R e a d e r c l a s s
 	
Figure 2.28: A very brief program with a KeyboardReader object used for
keyboard input.

from the keyboard and squares it just like the TestScanner class. In the
remainder of the text, any time the Scanner class is used for keyboard

94 CHAPTER 2 • Objects: Using, Creating, and Defining

input, the same program can be run using the KeyboardReader class
after making the obvious substitutions.

SELF-STUDY EXERCISES
EXERCISE 2.8 Modify the main() method of the TestScanner class

so that it reads a real number from the keyboard rather than an integer.

CHAPTER SUMMARY Technical Terms
access modifier
class-level variable
default value
delimiter
empty string
flow of control
interface

local variable
method call and

return
null pointer
null pointer

exception
pointer

reference
reference variable
static modifier
user interface

Summary of Important Points
• Dot notation is used to refer to an object’s public elements.
• Designing a class is a matter of deciding what role it will play and what

information and actions it will have.
• Writing a Java program is a matter of defining one or more classes. A

class definition serves as a template for creating instance of the class.
• Classes typically contain two kinds of elements, variables and meth-

ods. An object’s state is defined by its instance variables.
• Class elements that are declared public can be accessed by other

objects. Elements that are declared private are hidden from other
objects.
• A class’s instance variables are usually declared private so they can-

not be accessed directly by other objects.
• An object’s public instance methods can be called by other objects.

Thus, they make up the object’s interface with other objects.
• Object instantiation is the process of creating an object, using the new

operator in conjunction with a constructor method.
• A class definition consists of a header and a body. The header gives

the class a name, specifies its accessibility (public), and its place in
the Java class hierarchy (extends Object). The class body contains
declarations of the class’s variables and definitions of its methods.
• By default, a newly defined class is consider a subclass of Object.
• Class elements that are declared static, such as the main() method,

are associated with the class (not with its instances).
• A Java application program must contain a main() method, which is

where it begins execution.
• Methods that are used solely for the internal operations of the class

should be declared private.
• An instance variable declaration reserves memory for the instance

variable within the object, associates a name and a type with the lo-
cation, and specifies its accessibility.

CHAPTER 2 • Solutions to Self-Study Exercises 95

• A method definition consists of two parts: a header, which names the
method and provides other general information about it, and a body,
which contains its executable statements.
• Declaring a variable creates a name for an object but does not create

the object itself. An object is created by using the new operator and a
constructor method.

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 2.1 The Java code fragment prints out the following:� �
The singing king .
 	
SOLUTION 2.2 For the Riddle class (Fig. 2.12),
• The name of the class: Riddle
• The names of two instance variables: question, answer
• The names of three methods: Riddle(), getQuestion(), getAnswer()

SOLUTION 2.3 For RiddleUser class (Fig. 2.15),
• The names of two Riddle instances: riddle1, riddle2
• All six method calls of the Riddle objects in the program:� �

Riddle (”What i s black and white and red a l l over ? ” ,
”An embarrassed zebra . ”)

Riddle (”What i s black and white and read a l l over ? ” ,
”A newspaper . ”)

r i d d l e 1 . getQuestion ()
r i d d l e 1 . getAnswer ()
r i d d l e 2 . getQuestion ()
r i d d l e 2 . getAnswer ()
 	

• Qualified names: riddle1.getQuestion() and riddle1.getAnswer()

SOLUTION 2.4 Definition of new instance variable in the Riddle class:� �
private S t r i n g hin t = ” This r i d d l e i s to easy f o r a h in t ” ;
 	
SOLUTION 2.5 The header for a getHint() method of the Riddle class,
which should be a public method, is:� �
public S t r i n g getHint () ;
 	
SOLUTION 2.6 The header for a setHint() method of the Riddle class is:� �

public void se tHint (S t r i n g aHint) ;
 	
The result type is void. Although the identifier used for the parameter is arbitrary,
it is a good practice to make it descriptive, by referring in some way to the hint
instance variable.

96 CHAPTER 2 • Objects: Using, Creating, and Defining

SOLUTION 2.7 The partial definition of the Student class is given below.� �
public c l a s s Student
{ private S t r i n g firstName ;

private S t r i n g lastName ;
private i n t studentID ;

public void se tS tudent (S t r i n g fName , S t r i n g lName ,
i n t anID) ;

public i n t getStudentID () ;
public S t r i n g getStudentName () ;

}
 	
SOLUTION 2.8 A main method that reads and squares a real number is given
below.� �
public s t a t i c void main (S t r i n g [] args)
{ // C r e a t e S c a n n e r o b j e c t

Scanner sc = Scanner . c r e a t e (System . in) ;
System . out . p r i n t (” Input a r e a l number : ”) ; // P r o m p t

double realNum= sc . nextDouble () ; // R e a d a d o u b l e

System . out . p r i n t l n (num + ” squared = ” + realNum∗realNum) ;
} // m a i n ()
 	

EXERCISES
Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

EXERCISE 2.1 Consider the transaction of asking your professor for your grade
in your computer science course. Identify the objects in this transaction and the
types of messages that would be passed among them.

EXERCISE 2.2 Now suppose the professor in the previous exercise decides to
automate the transaction of looking up a student’s grade and has asked you to
design a program to perform this task. The program should let a student type in
his or her name and ID number and the program then should display his or her
grades for the semester, with a final average. Suppose there are five quiz grades,
three exams, and two programming exercise grades. Identify the objects in this
program and the type of messages that would be passed among them. (Hint: The
grades themselves are just data values, not objects.)

EXERCISE 2.3 In the RiddleUser class (Fig. 2.15), give two examples of object
instantiation and explain what is being done.

EXERCISE 2.4 Explain the difference between a method definition and a
method call. Give an example of each from the Riddle and RiddleUser ex-
amples discussed in this chapter.

EXERCISE 2.5 In the RiddleUser class (Fig. 2.15), identify three examples of
method calls and explain what is being done.

EXERCISE 2.6 Describe how the slogan “define, create, manipulate” applies to
the Riddle example.

EXERCISE 2.7 An identifier is the name for a , , or a .

CHAPTER 2 • Exercises 97

EXERCISE 2.8 Which of the following would be valid identifiers?� �
i n t 74 ElmStreet Big N L$&%# boolean Boolean
number

I n t public P r i v a t e Joe j 1 2∗K
big numb
 	
EXERCISE 2.9 Explain the difference between a class variable and an
instance variable.

EXERCISE 2.10 Identify the syntax error (if any) in each declaration. Remember
that some parts of an instance variable declaration are optional.

a. public boolean isEven ;
b. Private boolean isEven ;
c. private boolean isOdd
d. public boolean is Odd ;
e. string S ;
f. public String boolean ;
g. private boolean even = 0;
h. private String s = helloWorld ;

EXERCISE 2.11 Write declarations for each of the following instance variables.

a. A private boolean variable named bool that has an initial value of true.
b. A public String variable named str that has an initial value of ”hello”.
c. A private int variable named nEmployees that is not assigned an initial

value.

EXERCISE 2.12 Identify the syntax error (if any) in each method header:

a. public String boolean()
b. private void String ()
c. private void myMethod
d. private myMethod()
e. public static void Main (String argv[])

EXERCISE 2.13 Identify the syntax error (if any) in each assignment statement.
Assume that the following variables have been declared:� �
public i n t m;
public boolean b ;
public S t r i n g s ;
 	
a. m = "86" ;
b. m = 86 ;
c. m = true ;
d. s = 1295 ;

e. s = "1295" ;
f. b = "true" ;
g. b = false

EXERCISE 2.14 Given the following definition of the NumberAdder class, add
statements to its main() method to create two instances of this class, named
adder1 and adder2. Then add statements to set adder1’s numbers to 10 and

98 CHAPTER 2 • Objects: Using, Creating, and Defining

15, and adder2’s numbers to 100 and 200. Then add statements to print their
respective sums.� �
public c l a s s NumberAdder
{

private i n t num1 ;
private i n t num2 ;

public void setNums (i n t n1 , i n t n2)
{

num1 = n1 ;
num2 = n2 ;

}
public i n t getSum ()
{

return num1 + num2 ;
}

public s t a t i c void main (S t r i n g args [])
{
}

}
 	
EXERCISE 2.15 For the NumberAdder class in the previous exercise, what are
the names of its instance variables and instance methods? Identify three expres-
sions that occur in the program and explain what they do. Identify two assignment
statements and explain what they do.

EXERCISE 2.16 Explain the difference between each of the following pairs of
concepts.
a. A method definition and a method call.
b. Declaring a variable of reference type and creating an instance.
c. A variable of reference type and a variable of primitive type.

EXERCISE 2.17 Define a Java class named NumberCruncher that has a single
int variable as its only instance variable. Then define methods that perform the
following operations on its number: get, double, triple, square, and cube. Set
the initial value of the number with a constructor as was done with the instance
variables in the Riddle class.

EXERCISE 2.18 Write a main() method and add it to the NumberCruncher
class defined in the previous problem. Use it to create a NumberCruncher in-
stance, with a certain initial value, and then get it to report its double, triple,
square, and cube.

EXERCISE 2.19 Write a Java class definition for a Cube object, that has an inte-
ger attribute for the length of its side. The object should be capable of reporting
its surface area and volume. The surface area of a cube is six times the area of any
side. The volume is calculated by cubing the side.

EXERCISE 2.20 Write a Java class definition for a CubeUser object that will use
the Cube object defined in the previous exercise. This class should create three
Cube instances, each with a different side, and then report their respective surface
areas and volumes.

EXERCISE 2.21 Challenge: Modify your solution to the previous exercise so
that it lets the user input the side of the cube. Follow the example shown in this
chapter’s “From the Java Library” section.

CHAPTER 2 • Exercises 99

EXERCISE 2.22 Challenge: Define a Java class that represents an address book
entry, Entry, which consists of a name, address, and phone number, all repre-
sented as Strings. For the class’s interface, define methods to set and get the
values of each of its instance variables. Thus, for the name variable, it should have
a setName() and a getName() method.

UML EXERCISES

EXERCISE 2.23 Draw a UML class diagram to represent the following class hi-
erarchy: There are two types of languages, natural languages and programming
languages. The natural languages include Chinese, English, French, and German.
The programming languages include Java, Smalltalk and C++, which are object-
oriented languages, FORTRAN, COBOL, Pascal, and C, which are imperative lan-
guages, Lisp and ML, which are functional languages, and Prolog, which is a logic
language.

EXERCISE 2.24 Draw a UML class diagram to represent different kinds of au-
tomobiles, including trucks, sedans, wagons, SUVs, and the names and manufac-
turers of some popular models in each category.

EXERCISE 2.25 Draw a UML object diagram of a triangle with attributes for
three sides, containing the values 3, 4, and 5.

EXERCISE 2.26 Suppose you are writing a Java program to implement an elec-
tronic address book. Your design is to have two classes, one to represent the user
interface and one to represent the address book. Draw a UML diagram to depict
this relationship. See Figure 2.14.

EXERCISE 2.27 Draw an UML object diagram to depict the relationship be-
tween an applet, which serves as a user interface, and three Triangles, named
t1, t2, and t3.

100 CHAPTER 2 • Objects: Using, Creating, and Defining

OBJECTIVES
After studying this chapter, you will

• Understand the role that methods play in an object-oriented program.
• Know how to use parameters and arguments to pass data to an object.
• Understand how constructor methods are used to instantiate objects.
• Know the difference between passing a value and passing a reference to an object.
• Be able to design your own methods.
• Know how to use the if-else and while control structures.

OUTLINE
3.1 Introduction
3.2 Passing Information to an Object
3.3 Constructor Methods
3.4 Retrieving Information from an Object
3.5 Passing a Value and Passing a Reference
3.6 Flow of Control: Control Structures
3.7 Testing an Improved OneRowNim

Special Topic: Intelligent Agents
3.8 From the Java Library: java.lang.Object
3.9 Object-Oriented Design: Inheritance and Polymorphism
3.10 Drawing Lines and Defining Graphical Methods (Optional)

Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 3

Methods: Communicating
with Objects

101

102 CHAPTER 3 • Methods: Communicating with Objects

3.1 Introduction

In this chapter, we take a look at Java methods and parameters. Methods
and parameters are the primary mechanisms for passing information into
and out of an object. We will once again focus on the OneRowNim simula-
tion that we designed in the previous chapter. That version was sufficient
to introduce us to Java objects and classes, but it was limited in its ability
to communicate with other objects.

In this chapter, we want to expand OneRowNim to make our simulation
more realistic. We begin by learning how to pass information to an ob-
ject. That will enable us to specify the number of sticks to remove using
a single method. We then consider special methods called constructors,
which are used to initialize an object’s state when it is created. We also
learn how to retrieve information from an object. That will enable us to
request a OneRowNim object for several different bits of information. Then
we consider the if-else and while control structures which allow us to
define more useful methods and write more realistic test programs.

3.2 Passing Information to an Object

One convention of object-oriented programming is to provide public
methods to set and get the values of some of its private instance vari-
ables. Methods that set or modify an object’s instance variables are called
mutator methods. Methods that get or retrieve the value of an instance
variable are called accessor methods.

JAVA EFFECTIVE DESIGN Accessor and Mutator Methods. An
accessor method is a public method used to get the value of an object’s
instance variable. Such methods are often named getVarName() where
VarName is the name of the variable that’s being accessed. A mutator
method is a public method used to modify the value of one or more
instance variables. The special type of mutator method that sets or
assigns a variable a specified value is often called setVarName().

It is up to the designer of the class to determine which private vari-
ables require accessor and mutator methods. If you were designing a
BankAccount class, you might want a public getAccountNumber()
method, so that clients could retrieve information about their bank ac-
counts, but you would probably not want a public getAccountPassword()
method or a public setAccountBalance() method.

In the remainder of this section, we will be concerned with muta-
tor methods. We defined three mutator methods named takeOne(),
takeTwo(), and takeThree as part of the OneRowNim class in the pre-
vious chapter. All three of these method change the values of the instance

SECTION 3.2 • Passing Information to an Object 103

variables nSticks and player. All three methods have very similar
bodies. The definition of the takeOne() is:� �

public void takeOne ()
{ n S t i c k s = n S t i c k s − 1 ;

player = 3 − player ;
}
 	

The only difference in the bodies of the other two methods is that they
subtract 2 and 3 from nSticks instead of 1. Instead of having three, vir-
tually identical methods, It would be a more efficient design to define a
single method where the number to be subtracted from nSticks would
be supplied as an argument when the method is called. In order to be able
to handle such an argument, we must design a new method that uses a
parameter to handle the argument.

A formal parameter, or more simply, parameter, is a variable used to
pass information into a method when the method is invoked. The type and Formal parameter
variable name of the formal parameter must appear in the formal parameter
list that follows the method’s name in the method header. The formal
parameter is used to hold a value that it is passed while the method is
executing.

JAVA LANGUAGE RULE Formal Parameter. A formal parameter
is a variable that serves as a storage location for information that is
passed to a method. To specify a formal parameter, you must provide
a type identifier followed by variable identifier, and you must place
this declaration inside the parentheses that follow the method’s name.

Consider the following definition for a takeSticks() method:� �
public void t a k e S t i c k s (i n t num)
{ n S t i c k s = n S t i c k s − num;

player = 3 − player ;
}
 	

Notice that executing the body of takeSticks() when the parameter
num stores the value 1 accomplishes precisely the same task as executing
takeOne(). If, instead, a value of 2 or 3 is stored in num, then calling the
method acts like takeTwo() or takeThree() respectively. Thus, using
parameters enables us to design methods that are more general in what
they do, which is an important principle of good program design.

Another example of a mutator method is one in which define a set
method to allow the starting number of sticks to be set for an instance of
OneRowNim. For this, we could define:� �

public void s e t S t i c k s (i n t s t i c k s)
{ n S t i c k s = s t i c k s ;
} // s e t S t i c k s ()
 	

As we will see in Section 3.3, we can also define a constructor method that
can be used, when the game is created, to set the initial value of nSticks.

104 CHAPTER 3 • Methods: Communicating with Objects

It is often desirable to have more than one method that sets the values of
an objects’ instance variables.

If a method uses more than one parameter, use a comma to separate the
individual parameter declarations in the method header. For example, if
we wanted a method for OneRowNim that specified both the number of
sticks for the start of a game and which player takes a turn first, it could
be defined:� �

public void setGame (i n t s t i c k s , i n t s t a r t e r)
{ n S t i c k s = s t i c k s ;

player = s t a r t e r ;
} // s e t G a m e ()
 	

The Scope of Parameters, Variables, and Methods

The bodies of the mutator methods in the previous section make use of
both instance variables and parameters. It is important to note that there
is a difference in where these two types of variables can be used. The
scope of a variable or method refers to where it can be used in a program.Scope

A parameter’s scope is limited to the body of the method in which it is
declared. Variables that are declared in the body of a method have scope
which extends from the point where they are declared to the end of the
block of code in which they are declared. Parameters are local variables
which are declared in the parameter list of a method’s header and which
have initial values specified by the arguments in a method call. The scope
of a parameter is the same as the scope of a variable declared at the very
beginning of the body of a method. Once the flow of execution leaves aLocal scope
method, its parameters and other local variables cease to exist. The scope
of local variables is referred to as local scope.

JAVA LANGUAGE RULE Scope. Local variables, that is,
parameters and variables declared in the body of a method, have local
scope which extends from the point at which they are defined to the
end of the block of code in which they are defined. In particular, the
scope of a parameter is the entire body of the method in which it is
declared.

By contrast, instance variables, class variables, and all methods have
scope that extends throughout the entire class, that is, class scope. They
can be used in the body of any method and in the expressions that as-
sign initial values to class level variables. There are two restrictions to
remember. First, instance variables and instance methods cannot be used
in the body of a class method, one modified with static, unless an in-
stance of the class is created there and then the dot notation of qualified
names must be used to refer to the variable or method. This is becauseClass scope
class methods are called without reference to a particular instance of the
class. The main() method of the OneRowNim class that we defined in the
previous chapter is an example of such a class method. In that case, to

SECTION 3.2 • Passing Information to an Object 105

test the instance methods of OneRowNim we first created an instance of
OneRowNim and used it to call its instance methods:� �

OneRowNim game = new OneRowNim () ; // C r e a t e i n s t a n c e

game . repor t () ; // C a l l a n i n s t a n c e m e t h o d
 	
The second restriction involved in class scope is that one class level vari-
able can be used in the expression that initializes a second class level vari-
able only if the first is declared before the second. There is no similar
restriction on methods.

JAVA LANGUAGE RULE Scope. Class level variables, that is,
instance variables and class variables have class scope, which extends
throughout the class. Methods also have class scope.

Except for the restrictions noted above, methods and class level vari-
ables can be referred to within the same class by their simple names,
with just the method (or variable) name itself, rather than by their quali- Simple vs. qualified names
fied names, with the dot operator. Thus, in OneRowNim, we can refer to
nSticks and report() in the bodies of other instance methods. In a
class method, such as main(), we would have to create an instance of
OneRowNim with a name like game and refer to game.report().

JAVA LANGUAGE RULE Qualified Names. Within the same class,
references to class methods or class variables can be made in terms of
simple names. Within the bodies of instance methods, references to
instance variables and references to other instance methods can also be
made in terms of simple names. However, within the bodies of class
methods, qualified names, or dot notation, must be used to refer to
instance methods or instance variables just like how they are referred
to in other classes.

JAVA DEBUGGING TIP Scope Error. It would be a syntax error to
refer to a method’s parameters or other local variables from outside
the method.

3.2.1 Arguments and Parameters
The new class definition for OneRowNim is given in Figure 3.1. Note that
now that we have a single method, takeSticks(), that can be used
to take away a variable number of sticks, we have removed the three
methods we wrote in the previous chapter, takeOne(), takeTwo(), and
takeThree(), from OneRowNim. Using a single method, with a parame-
ter, is clearly a better design. To see this, just imagine what we would have
to do if we didn’t use a parameter and we wanted to be able to take away
four sticks, or five, or more. If we didn’t have parameters, we’d have to
write a separate method for each case, which is clearly a bad idea. Using
parameters in this way leads to a more general useful method and thus is
an example of the generality principle.

106 CHAPTER 3 • Methods: Communicating with Objects� �
public c l a s s OneRowNim
{ private i n t n S t i c k s = 7 ; // S t a r t w i t h 7 s t i c k s

private i n t player = 1 ; // P l a y e r 1 p l a y s f i r s t

public void t a k e S t i c k s (i n t num)
{ n S t i c k s = n S t i c k s − num;

player = 3 − player ;
} // t a k e S t i c k s ()

public void repor t ()
{ System . out . p r i n t l n (”Number of s t i c k s l e f t : ” + n S t i c k s) ;

System . out . p r i n t l n (”Next turn by player ” + player) ;
} // r e p o r t ()

} // OneRowNim1 c l a s s
 	
Figure 3.1: The OneRowNim class definition with takeSticks()method.

Now let’s consider how we would create a OneRowNim instance and
use the new method in the main() method or in a different class. If we
want to have an instance of OneRowNim object to remove 3 sticks on the
first move by using the takeSticks() method, we need to pass the int
value 3 to the method. In order to effect this action, we would use the
following statements:� �

OneRowNim game = new OneRowNim () ;
game . t a k e S t i c k s (3) ;
 	

Because the definition of takeSticks() includes a single int parame-
ter, we must supply a single int value (such as 3), when we invoke it.
When the method is invoked, its formal parameter (num) will be set to the
value we supply (3). The value we supply does not have to be a literal
int value. We can supply any expression or variable that evaluates to an
int value. For example:� �

i n t val = 7 − 5 ;
game . t a k e S t i c k s (val) ;
 	

In this case, the value being passed to takeSticks() is 2, the value that
val has at the time the method call is made.

It would be an error to try to pass a value that was not a int to
takeSticks(). For example, each of the following invocations of
takeSticks() results in a syntax error:� �

game . t a k e S t i c k s () ; // n o a r g u m e n t i s s u p p l i e d

game . t a k e S t i c k s (”3”) ; // ” 3 ” i s a S t r i n g , n o t a n i n t

game . t a k e S t i c k s (i n t) ; // i n t n o t i s a n i n t v a l u e
 	

SECTION 3.2 • Passing Information to an Object 107

As you recall from Chapter 0, the value that is passed to a method when
it is invoked is called an argument. Even though the terms argument and Parameter vs. argument
parameter are sometimes used interchangeably, it will be useful to ob-
serve a distinction. We will use the term parameter to refer to the formal
parameter—the variable used to pass data to a method—that occurs in the
method definition. We use the term argument to refer to the actual value
that is supplied when the method is invoked.

JAVA DEBUGGING TIP Type Error. It would be a syntax error to
use an argument whose type doesn’t match the type of its
corresponding parameter.

The distinction between parameter and argument is related to the differ- Defining vs. calling a method
ence between defining a method and invoking a method. Defining a method
is a matter of writing a method definition, such as� �

public void p r i n t S t r (S t r i n g s)
{ System . out . p r i n t l n (s) ;
}
 	

This definition defines a method that takes a single String parameter, s,
and simply prints the value of its parameter. On the other hand, invoking
a method is a matter of writing a method call statement, such as Invoking a method� �

p r i n t S t r (”HelloWorld”) ;
 	
This statement calls the printStr() method and passes it the string
“HelloWorld”. This notation assumes that the call to the instance method
printStr() is made within the body of another instance method of the
same class.

3.2.2 Passing an int value to a OneRowNim method.
To get a clearer picture of the interaction that takes place when we invoke
takeSticks() and pass it an int value, let’s write a main() method to
test our new version of OneRowNim.

Our first version of main() is shown in Figure 3.2. We will use it to
trace how the parameter of takeSticks() interacts with the instance� �
public s t a t i c void main (S t r i n g argv [])
{ OneRowNim game ; // D e c l a r e a OneRowNim o b j e c t

game = new OneRowNim () ; // I n s t a n t i a t e t h e r e f e r e n c e s

game . t a k e S t i c k s (3) ; // r e m o v e 3 s t i c k s

} // m a i n ()
 	
Figure 3.2: A main() method to test the takeSticks() method.

variables nSticks and player. The statements in the main() program
simply create an instance of OneRowNim that is referenced by game and
invoke the setSticks() method with an argument of 3.

108 CHAPTER 3 • Methods: Communicating with Objects
Figure 3.3: Tracing the state
of game (a) Just before calling
takeSticks(3). (b) Just
before executing the body of
takeSticks(3). (c) Just
after executing the body of
takeSticks(3). (d) After flow
of control leaves takeSticks().

To get a clearer understanding of how a parameter works, it will be
instructive to trace through the code in main(). Figure 3.3 displays
how the states of the instance variables of game and the parameter of
takeSticks() interact.

Executing the first two statements of main() creates the instance game
of OneRowNim. Figure 3.3(a) shows the initial state of game. When the
takeSticks(3) method call is made, a parameter (which is a local vari-
able) named num is created and the value 3 is stored in it. The state of
the instance variables and the parameter are shown in (b). Then the body
of takeSticks() is executed. The new state of game is shown in (c).
After the flow of control leaves the body of takeSticks() and returns
to main(), the memory location which stored the value of the parameter
num is released for other uses. The state of game at this point is shown in
(d). Notice that the value of nSticks has been reduced to 4.

3.2.3 Passing keyboard input to takeSticks()
To complete this section, let’s modify our main() method in Figure 3.2
so that it prompts the user to input an integer from the keyboard and
then uses a Scanner object, introduced in the previous chapter, to read
the integer. That integer will then be used as the argument in a call to
takeSticks(). These modifications have been incorporated into the
revised version of the main() method shown in Figure 3.4. If we now
run this program the following output will be generated in the console
window before waiting for keyboard input:� �

Number of s t i c k s l e f t : 7
Next turn by player 1
Input 1 , 2 , or 3 and h i t enter :
 	

SECTION 3.3 • Constructor Methods 109� �
import j ava . u t i l . Scanner ;

public s t a t i c void main (S t r i n g argv [])
{ Scanner sc ; // D e c l a r e a S c a n n e r v a r i a b l e

sc = Scanner . c r e a t e (System . in) ; // I n s t a n t i a t e i t

OneRowNim game ; // D e c l a r e a OneRowNim v a r i a b l e

game = new OneRowNim () ; // I n s t a n t i a t e i t

game . repor t () ; // R e p o r t s t a t e o f g a m e

System . out . p r i n t l n (” Input 1 , 2 , or 3 and h i t enter : ”) ;
i n t num = sc . n e x t I n t () ; // R e a d a n i n t f r o m k e y b o a r d

game . t a k e S t i c k s (num) ; // U s e t h e v a l u e r e a d

game . repor t () ; // R e p o r t s t a t e o f g a m e

} // m a i n ()
 	
Figure 3.4: A main() method with keyboard input for OneRowNim.

If the user then inputs a 2 from the keyboard, that input will be read
and the takeSticks() method will remove 2 sticks. The output in the
console window will now look like:� �

Number of s t i c k s l e f t : 7
Next turn by player 1
Input 1 , 2 , or 3 and h i t enter : 2
Number of s t i c k s l e f t : 5
Next turn by player 2
 	

SELF-STUDY EXERCISES
EXERCISE 3.1 Explain the difference between a method declaration and

a method invocation.

EXERCISE 3.2 Explain the difference between a formal parameter and an
argument.

EXERCISE 3.3 Modify the OneRowNim class of Figure 3.4 by adding
two instance variables of type String to store names of the two play-
ers. Choose names for the instance variables that would be appropri-
ate for storing names for player one and player two. Write a method
named setNames() with two string parameters which assigns the first
parameter to the instance variable that you created for the name of player
one. The second parameter should be assigned to the other new instance
variable.

EXERCISE 3.4 Write a statement that calls the setName() method of
the previous exercise and sets the name of player one of game to “Xena”
and sets the name of player two to “Yogi”.

3.3 Constructor Methods

In the previous section, we looked at several examples of mutator meth-
ods that change the values of private instance variables of an object. It

110 CHAPTER 3 • Methods: Communicating with Objects

is possible to define mutator methods to set the initial values of instance
variables after an object is created, but initial values can also be set by
constructors.

As you recall from Chapter 0, a constructor method is used to create
an instance (or object) of a class and to assign initial values to instanceConstructor names
variables. A constructor declaration looks just like a method definition
except it must have the same name as the class, and it cannot declare a
result type. Unlike the class level variables and methods of a class, con-
structors are not considered members of the class. Therefore, they are not
inherited by a class’s subclasses. Access to constructors is governed by the
access modifiers public and private. Here is a simple constructor for
our OneRowNim class:� �

public OneRowNim ()
{ n S t i c k s = 7 ;

player = 1 ;
}
 	

This constructor merely sets the initial values of the instance variables,Constructing an object
nSticks and player. In our current version of OneRowNim these vari-
ables are given initial values by using initializer statements when they are
first declared:� �

private i n t n S t i c k s = 7 ;
private i n t player = 1 ;
 	

So we now have two ways to initialize a class’s instance variables. In theInitializing variables
OneRowNim class it doesn’t really matter which way we do it. However,
the constructor provides more flexibility because it allows the state of the
object to be initialized at runtime. Of course, it would be somewhat redun-
dant (though permissible) to initialize the same variable twice, once when
it is declared and again in the constructor, so we should choose one or
the other way to do this. For now, let’s stick with initializing the instance
variables when they are declared.

JAVA EFFECTIVE DESIGN Constructors. Constructors provide a
flexible way to initialize an object’s instance variables when the object
is created.

A constructor cannot return a value and, therefore, its declaration cannotConstructors can’t return a value
include a return type. Because they cannot return values, constructors
cannot be invoked by a regular method invocation. Instead, constructors
are invoked as part of an instance creation expression when instance objects
are created. An instance creation expression involves the keyword new
followed by the constructor invocation:� �

OneRowNim game // D e c l a r e

= new OneRowNim () ; // a n d i n s t a n t i a t e g a m e 1

OneRowNim game2 // D e c l a r e

= new OneRowNim () ; // a n d i n s t a n t i a t e g a m e 2
 	

SECTION 3.3 • Constructor Methods 111

Note here that we have combined variable declaration and instantiation
into a single statement, whereas in some previous examples we used sep-
arate declaration and instantiation statements. Either way is acceptable.

JAVA LANGUAGE RULE Constructors. Constructors cannot
return a value. Therefore, no return type should be declared when the
constructor is defined.

JAVA DEBUGGING TIP When to Use Return. All method
definitions except constructors must declare a return type.

Constructors should be used to perform the necessary initialization op-
erations during object creation. In the case of a OneRowNim object, what
initializations could be performed? One initialization that would seem State initialization
appropriate is to initialize the initial number of sticks to a number speci-
fied. In order to do this, we would need a constructor with a single int
parameter:� �

public OneRowNim(i n t s t i c k s)
{ n S t i c k s = s t i c k s ;
}
 	

Now that we have this constructor we can use it when we create instances
of OneRowNim:� �

OneRowNim game1 = new OneRowNim (2 1) ;
OneRowNim game2 = new OneRowNim (1 3) ;
 	

The effect of these statements is the same as if we had used the
setSticks() method that was discussed briefly on page 103. The dif-
ference is that we can now set the number of sticks when we create the
object.

Should we keep the preceding constructor, or keep the setSticks()
method or keep both in our class definition? The constructor can only
be invoked as part of a new statement when the object is created but the
setSticks() method could be called anytime we want. In many cases,
having redundant methods for doing the same task in different ways
would be an asset, because it allows for more flexibility in how the class
could be used. However, for a game like One Row Nim, a major concern
is that the two instance variables get changed only in a manner consistent
with the rules for One Row Nim. The best way to guarantee this is to have
takeSticks() as the only method that changes the instance variables
nSticks and player. The only time that it should be possible to set the
number of sticks for a game is when a constructor is used to create a new
instance of OneRowNim.

SELF-STUDY EXERCISES

112 CHAPTER 3 • Methods: Communicating with Objects

EXERCISE 3.5 What’s wrong with the following constructor defini-
tion?� �
public void OneRowNim(i n t s t i c k s)
{ n S t i c k s = s t i c k s ;
}
 	
EXERCISE 3.6 Change the OneRowNim(int sticks) constructor so

that it sets the number of sticks and also have it also set player two as the
player who takes the first turn.

3.3.1 Default Constructors
As we noted in Chapter 2, Java automatically provides a default constructor
when a class does not contain a constructor.

JAVA LANGUAGE RULE Default Constructor. If a class contains
no constructor declarations, Java will automatically supply a default
constructor. The default constructor takes no parameters. If the class is
public, the default constructor will also be public and, hence,
accessible to other objects.

The default constructor’s role is simply to create an instance (an object) of
that class. It takes no parameters. In terms of what it does, the default
constructor for OneRowNim would be equivalent to a public constructor
method with an empty body:� �

public OneRowNim () { }
 	
This explains why the following statement was valid when a class defini-
tion of OneRowNim contained no explicit definition of a constructor:� �

OneRowNim game = new OneRowNim () ;
 	
3.3.2 Constructor Overloading and Method Signatures
It is often quite useful to have more than one constructor for a given class.Flexible design
For example, consider the following two OneRowNim constructors:� �

public OneRowNim () {} // C o n s t r u c t o r # 1

public OneRowNim(i n t s t i c k s) // C o n s t r u c t o r # 2

{ n S t i c k s = s t i c k s ;
}
 	

The first is an explicit representation of the default constructor. The sec-
ond is the constructor we defined earlier to initialize the number of sticks
in a OneRowNim object. Having multiple constructors lends flexibility to
the design of a class. In this case, the first constructor merely accepts
OneRowNim’s default initial state. The second enables the user to initialize
the number of sticks to something other than the default value.

SECTION 3.3 • Constructor Methods 113

In Java, as in some other programming languages, when two different
methods have the same name, it is known as method overloading. In Method overloading
this case, OneRowNim is used as the name for two distinct constructor
methods. What distinguishes one constructor from another is its signa-
ture, which consists of its name together with the number and types of
formal parameters it takes. Thus, our OneRowNim constructors have the
following distinct signatures:� �

OneRowNim ()
OneRowNim(i n t)
 	

Both have the same name, but the first takes no parameters, whereas the
second takes a single int parameter.

The same point applies to methods in general. Two methods can have Methods are known by their
signaturesthe same name as long as they have distinct signatures. A method signa-

ture consists of its name, and the number, types, and order of its formal
parameters. A class may not contain two methods with the same signa-
ture, but it may contain several methods with the same name, provided
each has a distinct signature.

JAVA LANGUAGE RULE Method Signature. A method signature
consists of the method’s name, plus the number, types, and order of its
formal parameters. A class may not contain two methods with the
same signature.

There is no limit to the amount of overloading that can be done in design-
ing constructors and methods. The only restriction is that each method
have a distinct signature. For example, suppose in addition to the two
constructors we have already defined, we want a constructor that would
let us set both the number of sticks and the player who starts first. The
following constructor will do what we want:� �

public OneRowNim(i n t s t i c k s , i n t s t a r t e r)
{ n S t i c k s = s t i c k s ; // S e t t h e n u m b e r o f s t i c k s

player = s t a r t e r ; // S e t who s t a r t s

}
 	
When calling this constructor, we would have to take care to pass the num-
ber of sticks as the value of the first argument and either 1 or 2 as the value
of the second argument:� �

OneRowNim game3 = new OneRowNim(1 4 , 2) ;
OneRowNim game4 = new OneRowNim(3 1 , 1) ;
 	

If we mistakenly reversed 14 and 2 in the first of these statements, we
would end up with a OneRowNim game that starts with 2 sticks and has
player 14 as the player with the first move.

114 CHAPTER 3 • Methods: Communicating with Objects

We have now defined three constructor methods for the OneRowNim
class. Each constructor has the name OneRowNim, but each has a distinct
signature:� �

OneRowNim ()
OneRowNim(i n t)
OneRowNim(int , i n t)
 	

3.3.3 Constructor Invocation
A constructor method is invoked only as part of a new expression when
an instance object is first created. Each of these is a valid invocation of aA constructor is invoked once to cre-

ate an object OneRowNim constructor:� �
// D e f a u l t c o n s t r u c t o r

OneRowNim game1 = new OneRowNim () ;
// S e t s n u m b e r o f s t i c k s

OneRowNim game2 = new OneRowNim (2 1) ;
// S e t s b o t h i n s t a n c e v a r i a b l e s

OneRowNim game3 = new OneRowNim(1 9 , 2) ;
 	
The following constructor invocations are invalid because there are no

matching constructor definitions:� �
// No m a t c h i n g c o n s t r u c t o r s

OneRowNim game4 = new OneRowNim(”21”) ;
OneRowNim game5 = new OneRowNim(1 2 , 2 , 5) ;
 	

In the first case, there is no constructor method that takes a String pa-
rameter, so there’s no matching constructor. In the second case, there is no
constructor that takes three int arguments. In both cases, the Java com-
piler would complain that there is no constructor method that matches the
invocation.

JAVA DEBUGGING TIP Method Call. The signature of the method
call—its name and the number, types, and order of its
arguments—must exactly match the signature of the method
definition.

3.4 Retrieving Information from an Object

The modifications we’ve made to the OneRowNim class allow us to set the
instance variables of a OneRowNim object with a constructor, but there is
no way for us to retrieve their values other than to use the report()
method to write a message to the console. We will want to be able to
ask a OneRowNim object to provide us with the number of sticks remain-
ing and who plays next when we develop a graphical user interface for
OneRowNim in the next chapter. We declared nSticks and player as
private variables, so we cannot access them directly. Therefore, we will

SECTION 3.4 • Retrieving Information from an Object 115

need accessor methods to get the values of each of the instance variables.
Consider the following method definitions:� �

public i n t g e t S t i c k s ()
{ return n S t i c k s ;
}

public i n t getP layer ()
{ return player ;
}
 	

Recall that a method’s ResultType is specified just in front of the Method-
Name. We want the two methods to return int values that represent
OneRowNim’s instance variables. Therefore, their result types are both
declared int.

Before we discuss how the value that is returned by a method is used
when the method is called, let’s consider one more method definition.
Many methods that return a value do a computation rather than simply
returning the value of an instance variable. For example, suppose we wish
to define a method for the OneRowNim class that will notify the user of an
instance of the class whether the game is over. Thus we want a method
that, when called, returns a true or false depending on whether or
not all the sticks have been taken. gameOver() is a descriptive name
of such a method and the method should have a boolean result type.
This method should return true when the instance variable nSticks no
longer contains a positive int value. Thus we can define:� �

public boolean gameOver ()
{ return (n S t i c k s <= 0) ;
}
 	

The expression (nSticks <= 0) evaluates to a false value if nSticks
stores a positive value and it evaluates to true otherwise. Thus the value
returned is precisely what is required.

3.4.1 Invoking a Method That Returns a Value

When we invoke a method that returns a value, the invocation expression Retrieving information
takes on, or is replaced by, the value that is returned. For example, if we
execute the statements� �

OneRowNim game1 = new OneRowNim (1 1) ;
i n t s t i c k s L e f t = game1 . g e t S t i c k s () ;
 	

the expression game1.getSticks() will take on the value 11 after the
getSticks() method is finished executing. At that point, the second
statement above can be treated as if expression game1.getSticks() is

116 CHAPTER 3 • Methods: Communicating with Objects

replaced with the value 11, which is assigned to sticksLeft. In effect,
the second statement is equivalent to the following statement:� �

i n t s t i c k s L e f t = 1 1 ;
 	
JAVA LANGUAGE RULE Evaluating Method Calls. A nonvoid
method call is an expression that has a value of a particular type. After
the method is executed, the method call expression becomes the value
returned.

We can use a value returned by a method call the same way we use a
literal value of the same type. It can be assigned to variables, be part of
a numerical expression, or be an argument of another method. All of the
following statements involve valid calls of methods that return values:� �

i n t f e w e r S t i c k s = game1 . g e t S t i c k s () − 1 ;
boolean done = game1 . gameOver () ;
System . out . p r i n t l n (game1 . ge tP layer ()) ;
game1 . g e t S t i c k s () ;
 	

In each statement, the method call can be replaced with the value it re-
turns. Notice that the last statement is valid but does nothing useful. In
Java and some other languages like C and C++, methods that return a
value can simply be called without making use of the value returned. This
may be useful to do if the method changes the state of instance variables
or sends a message to another object or an output device. The method
getSticks() does nothing but return the value of nSticks, so simply
calling the method accomplishes nothing.

3.4.2 An Expanded OneRowNim Class
Let’s add the new methods that return values to our OneRowNim class. We
might note that the report()method from the previous chapter displays
the values of nSticks and player in the console window which now
could be done by using the methods getSticks() and getPlayer()
with System.out.println(). However, calling report() is an easy
way to display the values of both instance variables but it cannot provide
access to either variable as an int value. So let’s keep all three methodsRedundancy and flexibility
in our class definition. The inconvenience of a small amount of redun-
dancy is outweighed by the added flexibility of being able to call all three
methods.

JAVA EFFECTIVE DESIGN Using Redundancy. Incorporating some
redundancy into a class, such as providing more than one way to
access the value of an instance variable, makes the class more widely
usable.

Figure 3.5 provides a UML class diagram of the expanded OneRowNim
class.

SECTION 3.4 • Retrieving Information from an Object 117

OneRowNim
− nSticks: int
− player: int
+ OneRowNim()
+ OneRowNim(in sticks:int)
+ OneRowNim(in sticks:int,in starter:int)
+ takeSticks(in num:int)
+ getSticks():int
+ getPlayer():int
+ gameOver():boolean
+ report()

Figure 3.5: A UML class diagram for the expanded OneRowNim.

Let’s also consider a new main() method to test the new methods of
the class. A very short list of statements that call each of the three new
methods returning values is given in the main() method in Figure 3.6

� �
public s t a t i c void main (S t r i n g [] args)
{ OneRowNim game = new OneRowNim(1 3 , 2) ;

game . t a k e S t i c k s (2) ;
System . out . p r i n t (”The game i s over i s : ”) ;
System . out . p r i n t l n (game . gameOver ()) ;
System . out . p r i n t (”The next turn i s by player : ”) ;
System . out . p r i n t l n (game . getP layer ()) ;
System . out . p r i n t (” S t i c k s remaining : ”) ;
System . out . p r i n t l n (game . g e t S t i c k s ()) ;

} // m a i n ()
 	
Figure 3.6: A main() method that tests the new methods for OneRowNim

The output to the console when this program is run will be:� �
The game i s over i s : f a l s e
The next turn i s by player : 1
S t i c k s remaining : 11
 	

Note that the constructor sets player to 2, so player stores the value 1
after one turn.

SELF-STUDY EXERCISES

118 CHAPTER 3 • Methods: Communicating with Objects

EXERCISE 3.7 What would these segments of Java code display on the
screen?� �
OneRowNim myGame = new OneRowNim(1 0 , 2) ;
System . out . p r i n t l n (myGame. getP layer ()) ;
System . out . p r i n t l n (2 ∗ myGame. g e t S t i c k s ()) ;
System . out . p r i n t l n (myGame. gameOver ()) ;
 	
EXERCISE 3.8 Suppose that an int instance variable named nMoves

is added to the OneRowNim class that counts the number of moves taken
in a One Row Nim game. Write a Java method for the OneRowNim class
to get the value stored in nMoves.

EXERCISE 3.9 Write a method for the OneRowNim class called
playerOneGoesNext() that returns a boolean value. The value re-
turned should be true if and only if player one has the next turn.

3.5 Passing a Value and Passing a Reference

The effect of passing arguments to a method differs depending on whether
you are passing a value of primitive type (such as 5 or true) or a value of
reference type (such as “Hello” or game1). When an argument of primi-
tive type is passed to a method, a copy of the argument is passed to the for-Passing a primitive value
mal parameter. For example, consider the PrimitiveCall class shown

� �
public c l a s s P r i m i t i v e C a l l
{

public s t a t i c void myMethod(i n t n)
{ System . out . p r i n t l n (”myMethod : n= ” + n) ;

n = 1 0 0 ;
System . out . p r i n t l n (”myMethod : n= ” + n) ;

} // m y M e t h o d ()

public s t a t i c void main (S t r i n g argv [])
{ i n t k = 5 ;

System . out . p r i n t l n (”main : k= ” + k) ;
myMethod(k) ;
System . out . p r i n t l n (”main : k= ” + k) ;

} // m a i n ()

} // P r i m i t i v e C a l l
 	
Figure 3.7: Passing a primitive value to a method.

in Figure 3.7. Note that we have an int variable k, which initially stores
the value 5, and a method myMethod(), which takes an int parameter n.
In this case, when we invoke myMethod(k), k’s value (5) is copied into n
and stored there during the method.

SECTION 3.5 • Passing a Value and Passing a Reference 119

One implication of passing a copy of a primitive value to a method is
that the original value of k in main() cannot be altered from inside the
method. Thus, the output generated by PrimitiveCall would be� �

main : k= 5
myMethod : n= 5
myMethod : n= 100
main : k= 5
 	

Note that in main(), k’s value is printed both before and after
myMethod() is called, but that its value remains unaffected even though
n’s value is changed within the method. This is because myMethod()
contains just a copy of k’s value, not k itself. Any changes to the copy
within myMethod() leave k unaltered (See Fig. 3.8).

JAVA LANGUAGE RULE Passing a Primitive Value. When a value
of a primitive type, like boolean or int, is passed to a method, a
copy of the value is passed. That’s why its original value remains
unchanged outside the method, even if the copy is changed inside the
method.

In contrast to this, when an argument of a reference type is passed to a
method, a copy of the reference to the object itself is assigned to the pa-
rameter. For example, in the case of a String parameter or a OneRowNim
parameter, the method would be given a reference to the object–that is,
the address of the object. The object itself is not passed, because it would
be too inefficient to copy the entire object with all its data and methods.
However, because the object’s reference gives the object’s location in mem-
ory, the method will have access to the object and can make changes to the
original object from within the method.

Figure 3.8: Tracing the state
of variables k and n in
PrimitiveCall (a) Just be-
fore calling myMethod(k) in
main. (b) Just before executing
the body of myMethod(). (c)
Just after executing the body of
myMethod(). (d) After flow of
control returns to main().

120 CHAPTER 3 • Methods: Communicating with Objects

For example, consider the ReferenceCall class (Fig. 3.9). In this
case, myMethod() takes a parameter g of type OneRowNim. Because

� �
public c l a s s ReferenceCal l
{

public s t a t i c void myMethod(OneRowNim g)
{ System . out . p r i n t (”myMethod : Number of s t i c k s : ”) ;

System . out . p r i n t l n (g . g e t S t i c k s ()) ;
g . t a k e S t i c k s (3) ;
System . out . p r i n t (”myMethod : Number of s t i c k s : ”) ;
System . out . p r i n t l n (g . g e t S t i c k s ()) ;

} // m y M e t h o d ()

public s t a t i c void main (S t r i n g argv [])
{ OneRowNim game = new OneRowNim (1 0) ;

System . out . p r i n t (”main : Number of s t i c k s : ”) ;
System . out . p r i n t l n (game . g e t S t i c k s ()) ;
myMethod(game) ;
System . out . p r i n t (”main : Number of s t i c k s : ”) ;
System . out . p r i n t l n (game . g e t S t i c k s ()) ;

}// m a i n ()

} // R e f e r e n c e C a l l
 	
Figure 3.9: Passing a reference value to a method.

a OneRowNim instance is an object, g is a reference variable. So when
myMethod(game) is invoked in main(), a reference to game is passed
to myMethod(). Note that in myMethod(), we use takeSticks(3) to
change the number of sticks of g from 10 to 7 and that this change persists
even after the method returns control to main(). The reason is that dur-
ing the method’s execution, both game and g refer to the exact same object
(see Fig. 3.10). The output generated by ReferenceCall would be� �

main : Number of s t i c k s : 10
myMethod : Number of s t i c k s : 10
myMethod : Number of s t i c k s : 7
main : Number of s t i c k s : 7
 	

This illustrates that when passing a reference variable to a method, it is
possible for the method to change the state of the object associated with

SECTION 3.6 • Flow of Control: Control Structures 121
Figure 3.10: Tracing the
state of OneRowNim object in
ReferenceCall (a) Just before
calling myMethod(game). (b)
Just before executing the body of
myMethod(). (c) Just after exe-
cuting the body of myMethod().
(d) After flow of control returns
to main().

the reference variable. In subsequent chapters we will see ways to make
use of this feature of reference parameters.

JAVA LANGUAGE RULE Passing a Reference. When a reference to
an object is passed to a method, any changes made to the object from
within the method will persist when the method is finished executing.

JAVA DEBUGGING TIP Side Effects. An unintended change to an
object is called a side effect. Care should be taken in designing
methods that the method does not produce unwanted side effects in
objects passed as reference parameters.

3.6 Flow of Control: Control Structures

We have been ignoring a couple of problems with the definition of the
OneRowNim class. One problem is that we would describe a One Row
Nim game as two players taking turns until there are no more sticks. An
object using OneRowNim would need a way to repeatedly execute a group
of statements. One command in Java that controls the repetition of a block
of statements is called a while loop. We will consider it later in this section.

A second problem is with the definition of takeSticks():� �
public void t a k e S t i c k s (i n t num)
{ n S t i c k s − num;

player = 3 − player ;
}
 	

122 CHAPTER 3 • Methods: Communicating with Objects

It is possible to call this method with an argument greater than 3 or less
than 1. The call game.takeSticks(5) will remove 5 sticks even though
the rules of One Row Nim say that you must remove 1, 2, or 3. While one
might assume that the user interface should prevent the user from break-
ing this rule, it is a far better design if it was dealt with in OneRowNim.
To do this we need a Java structure that executes different statements de-
pending on whether the parameter is greater than 3, less than 1, or be-
tween 1 and 3. The Java if-else statement has this capability. A fuller treat-
ment of control structures appears in Chapter 6, but in this section, we will
briefly introduce a couple of simple control structures. This will enable us
to write programs that take more interesting actions.

3.6.1 The Simple If Statement

A selection control structure, allows a program to select between two or
more alternative paths of execution. The if statement is the most basic
selection control structure in Java. Most programming languages have its
equivalent.Simple if statement

JAVA LANGUAGE RULE If Statement. The if statement has the
following syntax:

if (boolean expression)
containedstatement ;

The statement contained in the if statement can be any valid Java state-
ment, including a compound statement. (Recall from Chapter 1 that
a compound statement is a set of statements contained within curly
braces.) The boolean expression is an expression that is either true
or false. We have seen examples of boolean expressions that involve
int variables, int values, and the inequality or equality operators. A
method call to a method with a boolean result type is another example
of a boolean expression. Given this description of if statement syntax,
the following are examples of valid if statements:� �

i f (t rue) System . out . p r i n t l n (” Hello ”) ;
i f (n S t i c k s <= 0) System . out . p r i n t l n (”game i s over ”) ;
 	

For readability, we usually write an if statement with its contained state-
ment indented on the next line:� �

i f (t rue)
System . out . p r i n t l n (” Hello ”) ;

i f (n S t i c k s <= 0)
System . out . p r i n t l n (”game i s over ”) ;
 	

SECTION 3.6 • Flow of Control: Control Structures 123

The following are all examples of syntax errors involving the if statement:� �
i f t rue // P a r e n t h e s e s a r e m i s s i n g

System . out . p r i n t l n (” Hello ”) ;

i f (n S t i c k s <= 0) return // S e m i c o l o n m i s s i n g

i f (” t rue ”) return ; // ” t r u e ” i s n o t a b o o l e a n

i f (t rue) ” Hello ” ; // ” H e l l o ” i s n o t a s t a t e m e n t
 	
Semantically, the if statement has the following interpretation: First, the
boolean condition is evaluated. If it is true, then the contained statement is
executed; if it is false, then the contained statement is not executed. This is
shown in Figure 3.11. The flowchart clearly shows that program flow will
take one or the other of the alternative paths coming out of the diamond-

boolean

condition

statement

True

False

Figure 3.11: Flowchart of the if
statement. Diamond-shaped sym-
bols at the branch points contain
boolean expressions. Rectangu-
lar symbols can only contain ex-
ecutable statements. Circles act
simply as connectors, to connect
two or more paths.

shaped boolean condition box. The branch through the rectangular state-
ment box will be taken when the boolean condition is true; otherwise the
statement will be skipped.

As another example, consider the definition of a getPlayerString()
method for the OneRowNim class:� �

public S t r i n g g e t P l a y e r S t r i n g ()
{

i f (player == 1)
return ” Player One” ; // E x i t t h e m e t h o d

i f (player == 2)
return ” Player Two” ; // E x i t t h e m e t h o d

return ” Player e r r o r ” ; // E x i t t h e m e t h o d

}
 	
The flowchart in Figure 3.12 shows the program flow of the entire
getPlayerString() method. It is important to note that when a

player == 1
True

False

player == 2

return "Player error"

exit method

exit method

exit method

return "Player Two"

return "Player One"

True

False

Figure 3.12: Flowchart of the
getPlayerString() method.

return statement is executed in a method, control is returned im-

124 CHAPTER 3 • Methods: Communicating with Objects

mediately to the calling method. Thus, if player == 1 is true,
the string “Player One” is returned to the calling method and the
getPlayerString() method exits at this point. If it is false, then
player == 2 should be true (if we have a consistent state) and the string
“Player Two” should be returned and the method exited. Thus, if we have
a consistent state —that is, if player has value 1 or 2—then the third
return statement should never be reached.

The following example shows the more common case where the state-
ment contained in an if statement can be a compound statement:Compound statement � �

i f (player == 1)
{ S t r i n g s = ” Player One” ;

System . out . p r i n t (s) ;
System . out . p r i n t l n (” plays next ”) ;
System . out . p r i n t l n (” The game i s not over ”) ;

}
 	
If player == 1 is true, then all four statements in the contained com-
pound statement will be executed. Note here that we are declaring theLocal scope
local variable, s, in this block. Its scope would extend only to the end of
the block. Note also that when we use a compound statement, the com-
pound statement itself is not followed by a semicolon because it is already
enclosed in braces.

A common programming error is to forget the braces around the com-
pound statement. Merely indenting the statements following the if clause
doesn’t alter the logic of the if statement. For example, the following if
statement still has only one statement in its if clause:� �

i f (condi t ion1)
System . out . p r i n t l n (”One”) ;
System . out . p r i n t l n (”Two”) ; // N o t p a r t o f i f s t a t e m e n t
 	

This segment will always print “Two” because the second println() is
not part of the if statement. To include it in the if statement, you must
enclose both println() statements within braces:� �

i f (condi t ion1)
{ System . out . p r i n t l n (”One”) ;

System . out . p r i n t l n (”Two”) ;
}
 	

JAVA DEBUGGING TIP Indentation. Indentation can improve the
readability of a program but doesn’t affect its logic. Braces must be
used to group statements in the if clause.

3.6.2 The if-else Statement
A second version of the if statement incorporates an else clause into the
structure. This allows us to execute either of two separate statements (sim-

SECTION 3.6 • Flow of Control: Control Structures 125

ple or compound) as the result of one boolean expression. For example,
the statement� �

i f (player == 1)
System . out . p r i n t l n (” Player One”) ;

e lse
System . out . p r i n t l n (” Player Two”) ;
 	

will print “Player One” if player == 1 is true. Otherwise, it will print
“Player Two”.

JAVA LANGUAGE RULE If-else Statement. The if-else statement has
the following syntax:

if (boolean expression)
statement1 ;

else

statement2 ;

As in the case of the simple if statement, the keyword if is followed by If-else syntax
a parenthesized boolean expression, which is followed by statement1, which
may be either simple or compound. If statement1 is a simple statement,
then it is followed by a semicolon. The else clause follows immediately
after statement1. It begins with the keyword else, which is followed by
statement2, which can also be either a simple or compound statement.
Note that there is no boolean expression following the else keyword.
In an if-else statement, the boolean expression following the keyword if
goes with both the if and else clauses.

Semantically, the if-else statement has the following interpretation: If
the boolean expression is true, execute statement1; otherwise execute state-
ment2. This interpretation is shown in Figure 3.13.

boolean

condition

statement1

True

statement2

False

Figure 3.13: Flowchart of the
if-else statement.

3.6.3 The Nested if/else Multiway Selection Structure

The statements that one inserts in place of statement1 and statement2 in
the if-else statement can be any executable statement, including another
if statement or if-else statement. In other words, it is possible to embed
one or more if-else statements inside another if-else statement, thereby
creating a nested control structure. As with most things, making a control
structure too complex isn’t a good idea, but there is a standard nested if-
else control structure that is very useful. It is known as multiway selec-
tion. As shown in Figure 3.14, the multiway structure is used when you
want to select one and only one option from several alternatives.

Suppose we have an int variable num that will contain one of the val-
ues 1, 2, or 3 unless there has been an error assigning a value to it. Sup-
pose that we want to write code that will write out the English word for

126 CHAPTER 3 • Methods: Communicating with Objects
Figure 3.14: Flowchart of a nested
if-else statement.

num == 3

Error:

Unknown value

TrueFalse

num == 2
TrueFalse

num == 1
TrueFalse

Three

Two

One

the value in num. In the example shown in Figure 3.14 there are three
alternatives plus an error state. Here is the Java code for this example:� �

i f (num == 1)
System . out . p r i n t l n (”One”) ;

e lse i f (num == 2)
System . out . p r i n t l n (”Two”) ;

e lse i f (num == 3)
System . out . p r i n t l n (”Three”) ;

e lse
System . out . p r i n t l n (” Error : Unknown value ”) ;
 	

Note that the multiway structure has a single entry point and that only one
of the four possible alternatives is executed. The code will print exactlyMultiple alternatives
one of the strings.

We will have many occasions to use the if-else structure. Al-
though it does not represent a significant change, we could rewrite our
takeStick() method to make use of the if-else instead of the somewhat
obscure statement :� �

player = 3 − player ;
 	

SECTION 3.6 • Flow of Control: Control Structures 127

to change the value of player from 1 to 2 or vice versa:� �
public S t r i n g t a k e S t i c k s (i n t num)
{ n S t i c k s = n S t i c k s − num;

i f (player == 1)
player = 2 ; // F r o m 1 t o 2

e lse
player = 1 ; // F r o m 2 t o 1

}
 	
In some respects this version of takeSticks() involves four lines of
code instead of one but is simpler to understand. The if-statement tests
whether the value of player is 1. If it is, the value is changed to 2. If
the value of player is not 1, then the value must be 2 and so the value is
changed to 1. Both versions of the code will give precisely the same result,
a programmer could choose to write the code either way.

SELF-STUDY EXERCISES
EXERCISE 3.10 Consider the following method with boolean param-

eter.� �
public S t r i n g g e t S t a t u s (boolean isDone)
{ i f (isDone)

return ”Done” ;
e lse

return ”Not Done” ;
}
 	
Draw a flowchart for the if-else version of the getStatus() method, us- Flowchart symbols
ing the figures in this section as a guide. The if-else structure should be
drawn exactly as shown in Figure 3.11. It should have a single entry point
that leads directly to the top of a diamond-shaped box that contains a
boolean condition. There should be two branches coming out of the con-
dition box. The one going to the right is the true case, and the one going
to the left is the false case. Each of these branches should contain one
rectangular box, which contains the statements that would be executed in
that case. The left and right branches should be connected by a circular
symbol that is aligned directly under the diamond box whose conditions
it connects. There should be a single exit arrow pointing directly down.

EXERCISE 3.11 Identify the error in the following statements:� �
i f (isHeavy == t rue)

System . out . p r i n t l n (”Heavy”) ;
e lse ;

System . out . p r i n t l n (” Light ”) ;

i f (isLong == t rue)
System . out . p r i n t l n (”Long”)

e lse
System . out . p r i n t l n (” Short ”) ;
 	

128 CHAPTER 3 • Methods: Communicating with Objects

EXERCISE 3.12 Suppose we have an int instance variable named
player in some class describing a three person game. Write a method
named getPlayerName() that returns a String. It should return
“Ann”, “Bill”, “Cal”, or “Error” when the value of player is respectively
1, 2, 3, or any other value.

EXERCISE 3.13 How does a parameter for a primitive type differ from
a parameter for a reference type?

3.6.4 The While Structure
A repetition structure is a control structure that repeats a statement or
sequence of statements in a controlled way. Repetition structures are also
referred to as loop structures. Many types of programming tasks require
a repetition structure. Consider some examples.

• You want to add up the squares of the numbers from 1 to 100.

• You want to compute compound interest on an amount of money in
a savings account with a fixed interest rate if it is kept there for 30
years.

• A computer security employee wants to try every possible password
in order to break into an account of a suspected spy.

• You want to have players input moves for a turn in a game until the
game is over. Our OneRowNim is such an example.

We will study several different repetition structures of Java in depth in
Chapter 6. We will briefly consider the while statement here so as to be
able to define methods that are more powerful and more interesting. Let
us write a method that solves a slight generalization of the first problem
above. We will use the while statement to sum the squares of integers from
1 to a number specified as a parameter of the method. Thus, the method
call sumSquares(3) should return the value 14 since 1∗1+2∗2+3∗3 =
1+4+9 = 14.� �

public i n t sumSquares (i n t max)
{ i n t num = 1 ;

i n t sum = 0 ;
while (num <= max) { // W h i l e num <= max

sum = sum + num∗num; // Add s q u a r e t o sum

num = num + 1 ; // Add 1 t o num

} // w h i l e

return sum ; // R e t u r n t h e sum

}
 	
Note that in this example, the variable num gets assigned an initial value
of 1 before the while statement. Note also that the boolean expression
num < max in parentheses after while states the condition for which we
wish to continue summing squares. Finally note that the last statement
in the block following the boolean expression adds 1 to num–that is, this
variable is updated at the end of the block.

SECTION 3.6 • Flow of Control: Control Structures 129

The while statement is a loop statement in which the loop entry condi-
tion occurs before the loop body. It has the following general form:

JAVA LANGUAGE RULE While Statement. The while statement has
the following syntax:

while (loop entry condition)
loopbody ;

When the while statement is executed, the loop entry condition is evalu-
ated and if this evaluates to false, execution continues at the statement
immediately after the loop body. If the loop entry condition evaluates to
true, the loop body is executed and then the entry condition is evalu-
ated again. The loop body continues to be executed until the loop entry
condition evaluates to false.

To have a while statement accomplish a task, the variable or variables
in the loop entry condition must be initialized correctly before the while
statement and these variables must be correctly updated at the end of the
loop body. We can refer to the initializer statement followed by a while
statement as a while structure. We can restate the above guidelines as a
design principle:

JAVA EFFECTIVE DESIGN Loop Structure. A properly designed
while structure must include an initializer, a loop entry condition, and
an updater. The updater should guarantee that the loop entry
condition eventually fails, thereby allowing the loop to terminate.

In pseudocode, the while structure would take the following form:� �
I n i t i a l i z e r S t a t e m e n t s ; // I n i t i a l i z e r

while (loop entry condi t ion) { // B o u n d t e s t

Statements ; // L o o p b o d y

UpdaterStatements ; // U p d a t e r

}
 	
As its form suggests, the while structure is designed so that on some con-
ditions the loop body will never be executed. Because it tests for the loop
entry condition before the loop body, it is possible that the loop body is
never executed. We might say that it is designed to perform 0 or more
iterations.

For example, if the method call sumSquares(-3) is executed, the loop
body will be skipped, because the loop entry condition num <= max is
false to begin with. No iterations will be performed, and the algorithm
will simply return the value 0.

Note also that in the while statement the bound test is preceded by
initializer statements, and the loop body contains updater statements. The
semantics of the while structure are shown in Figure 3.15.

130 CHAPTER 3 • Methods: Communicating with Objects
Figure 3.15: Flowchart of the
while statement and while struc-
ture.

While Statement While Structure

Statement
True

False

Condition

Updater

Statement

(loop body)

True

False

Loop

entry

condition

Initializer

SELF-STUDY EXERCISE

EXERCISE 3.14 Modify the definition of the sumSquares() method
to define a method named sumCubes() that sums the cubes of integers
from a minimum value up to a maximum value and returns that sum.
sumCubes() should have two parameters that will store the minimum
and maximum values. Thus the method call sumCubes(2,3) should
return 35 since 2∗2∗2+3∗3∗3 = 8+27 = 35.

3.7 Testing an Improved OneRowNim

Let’s use the control structures that we have discussed to improve the
definition of the takeSticks() method of OneRowNim. We noted ear-
lier that our current definition allows 4 or more sticks to be removed
from nSticks even though the rules of One Row Nim indicate that a
player must take one, two, or three sticks on a turn. We can use if-else
statements to make certain that no more than 3 sticks get removed.

What should happen if the method takeSticks() is called with an
argument that does not represent a legal number of sticks to remove? In
this case, it would probably make sense to remove no sticks at all and to
keep the value of player the same so that the player whose turn it is does
not change. In addition, it would be nice if the method could signal that an
illegal move has been attempted. This can be accomplished if we redefine
takeSticks() to return a boolean value. Let’s have a return value of
true represent the case that a valid number of sticks have been removed
and the player to play next has been changed. A return of false will
indicate that an illegal move has been attempted. Making these changes

SECTION 3.7 • Testing an Improved OneRowNim 131

to the takeSticks() method will yield a method definition that looks
like:� �

public boolean t a k e S t i c k s (i n t num)
{ i f (num < 1) {

return f a l s e ; // E r r o r

} e lse i f (num > 3) {
return f a l s e ; // E r r o r

} e lse {
n S t i c k s = n S t i c k s − num;
player = 3 − player ;
return true ;

} // e l s e

} // t a k e S t i c k s
 	
Notice that the new definition of the takeSticks() method has a
boolean return type. Also notice that the if/else multiway structure
is used to handle the three cases of the parameter num being less than one,
more than three, or a valid number.

Let us add one more method to the OneRowNim class. Let’s define a
method called getWinner()that will return the number of the winning
player if the game is over. Recall that the player who takes the last stick
loses, so after that last play, the player whose turn it is to play next is the
winner. However, we should be concerned about what value to return if
the game is not over when the method is called. A common strategy is
to have a method return a special value to indicate that it is in a state in
which it cannot return the value requested. Returning a 0 value is a good
way to indicate that the game is not over so a winner cannot be identified.
With this information, the if/else statement can be used in the definition
of getWinner().� �

public i n t getWinner ()
{ i f (n S t i c k s < 1)

return player ;
e lse

return 0 ;
} // g e t W i n n e r ()
 	
We now have the final version (for this chapter) of the OneRowNim

class whose implementation is given in Figure 3.16. We have turned a
very simple class into one that contains quite a few elements. Compared
to our first version (in Chapter 1), this Chapter’s version of OneRowNim
presents an interface (to other objects) that is easy and convenient to
use. The constructor methods with parameters provide an easy way
to create a OneRowNim instance with any number of sticks. The use
of private instance variables and a single, carefully designed mutator
method, takeSticks(), prevents other objects from tampering with
the state of a OneRowNim object’s state. The other methods provide a
flexible way to find out the state of a OneRowNim object. The complete
implementation of this OneRowNim is shown in Figure 3.16.

132 CHAPTER 3 • Methods: Communicating with Objects

� �
public c l a s s OneRowNim
{ private i n t n S t i c k s = 7 ;

private i n t player = 1 ;

public OneRowNim ()
{
} // OneRowNim () c o n s t r u c t o r

public OneRowNim(i n t s t i c k s)
{ n S t i c k s = s t i c k s ;
} // OneRowNim () c o n s t r u c t o r 2

public OneRowNim(i n t s t i c k s , i n t s t a r t e r)
{ n S t i c k s = s t i c k s ;

player = s t a r t e r ;
} // OneRowNim () c o n s t r u c t o r 3

public boolean t a k e S t i c k s (i n t num)
{ i f (num < 1) return f a l s e ; // E r r o r

e lse i f (num > 3) return f a l s e ; // E r r o r

e lse // t h i s i s a v a l i d move

{ n S t i c k s = n S t i c k s − num;
player = 3 − player ;
return true ;

} // e l s e

} // t a k e S t i c k s ()

public i n t g e t S t i c k s ()
{ return n S t i c k s ;
} // g e t S t i c k s ()

public i n t getP layer ()
{ return player ;
} // g e t P l a y e r ()

public boolean gameOver ()
{ return (n S t i c k s <= 0) ;
} // g a m e O v e r ()

public i n t getWinner ()
{ i f (n S t i c k s < 1) return getP layer () ;

e lse return 0 ; // g a m e i s n o t o v e r

} // g e t W i n n e r ()

public void repor t ()
{ System . out . p r i n t l n (”Number of s t i c k s l e f t : ” +

g e t S t i c k s ()) ;
System . out . p r i n t l n (”Next turn by player ” +

getP layer ()) ;
} // r e p o r t ()

} // OneRowNim c l a s s
 	
Figure 3.16: The OneRowNim class with improved methods.

SECTION 3.7 • Testing an Improved OneRowNim 133

Let’s use a while statement to test the new methods of the class. A
pseudocode description of how a game is played might look like:� �

Choose the i n i t i a l number of s t i c k s for the game
while the game i s not over
{ Report the s t a t e of the game

Process the next move
}
Report the s t a t e of the game
Report who the winner i s
 	

Translating this pseudocode into Java code in a main() method in a sepa-
rate class gives us the class shown in Figure 3.17. We will use the Scanner
class introduced in the previous chapter to get moves from the keyboard

� �
import j ava . u t i l . Scanner ;

public c l a s s TestOneRowNim
{

public s t a t i c void main (S t r i n g argv [])
{ Scanner sc = Scanner . c r e a t e (System . in) ;

OneRowNim game = new OneRowNim (1 1) ;
while (game . gameOver () == f a l s e)
{ game . repor t () ; // P r o m p t t h e u s e r

System . out . p r i n t (” Input 1 , 2 , or 3 : ”) ;
i n t s t i c k s = sc . n e x t I n t () ; // G e t move

game . t a k e S t i c k s (s t i c k s) ; // Do move

System . out . p r i n t l n () ;
} // w h i l e

game . repor t () ; // T h e g a m e i s now o v e r

System . out . p r i n t (”Game won by player ”) ;
System . out . p r i n t l n (game . getWinner ()) ;

} // m a i n ()

} // T e s t O n e R o w N i m
 	
Figure 3.17: The TestOneRowNim class with a while loop.

for both players. Before each move game.report() describes the state
of the game before the user is prompted to input a move for one of the
players. A reader interested in seeing the lengthy output to the console
when the TestOneRowNim class is run is encouraged to actually run the
program.

Note that the return value of the takeSticks() method is ignored
in this test program. We will make use of the return value in test pro-
grams in the next chapter when better user interfaces are developed for
OneRowNim. Note, however, that taken together, the public methods for

134 CHAPTER 3 • Methods: Communicating with Objects

OneRowNim provide other objects with an interface that they can use to
communicate with individual OneRowNim objects.

JAVA EFFECTIVE DESIGN Interfaces. Well-designed objects
provide a useful public interface and protect the object’s private
elements from other objects.

To reiterate a point made at the outset, object-oriented programming is aObject-oriented design
process of constructing objects that will interact with each other. Object-
oriented programs must ensure that the objects themselves are well de-
signed in terms of their ability to carry out their designated functions.
Good design in this sense requires careful selection of instance variables
and careful design of methods to ensure that the object can carry out its
assigned tasks. However, equal care must be taken to ensure that the
interactions that take place among objects are constrained in ways that
make sense for that particular program. This aspect of designing ob-
jects comes into play in designing the methods—constructor, accessor, and
mutator—that make up the object’s interface.

Special Topic: Intelligent Agents

Wouldn’t it be nice if we had a computer program that could schedule
appointments for us, remind us of meetings and commitments, find in-
formation for us on the WWW, and manage our e-mail messages for us?
Wouldn’t it be nice to have a computerized personal assistant?

Actually, such programs are called intelligent agents, which are pro-
grams that are capable of acting autonomously to carry out certain tasks.
Intelligent agent technology is becoming an important research area in
computer science. Most agent programs incorporate some kind of ma-
chine learning capability, so that their performance improves over time.

As a typical agent activity, suppose I was able to tell my intelligent
agent to buy me a copy of a certain book that I just heard about. Given a
command like “buy me a copy of X,” the agent would perform a search
of online book sellers and come up with the best deal. Once it had found
the best buy, the agent would communicate with a computer-based agent
representing the book seller. My agent would make the order and pay
for it (assuming I gave it authority to do so), and the book seller’s agent
would process the order.

As far-fetched as the capability may now seem, this is the direction
that research in this area is headed. Researchers are developing agent
languages and describing protocols that agents can use to exchange in-
formation in a reliable and trustworthy environment. Obviously, you
wouldn’t want your agent to give your money to a fraudulent book seller,
so there are significant problems to solve in this area that go well beyond
the problem of simply exchanging information between two agents.

The best way to learn more about this research area is to do a Web
search using the search string “Intelligent Agent.” There are numerous re-
search groups and companies that provide online descriptions and demos
of their products.

SECTION 3.8 • From the Java Library java.lang.Object 135

3.8 From the Java Library java.lang.Object

java.sun.com/j2se/1.5.0/docs/api/
The most general class in Java’s class hierarchy is the java.lang.Object
class. It is the superclass of all classes that occur in Java programs. By de-
fault, it is the direct superclass of any class that does not explicitly specify
a pedigree in its class definition.

All subclasses of Object inherit the public and protectedmethods
contained in Object, so all such methods can be thought of as belonging
to the subclasses. This means that all classes inherit the methods of the
Object class, because every class is a subclass of it. In this section, let’s
look briefly at how we can use an inherited method and also at how we
can override it–that is, redefine the method–if it doesn’t exactly suit our
purposes.

One of the most useful methods in the Object class is the
toString() method:� �

public c l a s s Object
{

public S t r i n g t o S t r i n g () ;
}
 	

The toString() method returns a String representation of its object.
For example, o1.toString() will return a String that in some sense
describes o1.

Because OneRowNim is a subclass of Object, it inherits the
toString() method. To illustrate the default behavior of toString(),
let’s use it with a OneRowNim instance:� �

OneRowNim g1 = new OneRowNim (1 1) ;
OneRowNim g2 = new OneRowNim (1 3) ;
System . out . p r i n t l n (g1 . t o S t r i n g ()) ;
System . out . p r i n t l n (g2 . t o S t r i n g ()) ;
 	

This code segment creates two OneRowNim instances, one named g1 and
the other named g2. The inherited toString() method is then invoked
on each OneRowNim instance, which produces the following output:� �

OneRowNim@1dc6077b
OneRowNim@1dc60776
 	

What this experiment shows is that the default definition of toString()
returns some kind of internal representation of its object. It looks as if it
returns the name of the object’s class concatenated with its memory ad-
dress. This may be useful for some applications. But for most objects
we will want to override the default definition to make the toString()
method return a string that is more appropriate for OneRowNim.

What String should the g1.toString() method return? Let’s have
it return a String that reports the OneRowNim instances’s current state,
which are the values stored in the two instance variables. To override
a method, you simply define a method with the same signature in the

136 CHAPTER 3 • Methods: Communicating with Objects

subclass. If you call toString() with an instance of the subclass, its
version of the method will be used. In this way, the subclass method over-
rides the superclass version. Thus, OneRowNim.toString() will have
the following signature:� �

public S t r i n g t o S t r i n g () ;
 	
Let us describe the state of a oneRowNim instance very briefly in the string
returned by the toString() method:� �

public S t r i n g t o S t r i n g ()
{ return ” n S t i c k s = ” + n S t i c k s + ” , player = ” + player ;
}
 	

If we add the toString() method to the OneRowNim class and then run
the program shown in Figure 3.18, we get the following output:� �

n S t i c k s = 9 , player = 2
n S t i c k s = 13 , player = 1
 	

� �
public c l a s s TestToStr ing
{

public s t a t i c void main (S t r i n g argv [])
{ OneRowNim g1 = new OneRowNim (1 1) ;

OneRowNim g2 = new OneRowNim (1 3) ;
g1 . t a k e S t i c k s (2) ;
System . out . p r i n t l n (g1 . t o S t r i n g ()) ;
System . out . p r i n t l n (g2 . t o S t r i n g ()) ;

} // m a i n

} // T e s t T o S t r i n g
 	
Figure 3.18: An application to test the overridden toString() method.

While this new method may not play an important role in the OneRowNim
class, it does provide a very brief, understandable description of the state
of the object. This is the reason that the toString() method was in-
cluded in the Object class.

3.9 Object-Oriented Design: Inheritance and
Polymorphism

This use of Object’s toString() method provides our first look atInheritance
Java’s inheritance mechanism and how it promotes the generality and
extensibility of the object-oriented approach. As a subclass of Object,
our OneRowNim class automatically inherits toString() and any other
public or protected methods defined in Object. We can simply use
these methods as is, insofar as they are useful to us. As we saw in this
case, the default version of toString() wasn’t very useful. In that case,

SECTION 9 • OOD: Inheritance and Polymorphism 137

we can override the method by defining a method in our class with the
exact same method signature. The new version of toString() can be
customized to do exactly what is most appropriate for the subclass.

One of the great benefits of the object-oriented approach is the ability
to define a task, such as toString(), at a very high level in the class
hierarchy and let the inheritance mechanism spread that task through-
out the rest of the hierarchy. Because toString() is defined in Object,
you can invoke this method for any Java object. Moreover, if you over-
ride toString() in the classes you define, you will be contributing to its
usefulness. Two important lessons from this example are

JAVA EFFECTIVE DESIGN Inheritance. The higher up in the class
hierarchy that a method is defined, the more widespread its use can be.

JAVA EFFECTIVE DESIGN Overriding toString(). The
toString() method can be overridden in any user defined Java
class. It is a useful thing to do in any class where the state of an object
can be defined briefly.

Obviously there is much more that needs to be explained about Java’s
inheritance mechanism. Therefore, we will be revisiting this topic on
numerous occasions in subsequent chapters.

Another important concept of object-oriented design is polymorphism.
The toString() method is an example of a polymorphic method. The
term polymorphism is from the Greek terms poly, which means “many,”
and morph, which means “form.” The toString() method is polymor-
phic because it has different behavior when invoked on different objects.

For example, suppose we design a class, Student, as a subclass of
Object and define its toString() method to return the student ID
number. Given this design, then obj.toString() will return a student
ID if obj is an instance of Student, but if it is an instance of OneRowNim,
it will return a the description of its state that we defined above. The
following code segment illustrates this point:� �

Object ob j ; // o b j c a n r e f e r t o a n y O b j e c t

obj = new Student (” 12345 ”) ; // o b j r e f e r s t o a S t u d e n t

System . out . p r i n t l n (ob j . t o S t r i n g ()) ; // P r i n t s ” 1 2 3 4 5 ”

obj = new OneRowNim (1 1) ; // o b j r e f e r s t o a OneRowNim

System . out . p r i n t l n (ob j . t o S t r i n g ()) ;

// P r i n t s : n S t i c k s = 1 1 , p l a y e r = 1
 	
In this case, the variable obj is used to refer to a Student and then to a
OneRowNim instance. This is okay because both classes are subclasses of
Object. When toString() is invoked on obj, Java will figure out what
subclass of Object the instance belongs to and invoke the appropriate
toString() method.

138 CHAPTER 3 • Methods: Communicating with Objects

3.10 Drawing Lines and Defining Graphical
Methods (Optional)

We used a Graphics object in the previous chapter to draw rectangles
and ovals in a JFrame window. The Graphics class also possesses a
method for drawing a line segment. Problems involving drawing pic-
tures in an JFrame window using a series of line segments can be a source
of examples of defining useful methods and also of making good use of
loops.

The Graphics class has a public instance method with the header:� �
public void drawLine (i n t x1 , i n t y1 , i n t x2 , i n t y2)
 	

The method call g.drawLine(x1, y1, x2, y2) draws a line from the
point (x1,y1) to (x2,y2) where (x,y) refers to a point that is x pixels from
the left edge of the area that g is drawing in and y pixels from the top edge.
Thus g.drawLine(10, 10, 10, 60) draws a vertical line segment
that is 50 pixels long and is 10 pixels from the left edge of the drawing
area, that is, a line segment from the point (10,10) to the point (10,60).

Consider the problem of creating an Swing program with a method
called drawSticks() to draw any specified number of vertical line seg-
ments. This method might be useful for an graphical user interface to
the OneRowNim game to draw the number of sticks at a given point in a
game. Suppose that this method must have an int parameter to specify
the number of vertical lines to draw and two int parameters to spec-
ify the location of the top endpoint of the left most line segment. The
drawSticks() method will need to use a Graphics object connected
to the JFrame window for drawing the line segment. The only such
Graphics object available is the parameter in the paint() method of
the Canvas. Thus the method must have a Graphics parameter and it
will be called in the paint() method using the Graphics object there as
an argument. Thus the header of the method should look like:� �

public void drawSticks (Graphics g , i n t x , i n t y , i n t num)
 	
The length of the line segments and and the distance between them

are not specified by parameters so we need to choose some fixed values
for these quantities. Let us assume that the line segments are 10 pixels
apart and 50 pixels long. We now have enough information to complete
the definition of an applet to solve this problem. Such a class definition is
reproduced in Figure 3.19.

Note that the body of drawSticks() uses a while-loop to draw the
lines and declares and initializes a local variable to zero to use for counting
the number of lines drawn. The statement g.drawLine(x, y, x, y +
50); draws a vertical line which is 50 pixels long. Increasing the value
of x by 10 each time through the loop moves the next line 10 pixels to the
right.

The first call to drawSticks() in the paint() method draws 12
lines with (25,25) the top point of the left-most line. The second call to

CHAPTER 3 • Chapter Summary 139� �
/∗ ∗ D r a w L i n e C a n v a s d e m o n s t r a t e s s o m e g r a p h i c s c o m m a n d s .

∗ I t d r a w s a s e t o f 1 2 v e r t i c a l l i n e s a n d a s e t o f 7 l i n e s .

∗/

import j ava . awt . ∗ ;
import j avax . swing . JFrame ;

public c l a s s DrawSticksCanvas extends Canvas
/∗ ∗ d r a w S t i c k s (g , x , y , num) w i l l d r a w num v e r t i c a l l i n e

∗ s e g m e n t s . T h e l i n e s e g m e n t s a r e 1 0 p i x e l s a p a r t a n d

∗ 5 0 p i x e l s l o n g . T h e t o p e n d p o i n t o f t h e l e f t m o s t

∗ l i n e s e g m e n t i s a t t h e p o i n t (x , y) .

∗/

public void drawSticks (Graphics g , i n t x , i n t y , i n t num)
{ i n t k = 0 ;

while (k < num)
{ g . drawLine (x , y , x , y + 5 0) ;

x = x + 1 0 ;
k = k + 1 ;

} // w h i l e

} // d r a w S t i c k s ()

public void paint (Graphics g)
{ drawSticks (g , 25 , 25 , 1 2) ;

g . se tColor (Color . cyan) ;
drawSticks (g , 25 , 125 , 7) ;

} // p a i n t ()

} // D r a w S t i c k s C a n v a s
 	
Figure 3.19: A Swing Class with a method for drawing a set of sticks.

drawSticks()will draw 7 cyan sticks 100 pixels lower. Note that chang-
ing the color of g before passing it as an argument to drawSticks()
changes the drawing color.
An image of the DrawSticksCanvas as it appears in a window is shown
in Figure 3.20.

Figure 3.20: The DrawSticksCan-
vas as displayed in a Java win-
dow.

As we have seen in this example, defining methods with parameters to
draw an object makes the code reusable and makes it possible to draw a
complex scene by calling a collection of simpler methods. It is a typical
use of the divide-and-conquer principle. The while-loop can be useful in
drawing almost any geometrically symmetric object.

CHAPTER SUMMARY

Technical Terms

140 CHAPTER 3 • Methods: Communicating with Objects

accessor method
class scope
formal parameter
if statement
if/else statement
inherit
local scope

loop structure
method overloading
method signature
mutator method
multiway selection
override
polymorphism

repetition structure
scope
selection
side effect
while statement
while structure

Summary of Important Points

• A formal parameter is a variable in a method declaration. It always con-
sists of a type followed by a variable identifier. An argument is a value
that is passed to a method via a formal parameter when the method is
invoked. A method’s parameters constrain the type of information that
can be passed to a method.
• When an argument of primitive type is passed to a method, it cannot

be modified within the method. When an argument of reference type
is passed to a method, the object it refers to can be modified within the
method.
• Except for void methods, a method invocation or method call is an

expression which has a value of a certain type. For example,
nim.getSticks() returns a int value.
• The signature of a method consists of its name, and the number, types,

and order of its formal parameters. A class may not contain more than
one method with the same signature.
• A constructor is a method that is invoked when an object is created. If a

class does not contain a constructor method, the Java compiler supplies
a default constructor.
• Restricting access to certain portions of a class is a form of informa-

tion hiding. Generally, instance variables are hidden by declaring them
private. The class’s public methods make up its interface.
• The if statement executes a statement only if its boolean condition is

true. The if-else statement executes one or the other of its statements
depending on the value of its boolean condition. Multiway selection al-
lows one and only one of several choices to be selected depending on
the value of its boolean condition.
• The while statement is used for coding loop structures that repeatedly

execute a block of code while a boolean condition is satisfied.

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 3.1 A method declaration defines the method by specifying its name,
qualifiers, return type, formal parameters, and its algorithm, thereby associating
a name with a segment of executable code. A method invocation calls or uses a
defined method.

SOLUTION 3.2 A formal parameter is a variable in the method declaration, whose
purpose is to store a value while the method is running. An argument is a value
that is passed to a method in place of a formal parameter.

CHAPTER 3 • Solutions to Self-Study Exercises 141

SOLUTION 3.3 The following code declares two instance variables for names of
players and defines a setName() method:� �
private S t r i n g nameOne = ” Player One” ;
private S t r i n g nameTwo = ” Player Two” ;

public void setNames (S t r i n g name1 , S t r i n g name2)
{ nameOne = name1 ;

nameTwo = name2 ;
}
 	
Of course, there are many other appropriate names for the variables and parame-
ters and other initial assignments.

SOLUTION 3.4 A method call that sets the names of the players of game1 is:� �
game1 . setNames (”Xena” , ”Yogi”) ;
 	
SOLUTION 3.5 A constructor cannot have a return type, such as void.

SOLUTION 3.6 One definition for the method is:� �
public OneRowNim(i n t s t i c k s)
{ n S t i c k s = s t i c k s ;

player = 2 ;
}
 	
SOLUTION 3.7 The following would be displayed on the screen:� �

1
20
f a l s e
 	

SOLUTION 3.8 One definition for the method is:� �
public i n t getMoves ()
{ return nMoves ;
}
 	
SOLUTION 3.9 One definition for the method is:� �
public boolean playerOneIsNext ()
{ return (player == 1) ;
}
 	
SOLUTION 3.10 See Figure 3.21.

isDone

return

"Not Done"

return

"Done"

TrueFalse

exit method exit method

Figure 3.21: Flowchart of the if-
else version of the getStatus()
method.

142 CHAPTER 3 • Methods: Communicating with Objects

SOLUTION 3.11� �
i f (isHeavy == t rue)

System . out . p r i n t l n (”Heavy”) ;
e lse ; // E r r o r (r e m o v e t h i s s e m i c o l o n)

System . out . p r i n t l n (” Light ”) ;

i f (isLong == t rue)
System . out . p r i n t l n (”Long”)

e lse // E r r o r (e n d l i n e a b o v e w i t h s e m i c o l o n)

System . out . p r i n t l n (” Short ”) ;
 	
SOLUTION 3.12� �
public S t r i n g getPlayerName ()
{ i f (player == 1)

return ”Ann” ;
e lse i f (player == 2)

return ” B i l l ” ;
e lse i f (player == 3)

return ”Cal” ;
e lse

return ” Error ” ;
}
 	
SOLUTION 3.13 When passing an argument for a primitive type, a copy of the
argument’s value is passed. The actual argument cannot be changed inside the
method. When passing a reference to an object, the object can be changed within
the method.

SOLUTION 3.14� �
public i n t sumCubes (i n t min , i n t max)
{

i n t num = min ;
i n t sum = 0 ;
while (num <= max) { // W h i l e num <= max

sum = sum + num∗num∗num; // Add c u b e o f num t o sum

num = num + 1 ; // Add 1 t o num

} // w h i l e

return sum ; // R e t u r n t h e sum

}
 	
EXERCISES EXERCISE 3.1 Fill in the blanks in each of the following sentences:

a. When two different methods have the same name, this is an example of

.

b. Methods with the same name are distinguished by their .
Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

c. A method that is invoked when an object is created is known as a

method.

CHAPTER 3 • Exercises 143

d. A method whose purpose is to provide access to an object’s instance variables

is known as an method.

e. A boolean value is an example of a type.

f. A OneRowNim variable is an example of a type.

g. A method’s parameters have scope.

h. A class’s instance variables have scope.

i. Generally, a class’s instance variables should have access.

j. The methods that make up an object’s interface should have access.

k. A method that returns no value should be declared .

l. Java’s if statement and if-else statement are both examples of control

structures.

m. An expression that evaluates to either true or false is known as a .

n. In an if-else statement, an else clause matches .

o. The ability to use a superclass method in a subclass is due to Java’s

mechanism.

p. The process of redefining a superclass method in a subclass is known as

the method.

EXERCISE 3.2 Explain the difference between the following pairs of concepts:

a. Parameter and argument.
b. Method definition and method invocation.
c. Local scope and class scope.
d. Primitive type and reference type.
e. Access method and constructor method.

EXERCISE 3.3 Translate each of the following into Java code:

a. If b1 is true, then print “one”; otherwise, print “two”.
b. If b1 is false and if b2 is true, then print “one”; otherwise, print “two”.
c. If b1 is false and if b2 is true, then print “one”; otherwise, print “two”, or print

“three”.

EXERCISE 3.4 Identify and fix the syntax errors in each of the following:

a.� �
i f (isWalking == t rue) ;

System . out . p r i n t l n (”Walking”) ;
e lse

System . out . p r i n t l n (”Not walking”) ;
 	
b.� �

i f (isWalking)
System . out . p r i n t l n (”Walking”)

e lse
System . out . p r i n t l n (”Not walking”) ;
 	

144 CHAPTER 3 • Methods: Communicating with Objects

c.� �
i f (isWalking)

System . out . p r i n t l n (”Walking”) ;
e lse

System . out . p r i n t l n (”Not walking”)
 	
d.� �

i f (isWalking = f a l s e)
System . out . p r i n t l n (”Walking”) ;

e lse
System . out . p r i n t l n (”Not walking”) ;
 	

EXERCISE 3.5 For each of the following, suppose that isWalking is true
and isTalking is false (first draw a flowchart for each statement and then
determine what would be printed by each statement):

a.� �
i f (isWalking == f a l s e)

System . out . p r i n t l n (”One”) ;
System . out . p r i n t l n (”Two”) ;
 	

b.� �
i f (isWalking == t rue)

System . out . p r i n t l n (”One”) ;
System . out . p r i n t l n (”Two”) ;
 	

c.� �
i f (isWalking == f a l s e)
{

System . out . p r i n t l n (”One”) ;
System . out . p r i n t l n (”Two”) ;

}
 	
d.� �

i f (isWalking == f a l s e)
i f (i s T a l k i n g == t rue)

System . out . p r i n t l n (”One”) ;
e lse

System . out . p r i n t l n (”Two”) ;
e lse

System . out . p r i n t l n (”Three”) ;
 	

CHAPTER 3 • Exercises 145

EXERCISE 3.6 Show what the output would be if the following version of
main() were executed:� �
public s t a t i c void main (S t r i n g argv [])
{

System . out . p r i n t l n (”main () i s s t a r t i n g ”) ;
OneRowNim game1 ;
game1 = new OneRowNim (2 1) ;
OneRowNim game2 ;
game2 = new OneRowNim (8) ;
game1 . t a k e S t i c k s (3) ;
game2 . t a k e S t i c k s (2) ;
game1 . t a k e S t i c k s (1) ;
game1 . repor t () ;
game2 . repor t () ;
System . out . p r i n t l n (”main () i s f i n i s h e d ”) ;

}
 	
EXERCISE 3.7 Determine the output of the following program:� �
public c l a s s Mystery
{

public S t r i n g myMethod(S t r i n g s)
{

return (” Hello ” + s) ;
}
public s t a t i c void main (S t r i n g argv [])
{

Mystery mystery = new Mystery () ;
System . out . p r i n t l n (mystery . myMethod(” dol ly ”) ;

}
}
 	
EXERCISE 3.8 Write a boolean method—a method that returns a boolean—
that takes an int parameter and converts the integers 0 and 1 into false and
true, respectively.

EXERCISE 3.9 Define an int method that takes a boolean parameter. If the
parameter’s value is false, the method should return 0; otherwise, it should
return 1.

EXERCISE 3.10 Define a void method named hello that takes a single
boolean parameter. The method should print “Hello” if its parameter is true;
otherwise, it should print “Goodbye”.

EXERCISE 3.11 Define a method named hello that takes a single boolean
parameter. The method should return “Hello” if its parameter is true; otherwise it
should return “Goodbye”. Note the difference between this method and the one
in the previous exercise. This one returns a String. That one was a voidmethod.

EXERCISE 3.12 Write a method named hello that takes a single String pa-
rameter. The method should return a String that consists of the word “Hello”
concatenated with the value of its parameter. For example, if you call this method
with the expression hello("dolly"), it should return “hello dolly”. If you call
it with hello("young lovers wherever you are"), it should return “hello
young lovers wherever you are”.

146 CHAPTER 3 • Methods: Communicating with Objects

EXERCISE 3.13 Define a void method named day1 that prints “a partridge in a
pear tree”.

EXERCISE 3.14 Write a Java application program called TwelveDays that
prints the Christmas carol “Twelve Days of Christmas.” For this version, write a
void method named intro() that takes a single String parameter that gives the
day of the verse and prints the intro to the song. For example, intro("first")
should print, “On the first day of Christmas my true love gave to me”. Then write
methods day1(), day2(), and so on, each of which prints its version of the verse.
Then write a main() method that calls the other methods to print the whole song.

EXERCISE 3.15 Define a void method named verse that takes two String
parameters and returns a verse of the Christmas carol “Twelve Days of Christ-
mas.” For example, if you call this method with verse("first", "a
partridge in a pear tree"), it should return, “On the first day of Christ-
mas my true love gave to me, a partridge in a pear tree”.

EXERCISE 3.16 Define a void method named permute, which takes three
String parameters and prints out all possible arrangements of the three strings.
For example, if you called permute("a", "b", "c"), it would produce the
following output: abc, acb, bac, bca, cab, cba, with each permutation on a separate
line.

EXERCISE 3.17 Design a method that can produce limericks given a bunch of
rhyming words. That is, create a limerick template that will take any five words
or phrases and produce a limerick. For example, if you call� �
l i m e r i c k (” Jones ” , ” s tones ” , ” rained ” , ” pained ” , ”bones”) ;
 	
your method might print (something better than)� �
There once a person named Jones
Who had a grea t l i k i n g for stones ,
But whenever i t rained ,
Jones ’ express ion was pained ,
Because s tones weren ’ t good for the bones .
 	
For each of the following exercises, write a complete Java application program:

EXERCISE 3.18 Define a class named Donor that has two instance variables,
the donor’s name and rating, both of which are Strings. The name can
be any string, but the rating should be one of the following values: “high,”
“medium,” or “none.” Write the following methods for this class: a construc-
tor, Donor(String,String), that allows you to set both the donor’s name and
rating; and access methods to set and get both the name and rating of a donor.

EXERCISE 3.19 Challenge. Define a CopyMonitor class that solves the fol-
lowing problem. A company needs a monitor program to keep track of when a
particular copy machine needs service. The device has two important (boolean)
variables: its toner level (too low or not) and whether it has printed more than
100,000 pages since its last servicing (it either has or has not). The servicing rule
that the company uses is that service is needed when either 100,000 pages have
been printed or the toner is too low. Your program should contain a method that
reports either “service needed” or “service not needed” based on the machine’s
state. (Pretend that the machine has other methods that keep track of toner level
and page count.)

CHAPTER 3 • Exercises 147

EXERCISE 3.20 Challenge. Design and write an OldMacdonald class that
sings several verses of “Old MacDonald Had a Farm.” Use methods to generalize
the verses. For example, write a method named eieio() to “sing” the “E I E I O”
part of the verse. Write another method with the signature hadAnX(String s),
which sings the “had a duck” part of the verse, and a method withA(String
sound) to sing the “with a quack quack here” part of the verse. Test your class by
writing a main() method.

ADDITIONAL EXERCISES

EXERCISE 3.21 Suppose you have an Object A, with public methods a(),
b(), and private method c(). And suppose you have a subclass of A named B
with methods named b(), c() and d(). Draw a UML diagram showing the rela-
tionship between these two classes. Explain the inheritance relationships between
them and identify those methods that would be considered polymorphic.

EXERCISE 3.22 Consider the definition of the class C. Define a subclass of C
named B that overrides method m1() so that it returns the difference between m
and n instead of their sum.� �

public c l a s s C {
private i n t m;
private i n t n ;
public C(i n t mIn , i n t nIn) {

m = mIn ;
n = nIn ;

}
public i n t m1() {

return m+n ;
}

}
 	

148 CHAPTER 3 • Methods: Communicating with Objects

OBJECTIVES
After studying this chapter, you will

• Understand the importance of the user interface.
• Know how to use a simple command-line interface.
• Be able to program and use a simple Graphical User Interface (GUI).
• Understand the concept of event-driven programming.
• Know how to program and use a Java Swing program.

OUTLINE
4.1 Introduction
4.2 The User Interface
4.3 A Command-line Interface
4.4 A Graphical User Interface (GUI)
4.5 Case Study: The One Row Nim Game
4.6 From the Java Library: java.io.File and file input (Optional)

Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 4

Input/Output: Designing
the User Interface

149

150 CHAPTER 4 • Input/Output: Designing the User Interface

4.1 Introduction

One of the most important parts of learning a programming language is
learning how to program an application to accept input and produce out-
puts (I/O). Computers wouldn’t be very useful if we could not give them
data to manipulate and compute, and if we were not able to read or un-
derstand the results that they produce. In general, a computer program’s
input and output capabilities are known collectively as its user interface.

An input operation is any action that transfers data from the user to
the computer’s main memory via one of the computer’s input devices.
An output operation is any action that transfers data from the computer’s
main memory to one of the computer’s output devices.

In this chapter, we will introduce three simple user interfaces: a
command-line interface and two graphical user interfaces (GUIs). These
interfaces can be used interchangeably with the material in most of the
subsequent chapters. Indeed, one of the most important design princi-
ples that we emphasize in this chapter is that the user interface should be
designed to function independently of the computational task. In other
words, it should be possible to take an application, such as a computer
game, and design it so that it can be used with a variety of different user
interfaces.

4.2 The User Interface

The user interface is that part of the program that handles the input andUser interface
output interactions between the user and the program. As an interface,
it limits or constrains the manner in which the user can interact with the
program.

Computer programs are just one of the many things that require a user
interface. Virtually every device we use has one. For example, consider
again the difference between the user interface of a digital versus an ana-
log watch. On a digital watch, you have a display that tells you the time
to the exact hour, minute, and second. On an analog watch, one with a
sweep second hand, the time can never be displayed to the exact second.
Similarly, on a digital watch there are buttons that let you set the time to
the exact hour, minute, and second. On an analog watch, there is a small
wheel that allows you to set the time only approximately. Thus, the user
interface constrains the kinds of interactions that are possible between the
user and the device.

With regard to our Java programs, one way to divide up the labor is to
distinguish between the user interface and the computational functions.Division of labor
The role of the user interface is to transmit data back and forth between the
user and the program. The role of the computational part of the program
is to perform some kind of computation, in the broad sense of that term.
The computation might be to play a game, or calculate a square root, or
monitor a hospital patient. Figure 4.1 provides a generic picture of the
relationship between the user interface and the computational object.

In this chapter we focus our attention on the user interface side of the
relationship shown in Figure 4.1. In subsequent chapters we will focus
more on the computational side of the relationship. What we desire is an

SECTION 4.3 • A Command-Line Interface 151
Figure 4.1: The user interface
transmits data back and forth be-
tween the user and the program’s
computational objects.

approach that lets us combine a computational object with any one of the
three different kinds of user interfaces.

JAVA EFFECTIVE DESIGN The User Interface Module Separating
the user interface from the computational object is a good way to
divide up the labor in programs that perform I/O.

4.3 A Command-Line Interface

A command-line interface is perhaps the simplest, and most old-
fashioned, way to design the interaction between a user and a program.
According to this approach, user input is taken from the keyboard, and
the program’s output is displayed on some kind of console (Fig. 4.2).

Figure 4.2: A command-line user
interface.

The command-line approach might also be called console interface. In
the early days of computers, before we had graphics-based computer
monitors capable of displaying multiple windows, the console was the
entire computer display. For today’s computers the console might be a
window provided by your programming environment, as in Figure 4.3.

In Chapter 3 we described how to use the System.out.print()
and System.out.println() methods to output strings to the console.
That takes care of the output side of command-line interface. The more
challenging task is managing the input-side of the interface.

152 CHAPTER 4 • Input/Output: Designing the User Interface
Figure 4.3: The Java console win-
dow.

In Java, input and output is handled by objects that are called streams.
You can think of a stream as a kind of pipe through which data flow
(Fig. 4.4). An input stream carries data from some kind of input device,Streams
such as a keyboard or network connection or a file, to the program’s main
memory. An output stream carries data from the program’s memory to
some kind of output device, such as a printer or a file.

Figure 4.4: Input and output
streams.

Each Java program has three standard streams available to it at startup:
System.in, System.out, and System.err. System.in is a prede-
fined input stream that is typically associated with the keyboard (Fig. 4.4).
That is, it carries data from the keyboard to the program. System.out
and System.err are both output streams typically associated with the
console. They both carry data from the program to the console. The dif-
ference is simply that System.out is used for normal program output
and System.err is used to output error messages.

4.3.1 Using a BufferedReader to Input Strings from the
Keyboard

We will use a BufferedReader object to handle data input from the
keyboard. As its name implies, the BufferedReader class performs
buffered input. A buffer is a portion of main memory where input is held
until it is needed by the program. Using a buffer between the keyboardBuffered input
and the program allows you to use the Backspace key to delete a char-
acter. When you hit the Enter key, any characters that you deleted will
be ignored when the program retrieves characters from the input buffer.
If the user’s input were not buffered in this way, it would contain ev-
ery keystroke, including the Backspaces, and then it would be up to the
program to eliminate the characters that were supposed to be deleted.

SECTION 4.3 • A Command-Line Interface 153
Figure 4.5: The BufferedRead-
er class.

Figure 4.5 provides a UML diagram of the BufferedReader class and
shows its relationship to other the classes that will be used for keyboard
input . Note that along with InputStreamReader, BufferedReader
is one of several subclasses of the Reader class. As the diagram
shows, BufferedReader has two important methods. Its constructor
method takes a Reader parameter, which means that when we create a
BufferedReader we must provide it with a reference to some kind of
Reader object. To perform keyboard input, we want to provide a refer-
ence to an object that can read System.in, the standard input stream.
As the figure shows, InputStreamReader has a constructor that allows
it to read an InputStream. Therefore, to construct a BufferedReader
that will read System.in we use the following statement:� �

BufferedReader input = new BufferedReader
(new InputStreamReader (System . in)) ;
 	

In this statement we are actually creating two objects. We first create an
InputStreamReader, giving it a reference to System.in. We then pass
that object to a BufferedReader. The result is a cooperation between
two objects that enables us to do buffered reading of the keyboard.

By creating a BufferedReader in this way, whenever we use its
readLine() method, it will read a line of characters from the keyboard.
For example, having created a BufferedReader named input, the fol-
lowing code segment will read one line of input and assign it to the
String variable named inputString.� �

S t r i n g i n p u t S t r i n g = input . readLine () ;
 	
When the program encounters the readLine() expression, it will wait Keyboard input
for the user to hit the Enter key. It will then input whatever the user

154 CHAPTER 4 • Input/Output: Designing the User Interface

typed, minus any characters that were Backspaced over, into the String
variable.

JAVA LANGUAGE RULE Keyboard Input. The
BufferedReader.readLine() method allows the user to
backspace over errors during keyboard input.

4.3.2 Inputting Numbers from the Keyboard

As the previous section showed, we can use a BufferedReader object
to input Strings from the keyboard. In Java, all keyboard input is repre-
sented as Strings. However, what if we want to input numbers? The an-
swer is that we have to extract numbers from the input strings. To do this,
Java provides us two special classes, known as wrapper classes: Integer
and Double.

A wrapper class contains methods for converting primitive data intoWrapper classes
objects and for converting data from one type to another. The Integer
class contains the parseInt() method, which extracts an int from its
String argument. For example, in the following usage, the string ”55” is
converted into the number 55:� �

i n t m = I n t e g e r . p a r s e I n t (”55”) ;
 	
Similarly, the Double class contains the parseDouble() method, which
extracts a double value from its parameter. In this example, the number
55.2 is extracted from the string ”55.2”:� �

double num = Double . parseDouble (” 5 5 . 2 ”) ;
 	
If we are writing a program that requires us to input numbers from
the keyboard, then assuming we have created a BufferedReader ob-
ject named input, we can use these methods in combination with the
readLine() method, to input and process numbers. For example, this
code segment calculates a runner’s race pace:� �

S t r i n g i n p u t S t r i n g = new S t r i n g () ;
System . out . p r i n t l n (”How many t o t a l miles did you run ? ”) ;
i n p u t S t r i n g = input . readLine () ; // I n p u t a S t r i n g }
double miles = Double . parseDouble (i n p u t S t r i n g) ; // C o n v e r t

System . out . p r i n t l n (”How many minutes did i t take you? ”) ;
i n p u t S t r i n g = input . readLine () ; // I n p u t a n o t h e r S t r i n g

double minutes = Double . parseDouble (i n S t r i n g) ;
// C o n v e r t

System . out . p r i n t l n (”Your average pace was ” +
minutes/miles + ” minutes per mile ”) ;
 	

SECTION 4.3 • A Command-Line Interface 155

Notice how we included prompts in this example so that the user knows
what type of input is expected. Designing appropriate prompts is an
important aspect of designing a good user interface.

JAVA EFFECTIVE DESIGN Prompting. In a well-designed user
interface, prompts should be used to guide the user through the input
process.

4.3.3 Designing a Keyboard Reader Class
Now that we have introduced the library classes and methods that we
will use for command-line input, lets design a class to encapsulate these
functions. We want a class that will use a BufferedReader to read any
kind of data—strings, integers, or real numbers—from keyboard. We also
want this class to hide some of the messy details involved in performing
keyboard input.

Figure 4.6: Design of the
KeyboardReader class.

Figure 4.6 presents the design of KeyboardReader class. Note that
instances of this class will use a BufferedReader object to perform
the actual keyboard input. That’s why we need a private instance vari-
able of type BufferedReader. The constructor method will create a
BufferedReader, which will then be used whenever a read operation
is requested. Note that the KeyboardReader() has five public meth-
ods. The getKeyboardInput() method returns a String. This is the
method we will call when we just want to get the string that the user typed
from the keyboard. The getKeyboardInteger() method returns an
int value. This is the method we will call when we want an integer from
the keyboard. Similarly, the getKeyboardDouble() method returns a
double. This is the method we will call when we want to input a floating
point value from the keyboard. Finally, the prompt() and display()
methods will be used to perform two other important tasks of a user in-
terface: that of prompting the user and that of displaying the program’s
output.

The following code segment illustrates how we will use a Keyboard-
Reader object to input an integer:� �

KeyboardReader cmdline = new KeyboardReader () ;
i n t m = cmdline . getKeyboardInteger () ;
 	

156 CHAPTER 4 • Input/Output: Designing the User Interface

All we need to do is create an instance of the KeyboardReader and ask
it to get an integer for us. This greatly simplifies the work we would have
to do when we want to perform keyboard input.

Note that Figure 4.6 lists a private method named readKeyboard()
in the KeyboardReader class. This is the method that does the actual
work of reading data from the keyboard. Because it is private, it can only
be called by the other methods in KeyboardReader. It cannot be called
by other classes. The reason we make it private is to hide it, and the messyPrivate helper method
details of performing keyboard input, from other classes.

One of those messy details is the fact that whenever I/O is performed,
it is possible for things to go wrong. The possibility of errors occurring
applies to all forms of I/O, not just keyboard I/O. For example, when a
program is trying to read a file, the file might be missing. Or when trying
to download a web page, the Internet connection might malfunction.

Because these types of external errors are possible, Java requires that
whenever a program performs certain types of I/O, it must watch out
for certain kinds of error conditions, known as exceptions. Exceptions are
covered in Chapter 11, so we will not attempt to cover them here. Instead,I/O exceptions
we will design the readKeyboard() method to take care of this detail
for us.

JAVA LANGUAGE RULE Exceptions. Java I/O methods require
that programs check for certain error conditions during input.

Figure 4.7 gives the full implementation (for now) of the Keyboard-
Reader class. Lets go through it line by line. The first thing to no-
tice is the use of the import statement. Recall that importing a Java
package enables us to refer to elements in the package by their short
names (BufferedReader), rather than by their fully qualified names
(java.io.BufferedReader).

Next notice how we create a BufferedReader object in the
KeyboardReader() constructor:� �

reader = new BufferedReader
(new InputStreamReader (System . in)) ;
 	

The resulting reader object will persist as long as our KeyboardReader
object exists and can be used for all subsequent input operations.

Next notice the definition of the readKeyboard() method. It calls
the inherited readLine() method to input a line from the keyboard and
then it returns the line. Note, however, how the call to the readLine()
method is embedded in a try...catch block. This is one way to handle
the possibility that an exception might occur during the input operation.
Java requires that our program do something to address the possibility
of an I/O exception, and as we will learn in Chapter 11, there are other
designs that we might have used here. The primary advantage of doing
it this way is that we can hide this language detail from the rest of the
program. The rest of the program—and any other programs that use the
KeyboardReader class—will not have to worry about this exception is-
sue. They can just ask the KeyboardReader to get them a string or an
integer and it will deliver the goods.

SECTION 4.3 • A Command-Line Interface 157� �
import j ava . io . ∗ ;

public c l a s s KeyboardReader
{ private BufferedReader reader ;

public KeyboardReader () {
reader = new BufferedReader

(new InputStreamReader (System . in)) ;
}
public S t r i n g getKeyboardInput ()
{ return readKeyboard () ;
}
public i n t getKeyboardInteger ()
{ return I n t e g e r . p a r s e I n t (readKeyboard ()) ;
}
public double getKeyboardDouble ()
{ return Double . parseDouble (readKeyboard ()) ;
}
public void prompt (S t r i n g s)
{ System . out . p r i n t (s) ;
}
public void display (S t r i n g s)
{ System . out . p r i n t (s) ;
}
private S t r i n g readKeyboard ()
{ S t r i n g l i n e = ”” ;

t r y
{ l i n e = reader . readLine () ;
} catch (IOException e)
{ e . p r i n t S t a c k T r a c e () ;
}
return l i n e ;

}
}
 	

Figure 4.7: Definition of the KeyboardReader class.

Next, notice how the public input methods are defined. The
getKeyboardInput() method just returns the line that it gets by call-
ing readKeyboard(). The getKeyboardInteger() method also calls
readKeyboard(), but instead of just returning the line, it extracts an
integer from it and returns the integer. The getKeyboardDouble()
method works the same way.

Finally, notice how the public output methods are defined. Both the
prompt() and display() methods take a single String parameter
and do exactly the same thing–they merely print their string. So why do
we have two methods when one will suffice? The answer is that these
methods encapsulate important and distinct user-interface functions—
prompting the user and displaying output—that just happen to be imple-
mented in exactly the same way in this case. As we will see when we de-
sign our GUI interface, we will use completely different objects to prompt
the user and display output. So, despite their similarities, it is important

158 CHAPTER 4 • Input/Output: Designing the User Interface

that we distinguish the task of prompting the user from the more general
task of displaying output.

4.3.4 Designing a Command-Line Interface
Now that we have defined a special class for performing keyboard input,
we now show how it can be used as a user interface in cooperation with
the other objects that make up a program. As described in Figure 4.1,
the user interface will serve as an intermediary between the user and
some type of computational object. Although our command-line interface
should work with any application, no matter how complex, we begin with
a very simple computational problem. This will allow us to focus on the
user interface.

Let’s design a program that prompts the user for his or her name and
then says hello. Thus, the program’s I/O should look like this:� �

Hi , please input your name here > Kim
Hi Kim , nice to meet you .
 	

In the design we use there will be two primary objects involved. One
will serve as the user interface. This will be our KeyboardReader. A
second object will serve as the computational object. In this case it will
“compute” an appropriate greeting. It will serve contain the main()
method and will encapsulate the algorithm for this application. It will
use a KeyboardReader to handle its I/O needs.

The main advantage of this division of labor is that it enables us to use
the KeyboardReader, as is, with virtually any Java application. More-
over, despite its simplicity, our computational object in this example can
serve as a template for future programs.

JAVA EFFECTIVE DESIGN Modularity. By designing the user
interface as a self-contained module, we can use it with just about any
application.

Figure 4.8 provides the details the design we wish to implement. Note
that GreeterApp contains an instance variable for a KeyboardReader.
This will enable it to use the KeyboardReader whenever it needs to per-
form keyboard input. By giving GreeterApp a main() method, we al-
low it to be the main class for our application. Its run() method will con-
tain the algorithm that controls the application, and its greet() method
will handle the task of greeting the user.

The full implementation of the GreeterApp class is shown in
Figure 4.9. It begins by declaring an instance variable for the
KeyboardReader, which is instantiated in the constructor method. This
gives GreeterApp a way to refer directly to the user interface whenever it
needs keyboard input. The run() method encapsulates the application’s
algorithm. Notice how it uses the KeyboardReader to prompt the user,
to input the user’s name, and then to display the greeting. Finally, the
main() method serves to create an instance of the computational object
and calls its run() method.

SECTION 4.3 • A Command-Line Interface 159
Figure 4.8: Using Keyboard-
Reader as the user interface.

� �
public c l a s s GreeterApp
{ private KeyboardReader reader ;

public GreeterApp ()
{ reader = new KeyboardReader () ;
} // G r e e t e r A p p ()

public void run ()
{ S t r i n g name = ”” ;

reader . prompt (” Please input your name here > ”) ;
name = reader . getKeyboardInput () ;
reader . d isplay (g r e e t (name) + ”\n”) ;

} // r u n ()

public S t r i n g g r e e t (S t r i n g name)
{ return ”Hi ” + name + ” nice to meet you . ” ;
} // g r e e t ()

public s t a t i c void main (S t r i n g args [])
{ GreeterApp app = new GreeterApp () ;

app . run () ;
}

} // G r e a t e r A p p
 	
Figure 4.9: Definition of the GreeterApp class.

To re-cap, we have designed a simple command-line interface that can
be used, with minor changes, for virtually any programming task in sub-
sequent chapters. Before moving on, it may be helpful to touch on some
of the important object-oriented principles that went into our design.

• Divide-and-conquer: We see the usefulness of dividing a program
into separate objects, one to handle the computations required by
the application, and one to handle the user interface.

• Encapsulation: The classes we designed encapsulate just the in-
formation and behavior that is necessary to perform their specific
roles.

• Information hiding: We use a private method to hide certain messy
implementation details from other parts of the program.

• Generality and Extensibility: We have developed a design that is
general enough that it can be extended to other applications.

160 CHAPTER 4 • Input/Output: Designing the User Interface

SELF-STUDY EXERCISES
EXERCISE 4.1 Java’s Math class has a static method that will gener-

ate a random number between 0 and 0.99999999—that is, between 0 and
1, not including 1. By using simple arithmetic, we can generate random
numbers between any two values. For example, the following statement
assigns a random integer between 1 and 100 to the variable:� �

secretNumber = 1 + (i n t) (Math . random () ∗ 1 0 0) ;
 	
Given this statement, design and implement an application that will play
the following guessing game with the user. The computer generates a ran-
dom number between 1 and 100 and then lets the user guess the number,
telling the user when the guess is too high or too low. Note that for this
problem, the user will have to input integers at the keyboard.

4.4 A Graphical User Interface (GUI)

While command-line interfaces are useful, one of the great advantages of
the Java language is that its extensive class library makes it relatively easy
to develop applications that employ Graphical User Interfaces (GUIs).
GUIs have been around now for many years, since the production of the
Macintosh in the early 1980s. Today nearly all the personal computing
applications are GUI-based. Therefore, it is important that beginning pro-
grammers be able design and write programs that resemble, albeit on a
simpler scale, those programs that they use every day. Among other ben-
efits, developing the ability to write GUI programs, like the ones everyone
uses today, will make it easier for you to show off your work to others,
which might help motivate further interest in learning to program.

In this and subsequent sections, we will develop an extensible GUI
model that can be used with either a Java application or an applet. By
extensible we mean a model that can be easily adapted and used in a wide
variety of programs. GUI programming involves a computational model
known as event-driven programming, which means that GUI programs
react to events that are generated mostly by the user’s interactions withEvent-driven programming
elements in the GUI. Therefore, we will have to learn how to use Java’s
event model to handle simple events.

Given that this is our first look at some complex topics, we will keep
the discussion as simple as possible. This means we will delay discussion
of certain issues, which we take up in more depth in Chapter 13.

4.4.1 Java’s GUI Components
The Java library comes with two separate but interrelated packages of GUI
components, the older java.awt package and the newer javax.swing
package. For the most part, the Swing classes supersede the AWT
classes. For example, the java.awt.Button class is superseded by the
javax.swing.JButton class, and the java.awt.TextField class is
superseded by the javax.swing.JTextField class. As these examples
show, the newer Swing components add an initial ’J’ to the names of their
corresponding AWT counterparts.

SECTION 4.4 • A Graphical User Interface (GUI) 161
Figure 4.10: Various GUI com-
ponents from the javax.swing
package. [Artwork: We need to
label the components.]

Figure 4.10 illustrates how some of the main components appear in a
GUI interface. As shown there, a JLabel is simply a string of text dis-
played on the GUI, used here as a prompt. A JTextField is an input
element that can hold a single line of text. In this case, the user has in-
put his name. A JTextArea is an output component that can display
multiple lines of text. In this example, it displays a simple greeting. A
JButton is a labeled control element, which is an element that allows
the user to control the interaction with the program. In this example, the
user will be greeted by the name input into the JTextField, whenever
the JButton is clicked. As we will learn, clicking on the JButton causes
an event to occur, which leads the program to take the action of displaying
the greeting. Finally, all of these components are contained in a JFrame,
which is a top-level container. A container is a GUI component that can
contain other GUI components.

The Swing classes are generally considered to be superior to their AWT
counterparts. For one thing, Swing components use a sophisticated object- Model-view-controller (MVC) archi-

tectureoriented design known as the model-view-controller (MVC) architecture,
which gives them much greater functionality than their AWT counter-
parts. For example, whereas an AWT Button can only have a string as its
label, a Swing JButton can use an image as a label. (See Chapter 13 for a
detailed discussion of the MVC architecture.)

Second, Swing components are written entirely in Java which makes
them more portable and enables them to behave the same way regardless
of the operating system on which they are run. Because of their portability,
Swing components are considered lightweight. By contrast, AWT classes
use routines that are implemented in the underlying operating system and Swing portability
are therefore not easily portable. Hence, they are considered heavyweight
components. Whereas a Swing JButton should look and act the same
way regardless of platform, an AWT Button would have a different im-
plementation, and hence a different look and feel, on a Macintosh and on
a Windows system. In this book, we will use the new Swing classes in our
programs.

162 CHAPTER 4 • Input/Output: Designing the User Interface

4.4.2 Class Inheritance: Extending a Superclass

As you recall from Chapter 0, class inheritance is the mechanism by which
a class of objects can acquire (inherit) the methods and variables of its su-Inheritance
perclasses. Just as a horse, by membership in the class of horses, inherits
those attributes and behaviors of a mammal, and, more generally, those of
an animal, a Java subclass inherits the variables and methods of its super-
classes. We sometimes lump together an object’s attributes and behaviorsFunctionality
and refer to them collectively as its functionality. So we say that an object
of a subclass inherits the functionality of all of its superclasses.

By the same token, just as a horse and a cow extend their mammalian
attributes and behaviors in their own special ways, a Java subclass ex-
tends the functionality of its superclasses in its own special way. Thus, a
subclass specializes its superclass.

In Chapter 3, we showed how all classes in the Java hierarchy inherit
the toString() method from the Object class. The lesson there was
that an object in a subclass can either use or override any public method
defined in any of its superclasses. In order to implement GUI programs,
we need to look at another way to employ inheritance. In particular, we
need to learn how to define a new class by extending an existing class.

We noted in Chapter 2 that unless a class is explicitly defined as a sub-
class of some other class it is considered implicitly to be a direct subclass
of Object. Thus, the GreeterApp class that we defined earlier in this
chapter is a subclass of Object. We can make the relationship between
GreeterApp and Object explicit by using the extends keyword when
we define the GreeterApp class:� �

public c l a s s GreeterApp extends Object { . . . }
 	
Thus, the extends keyword is used to specify the subclass/superclassThe isa relationship
relationships that hold in the Java class hierarchy. We sometimes refer to
the subclass/superclass relationship as the isa relationship, in the sense
that a horse isa mammal, and a mammal isa animal. Thus, the extends
keyword is used to define the isa relationship among the objects in the
Java class hierarchy.

A top-level container is a GUI container that cannot be added to an-Top-level container
other container; it can only have components added to it. Figure 4.11 is a
class hierarchy that shows the relationships among some of the top-level
Swing and AWT classes. For example, the javax.swing.JFrame class,
which represents a top-level window, is a subclass of java.awt.Frame,
and the javax.swing.JPanel is a subclass of java.awt.Panel. We
can see from this figure that a JFrame isa Frame and an Frame isa Window
and a Window isa Container. These subclass/superclass relationships
are created in their respective class definitions by using the extends
keyword as follows:� �

public c l a s s JFrame extends Frame { . . . }
public c l a s s Frame extends Window { . . . }
public c l a s s Window extends Container { . . . }
 	

As we will see in the next section, extending a class in this way enables usSpecialization

SECTION 4.4 • A Graphical User Interface (GUI) 163

java.applet

java.awt

java.lang

Object

Component

Container

Window

Dialog

Panel

JComponent

JFrame

JDialog

JApplet

javax.swing

Applet

Frame

Figure 4.11: Top-level Swing and
AWT classes. [NOTE: REDRAW
JWindow is a subclass of Win-
dow.]

to create a new class by specializing an existing class.

4.4.3 Top-level Windows
Referring again to Figure 4.11, notice that all of the Swing components are
subclasses of the AWT Container class. This means that Swing compo-
nents are Containers. They inherit the functionality of the Container
class. So Swing components can contain other GUI components. That is
why a JButton can contain an image.

All GUI programs must be contained inside some kind of top-level
container. Swing provides three top-level container classes: JFrame,
JApplet and JDialog. For our basic GUI, we will use a JFrame as the
top-level window for stand alone applications.

A JFrame encapsulates the basic functionality of a top-level window. Content pane
It has what is called a content pane, to which other Swing components,
such as buttons and text fields, can be added. Also, it comes with enough
built-in functionality to respond to certain basic commands, such as when
the user adjusts its size or closes it.

Figure 4.12 shows a simple top-level window as it would be displayed
on the console. This window has a title (”My GUI”). It is 200 pixels wide,
150 pixels high, and its top-left corner is located at coordinates (100,150)
on the console screen. Like in other graphical systems, points on the Java
console always given as an ordered pair, (X, Y), with the horizontal coordi-
nate, X, listed first, followed by the vertical coordinate, Y. The horizontal
x-axis extends positively from left to right, and the vertical y-axis extends
positively from top to bottom.

The class that created and displayed this window is shown in Fig-
ure 4.13. Note the use of the extends keyword to define SimpleGUI
as a subclass of JFrame. As a subclass, SimpleGUI inherits all of the
functionality of a JFrame (Fig. 4.14) . That is, it can contain other GUI

164 CHAPTER 4 • Input/Output: Designing the User Interface
Figure 4.12: A simple window.

� �
import j avax . swing . ∗ ;

public c l a s s SimpleGUI extends JFrame
{

public SimpleGUI (S t r i n g t i t l e)
{ s e t S i z e (2 0 0 , 1 5 0) ;

s e t L o c a t i o n (1 0 0 , 1 5 0) ;
s e t T i t l e (t i t l e) ;
s e t V i s i b l e (t rue) ; // D i s p l a y s t h e J F r a m e

} // S i m p l e G U I ()

public s t a t i c void main (S t r i n g args [])
{ new SimpleGUI (”My GUI”) ;
} // m a i n ()

} // S i m p l e G U I c l a s s
 	
Figure 4.13: A top-level window with a title.

components. It knows how to resize and close itself, and so on. The rea-
son we want to define a subclass of JFrame, rather than just use a JFrame
instance, is because we want eventually to give our subclass additional
functionality that is specialized for our application.

JAVA EFFECTIVE DESIGN Specialization. By creating a subclass of
JFrame we can specialize its functionality for our application.

Note how SimpleGUI’s main() program creates an instance of
SimpleGUI by invoking its constructor. There is no need to use a vari-
able here because there are no further references to this object in this class.
However, simply constructing a SimpleGUIwill not cause it to appear on
the Java console. For that to happen, it is necessary to give it a size and to
call its setVisible() method. This is done in the constructor method.

The constructor method illustrates how to use some of the meth-
ods inherited from JFrame. Figure 4.14 shows some of the methods
that SimpleGUI inherits from JFrame. We use the setSize() and

SECTION 4.4 • A Graphical User Interface (GUI) 165
Figure 4.14: SimpleGUI is a sub-
class of JFrame.

setLocation() methods to set SimpleGUI’s size and location. We use
the setTitle() method to set its title. And we use the setVisible()
method to cause it to appear on the console.

4.4.4 GUI Components for Input, Output, and Control
To enable our top-level window to serve as a user interface, it will be nec-
essary to give it some components. Figure 4.15 provides an overview of
some of the main Swing components. Generally, there are three types of
components, which correspond to the three main functions of a user in-
terface: input, output, and control. A JTextField would be an example
of an input component. The user can type text into the text field, which
can then be transmitted into the program. A JTextArea is an example
of an output component. The program can display text in the text area.
Control components enable the user to control the actions of the program.
A JButton would be an example of a control component. It can be asso-
ciated with an action that can be initiated whenever the user clicks it. We
might also consider a JLabel to be an output component, because we can
use it to prompt the user as to what type of actions to take.

Let’s begin by creating a simple user interface, one that enables us to
perform basic input, output, and control operations with a minimum of
Swing components. This will allow us to demonstrate the basic principles
and techniques of user-interface design and will result in a GUI that can
be extended for more sophisticated applications. For this example, we
will limit our application to that of simply greeting the user, just as we
did in designing our command-line interface. That means that the user
will be prompted to input his or her name and the program will respond
by displaying a greeting (Fig. 4.10). We will call our GUI GreeterGUI, to
suggest its interdependence with the same Greeter computational object
that we used with the command-line interface.

For this simple application, our GUI will make use of the following
components:

• A JTextField will be used to accept user input.

166 CHAPTER 4 • Input/Output: Designing the User Interface
Figure 4.15: Swing components.

Object

Component

Container

JLabel

JPanel

JScrollPane

JToggleButton

JButton

JMenuItem JMenu

JCheckbox

JRadioButton

JTextArea

JTextField JPasswordField

java.awt

java.lang

javax.swing

JComponent

JMenuBar

JList

JOptionPane

JPopupMenu

JTextComponent

AbstractButton

• A JTextArea will serve to display the program’s output.

• A JButton will allow the user to request the greeting.

• A JLabel will serve as a prompt for the JTextField.

Figure 4.16 shows some of the constructors and public methods for the
JTextArea, JTextField, JButton, and JLabel components. The fol-
lowing code segments illustrate how to use these constructors to create
instances of these components:� �

// D e c l a r e i n s t a n c e v a r i a b l e s f o r t h e c o m p o n e n t s

private JLabe l prompt ;
private J T e x t F i e l d i n F i e l d ;
private JTextArea display ;
private JButton goButton ;

// I n s t a n t i a t e t h e c o m p o n e n t s

prompt = new JLabe l (” Please type your name here : ”) ;
i n F i e l d = new J T e x t F i e l d (1 0) ; // 1 0 c h a r s w i d e

display = new JTextArea (1 0 , 3 0) ; // 1 0 r o w s x 3 0 c o l u m n s

goButton = new JButton (” Cl ick here f o r a g r e e t i n g ! ”) ;
 	
For this example, we use some of the simpler constructors. Thus, we create
a JTextField with a size of 10. That means it can display 10 characters
of input. We create a JTextArea with 10 rows of text, each 30 characters

SECTION 4.4 • A Graphical User Interface (GUI) 167
Figure 4.16: Public methods and
constructors for basic Swing com-
ponents.

wide. We create a JButton with a simple text prompt meant to inform
the user of how to use the button.

4.4.5 Adding GUI Components to a Top-Level Window
Now that we know how to create GUI components, the next task is to
add them to the top-level window. A JFrame is a top-level Container
(Fig. 4.11), but instead of adding the components directly to the JFrame
we have to add them to the JFrame’s content pane, which is also a
Container.

JAVA LANGUAGE RULE Content Pane. GUI Components cannot
be added directly to a JFrame. They must be added to its content
pane.

Java’s Container class has several add() methods that can be used to
insert components into the container:� �

add (Component comp) // a d d comp t o e n d o f c o n t a i n e r

add (Component comp , i n t index) // a d d comp a t i n d e x

add (S t r i n g region , Component comp) add comp at region
 	
The particular add() method to use depends on how we want to arrange
the components in the container. The layout of a container is controlled
by its default layout manager, an object associated with the container that Layout manager
determines the sizing and the arrangement of its contained components.
For a content pane, the default layout manager is a BorderLayout. This

168 CHAPTER 4 • Input/Output: Designing the User Interface

is an arrangement whereby components may be placed in the center of the
pane and along its north, south, east, and west borders (Fig. 4.17).

Figure 4.17: Arrangement of com-
ponents in a border layout.

West

North

South

EastCenter

Components are added to a border layout by using the add(String
region, Component comp) method, where the String parameter
specifies either ”North,” ”South,” ”East,” ”West,” or ”Center.” For exam-
ple, to add the JTextArea to the center of the JFrame we first create a
reference to its content pane and we then add the component at its center:� �

Container contentPane = getContentPane () ; // G e t p a n e

contentPane . add (” Center ” , display) ; // Add J T e x t A r e a
 	
One limitation of the border layout is that only one component can be

added to each area. This is a problem for our example because we want
our prompt JLabel to be located right before the JTextField. To get
around this problem, we will create another container, a JPanel, and add
the prompt, the text field, and the goButton to it. That way, all of the
components involved in getting the user’s input will be organized into
one panel. We then add the entire panel to one of the areas on the content
pane.� �

JPanel inputPanel = new JPanel () ;
inputPanel . add (prompt) ; // Add J L a b e l t o p a n e l

inputPanel . add (i n F i e l d) ; // Add J T e x t F i e l d t o p a n e l

inputPanel . add (goButton) ; // Add J B u t t o n t o p a n e l

contentPane . add (”South” , inputPanel) ; // Add t o J F r a m e
 	
The default layout for a JPanel is FlowLayout, which means that com-
ponents are added left to right with the last addition going at the end of
the sequence. This is an appropriate layout for this JPanel because it will
place the prompt just to the left of the input JTextField.

JAVA EFFECTIVE DESIGN Encapsulation. JPanels can be used to
group related components in a GUI.

4.4.6 Controlling the GUI’s Action
Now that we know how to place all the components on the GUI, we need
to design the GUI’s controls. As mentioned earlier, GUIs use a form of
event-driven programming. Anything that happens when you are using

SECTION 4.4 • A Graphical User Interface (GUI) 169

Java Applet

Handlers: actionPerformed() method

Java Enabled Browser: Netscape, JVM

Handlers: menu_event, scrollbar

Operating System: MacOS, Windows, Unix

Handlers: select_window, close_window

Computer Hardware

Generate Events: mouse_clicks, diskette events,

mouse_moves, keyboard_events

Figure 4.18: Java’s event model.

a computer—every keystroke and mouse movement—is classified as an
event. As Figure 4.18 illustrates, events are generated by the computer’s
hardware and filtered up through the operating system and the applica-
tion programs. Events are handled by special objects called listeners. A
listener is a specialist that monitors constantly for a certain type of event. Event listener
Some events, such as inserting a CD in the CD-ROM drive, are handled
by listeners in the operating system. Others, such as typing input into
a Web page or a Word document, are handled by listeners in a piece of
application software, such as a browser or a word processor.

In an event-driven programming model, the program is controlled by
an event loop. That is, the program repeatedly listens for events, taking
some kind of action whenever an event is generated. In effect, we might
portray this event loop as follows:� �

Repeat f o r e v e r or u n t i l the program i s stopped
L i s t e n for events
I f event−A occurs , handle i t with event−A−handler
I f event−B occurs , handle i t with event−B−handler

. . .
 	
The event loop listens constantly for the occurrence of events and then
calls the appropriate object to handle each event.

Figure 4.19 shows some of the main types of events in the
java.awt.event package. In most cases, the names of the event classes
are suggestive of their roles. Thus, a MouseEvent occurs when the mouse
is moved. A KeyEvent occurs when the keyboard is used. The only event
that our program needs to listen for is an ActionEvent, the type of event
that occurs when the user clicks the JButton.

When the user clicks the JButton, Java will create an ActionEvent
object. This object contains important information about the event, such
as the time that the event occurred and the object, such as a JButton,
that was the locus of the event. For our application, when the user
clicks the JButton, the program should input the user’s name from the
JTextField and display a greeting, such as “Hi John nice to meet you”

170 CHAPTER 4 • Input/Output: Designing the User Interface
Figure 4.19: Java’s event hierar-
chy.

EventObject

AWTEvent

java.awt

java.awt.event

java.lang

java.util

Object

EventObject

AWTEvent

InputEvent

KeyEvent

ActionEvent

AdjustmentEvent

ComponentEvent

ItemEvent

TextEvent

ContainerEvent

FocusEvent

PaintEvent

WindowEvent MouseEvent

in the JTextArea. That is, we want the program to execute the following
code segment:� �

S t r i n g name = i n F i e l d . getText () ;
d isplay . append (g r e e t e r . g r e e t (name) + ”\n”) ;
 	

The first line uses the JTextField.getText() method to get the text
that the user typed into the JTextField and stores it in a local vari-
able, name. The second line passes the name to the greeter.greet()
method and passes the result it gets back to the JTextArea.append()
method. This will have the effect of displaying the text at the end of the
JTextArea.

In this example, we have used a couple of the standard public methods
of the JTextField and JTextArea classes. For our simple GUI, the
methods described in Figure 4.16 will be sufficient for our needs. How-

java.sun.com/j2se/1.5.0/docs/api/ ever, if you would like to see the other methods available for these and
other Swing components, you should check Java’s online API documen-
tation.

4.4.7 The ActionListener Interface
Given that the code segment just described will do the task of greeting
the user, where should we put that code segment in our program? We
want that code segment to be invoked whenever the user clicks on the
goButton. You know enough Java to understand that we should put that
code in a Java method. However, we need a special method in this case,
one that will be called automatically by Java whenever the user clicks that

SECTION 4.4 • A Graphical User Interface (GUI) 171

button. In other words, we need a special method that the button’s listener
knows how to call whenever the button is clicked.

Java solves this problem by letting us define a pre-selected method
that can be associated with the goButton. The name of the method is Java interface
actionPerformed() and it is part of the ActionListener interface.
In this case, an interface is a special Java class that contains only methods
and constants (final variables). It cannot contain instance variables. (Be
careful to distinguish this kind of interface, a particular type of Java class,
form the more general kind of interface, whereby we say that a class’s pub-
lic methods make up its interface to other objects.) Here’s the definition of
the ActionListener interface:� �

public a b s t r a c t i n t e r f a c e Act ionLis tener
extends EventLis tener

{ public a b s t r a c t void actionPerformed (ActionEvent e) ;
}
 	

This resembles a class definition, but the keyword interface replaces
the keyword class in the definition. Note also that we are declaring this
interface to be abstract. An abstract interface or abstract class is one
that contains one or more abstract methods. An abstract method is one
that consists entirely of its signature; it lacks an implementation—that is,
it does not have a method body. Note that the actionPerformed()
method in ActionListener places a semicolon where its body is sup-
posed to be.

JAVA LANGUAGE RULE Java Interface. A Java interface is like a
Java class except that it cannot contain instance variables.

JAVA LANGUAGE RULE Abstract Methods and Classes. An
abstract method is a method that lacks an implementation. It has no
method body.

Declaring a method abstract means that we are leaving its imple- Abstract method
mentation up to the class that implements it. This way, its implementation
can be tailored to a particular context, with its signature specifying gen-
erally what the method should do. Thus, actionPerformed() should
take an ActionEvent object as a parameter and perform some kind of
action.

What this means, in effect, is that any class that implements the
actionPerformed()method can serve as a listener for ActionEvents.
Thus, to create a listener for our JButton, all we need to do is give an
implementation of the actionPerformed() method. For our program,
the action we want to take when the goButton is clicked, is to greet
the user by name. Thus, we want to set things up so that the follow-

172 CHAPTER 4 • Input/Output: Designing the User Interface

ing actionPerformed() method is called whenever the goButton is
clicked:� �

public void actionPerformed (ActionEvent e)
{ i f (e . getSource () == goButton)
{ S t r i n g name = i n F i e l d . getText () ;

d isplay . append (g r e e t e r . g r e e t (name) + ”\n”) ;
}

}
 	
In other words, we place the code that we want executed when the button
is clicked in the body of the actionPerformed() method. Note that in
the if-statement we get the source of the action from the ActionEvent
object and check that it was the goButton.

That explains what gets done when the button is clicked—namely,
the code in actionPerformed() will get executed. But it doesn’t
explain how Java knows that it should call this method in the first
place. To set that up we must do two further things. We must place
the actionPerformed() method in our GreeterGUI class, and we
must tell Java that GreeterGUI will be the ActionListener for the
goButton.

The following stripped-down version of the GreeterGUI class illus-
trates how we put it all together:� �

public c l a s s GreeterGUI extends Frame
implements Act ionLis tener

{ . . .
public void buildGUI ()
{ . . .

goButton = new JButton (” Cl ick here f o r a g r e e t i n g ! ”) ;
goButton . addActionListener (t h i s) ;
. . .

}
. . .
public void actionPerformed (ActionEvent e)
{ i f (e . getSource () == goButton)

{ S t r i n g name = i n F i e l d . getText () ;
d isplay . append (g r e e t e r . g r e e t (name) + ”\n”) ;

}
}
. . .

}
 	
First, we declare that GreeterGUI implements the ActionListener
interface in the class header. This means that the class must provide a
definition of the actionPerformed() method, which it does. It also
means that GreeterGUI isa ActionListener. So SimpleGUI is both a
JFrame and an ActionListener.

SECTION 4.4 • A Graphical User Interface (GUI) 173

Second, note how we use the addActionListener() method to as-
sociate the listener with the goButton:� �

goButton . addActionListener (t h i s)
 	
The this keyword is a self-reference—that is, it always refers to the

object in which it is used. It’s like a person referring to himself by saying
“I”. When used here, the this keyword refers to this GreeterGUI. In
other words, we are setting things up so that the GreeterGUI will serve
as the listener for action events on the goButton.

JAVA LANGUAGE RULE This Object. The this keyword always
refers to the object that uses it. It is like saying “I” or “me.”

174 CHAPTER 4 • Input/Output: Designing the User Interface

4.4.8 Connecting the GUI to the Computational Object

Figure 4.20 gives the complete source code for our GreeterGUI interface.
Because there is a lot going on here, it might be helpful to go through the
program carefully even though we have introduced most of its elements

� �
import j avax . swing . ∗ ;
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s GreeterGUI extends JFrame
implements Act ionLis tener

{ private JTextArea display ;
private J T e x t F i e l d i n F i e l d ;
private JButton goButton ;
private Greeter g r e e t e r ;

public GreeterGUI (S t r i n g t i t l e)
{ g r e e t e r = new Greeter () ;

buildGUI () ;
s e t T i t l e (t i t l e) ;
pack () ;
s e t V i s i b l e (t rue) ;

} // G r e e t e r G U I ()

private void buildGUI ()
{ Container contentPane = getContentPane () ;

contentPane . setLayout (new BorderLayout ()) ;
d isplay = new JTextArea (1 0 , 3 0) ;
i n F i e l d = new J T e x t F i e l d (1 0) ;
goButton = new JButton (” Cl ick here f o r a g r e e t i n g ! ”) ;
goButton . addActionListener (t h i s) ;
JPanel inputPanel = new JPanel () ;
inputPanel . add (new JLabe l (” Input your name here : ”)) ;
inputPanel . add (i n F i e l d) ;
inputPanel . add (goButton) ;
contentPane . add (” Center ” , display) ;
contentPane . add (”South” , inputPanel) ;

} // b u i l d G U I ()

public void actionPerformed (ActionEvent e)
{ i f (e . getSource () == goButton)
{ S t r i n g name = i n F i e l d . getText () ;

d isplay . append (g r e e t e r . g r e e t (name) + ”\n”) ;
}

} // a c t i o n P e r f o r m e d ()

}
 	
Figure 4.20: Definition of the GreeterGUI class.

already. That will help us put together all of the various concepts that we
have introduced.

To begin with, note the several Java packages that must be included
in this program. The javax.swing package includes definitions for
all of the Swing components. The java.awt.event package includes

SECTION 4.4 • A Graphical User Interface (GUI) 175

the ActionEvent class and the ActionListener interface, and the
java.awt packages contain the Container class.

Next note how the GreeterGUI class is defined as a subclass
of JFrame and as implementing the ActionListener interface. Extending a class
GreeterGUI thereby inherits all of the functionality of a JFrame. Plus,
we are giving it additional functionality. One of its functions is to serve as
an ActionListener for its goButton. The ActionListener interface
consists entirely of the actionPerformed() method, which is defined Implementing an interface
in the program. This method encapsulates the actions that will be taken
whenever the user clicks the goButton.

The next elements of the program are its four instance variables, the
most important of which is the Greeter variable. This is the variable that
sets up the relationship between the GUI and the computational object. In The computational object
this case, because the variable is declared in the GUI, we say that the GUI
uses the computation object, as illustrated in Figure 4.8. This is slightly
different from the relationship we set up in the command-line interface,
in which the computational object uses the interface (Fig. 4.2).

The other instance variables are for those GUI components that must
be referred to throughout the class. For example, note that the goButton,
inField, and display are instantiated in the buildGUI() method and
referenced again in the actionPerformed() method.

The next element in the program is its constructor. It begins by creating
an instance of the Greeter computational object. It is important to do this
first in case we need information from the computational object in order
to build the GUI. In this case we don’t need anything from Greeter, but
we will need such information in other programs.

We’ve already discussed the fact that the constructor’s role is to coor-
dinate the initialization of the GreeterGUI object. Thus, it invokes the
buildGUI() method, which takes care of the details of laying out the
GUI components. And, finally, it displays itself by calling the pack() and
setVisible()methods, which are inherited from JFrame. The pack()
method sizes the frame according to the sizes and layout of the compo-
nents it contains. The setVisible() method is what actually causes the
GUI to appear on the Java console.

Finally, note the details of the buildGUI() method. We have dis-
cussed each of the individual statements already. Here we see the order
in which they are combined. Note that we can declare the contentPane
and inputPanel variables locally, because they are not used elsewhere
in the class.

SELF-STUDY EXERCISES
EXERCISE 4.2 There is a simple modification that we can make to
GreeterGUI. The JTextField can serve both as an input element and
as a control element for action events. An ActionEvent is generated
whenever the user presses the Return or Enter key in a JTextField so
that the JButton can be removed. Of course, it will be necessary to des-
ignate the inField as an ActionListener in order to take advantage
of this feature. Make the appropriate changes to the buildGUI() and
actionPerformed()methods so that the inField can function as both
a control and input element. Call the new class GreeterGUI2.

176 CHAPTER 4 • Input/Output: Designing the User Interface

4.4.9 Using the GUI in a Java Application

As you know, a Java application is a stand alone program, one that can
be run on its own. We have designed our GUI so that it can easily be
used with a Java application. We saw in the previous section that the GUI
has a reference to the Greeter object, which is the computational object.
Therefore, all we need to get the program to run as an application is a
main() method.

One way to use the GUI in an application is simply to create an in-
stance in a main() method. The main() method can be placed in the
GreeterGUI class itself or in a separate class. Here’s an example with
the main in a separate class:� �

public c l a s s GreeterAppl ica t ion
{ public s t a t i c void main (S t r i n g args [])
{

new GreeterGUI (” Greeter ”) ;
}

}
 	
The main() method creates an instance of GreeterGUI, passing it a
string to use as its title. If you prefer, this same main() method can be
incorporated directly into the GreeterGUI class.

4.5 Case Study: The One Row Nim Game

In this section, we show how to develop alternative interfaces for our case
study game of One Row Nim that was developed in the two previous
chapters. As you recall, the One Row Nim game starts with, say, 21 sticks
on a table. Players take turns picking up 1, 2 or 3 sticks, and the player to
pick up the last stick loses. We wish to develop an application program so
that the user of the program can play this game against the computer, that
is, against the program.

As in our other examples in this chapter, our design will divide this
problem into two primary objects: a computational object, in this case
OneRowNim, and a user interface object, for which we will use either a
KeyboardReader or a OneRowNimGUI. One goal of our design was to
develop the OneRowNim class so that it can be used, without changes,
with either a command-line interface or a GUI.

Figure 4.21: A UML diagram of
the OneRowNim class.

Recall that we designed the OneRowNim class to maintain the state of
the game and to provide methods that enforce the rules of the game. Thus,
we know that after each legal move, the number of sticks will decline, until
it is 0 or less, which indicates that the game is over. Also, an instance of
OneRowNim keeps track of whose turn it is and can determine if the game
is over and who the winner is when the game is over. Finally, the game
ensures that players cannot cheat, either by taking too few or too many
sticks on one turn. Figure 4.23 shows the UML diagram of the OneRowNim
class as described at the end of the previous chapter.

SECTION 4.5 • Case Study: The One Row Nim Game 177

4.5.1 A Command-line Interface to OneRowNim

Let’s now focus on connecting a OneRowNim instance with a Keyboard-
Reader instance, the command-line interface we developed at the begin-
ning of this chapter. To do so requires no changes to KeyboardReader
(Fig. 4.6). Unlike in the greeter example, we will use a third object to
serve as the main program. As shown in Figure 4.22, the OneRowNimApp
class will contain the run() method that controls the game’s progress.
OneRowNimApp will use the KeyboardReader object to prompt the user,
to display the program’s output, and to perform input from the keyboard.
It will use the OneRowNim object to keep track of the game.

In fact, the main challenge for this part of our problem is designing the Loop algorithm
run() method, which will use a loop algorithm to play the game. The
user and the computer will repeatedly take turns picking up sticks until
the game is over. The game is over when there are no more sticks to pick
up. Thus, we can use the game’s state—the number of sticks left—as our
loop’s entry condition. We will repeat the loop while there are more than
0 sticks remaining.

The following pseudocode describes the remaining details of our al-
gorithm. We refer to the OneRowNim instance as the game object, and
we refer to the KeyboardReader instance as the reader object. We
use the notation game:get the number of sticks left to indicate
that we are sending a message to the game object.� �

Create a game o b j e c t with 21 s t i c k s
Create a reader o b j e c t
s t i c k s L e f t = game : get the number of s t i c k s l e f t
reader : d isplay the r u l e s of the game
while (game : the game i s not over)

whoseMove = game : f ind out whose turn i t i s
i f (whoseMove == user)

game : user chooses number of s t i c k s to take
e lse

game : computer chooses number of s t i c k s to take
s t i c k s L e f t = game : get the number of s t i c k s l e f t
reader : repor t the number of s t i c k s l e f t

// A t t h i s p o i n t t h e g a m e i s o v e r .

i f game : the user i s the winner
reader : repor t t h a t the user wins

e lse
reader : repor t t h a t the computer wins
 	

In this algorithm, the initializations we perform consist of creating the
game and reader objects and initializing sticksLeft. We use a while
loop structure to control the game. The loop’s entry condition is that the
’the game is not over’. This is a piece of information that comes directly
from the game object. As long as the game is not over, the body of the
loop will be executed. Note that in the loop’s body, either the player or the
computer makes a move. Again, it is up to the game object to determine
whose move it is. Following the move we ask the game how many sticks
are left and we use the reader object to report this.

Note that the loop structure has the three necessary elements. The ini- Loop structure: Initializer, entry con-
dition, updater

178 CHAPTER 4 • Input/Output: Designing the User Interface

tializer in this case is the creation of a OneRowNim object. We know that
this will cause the game to have 21 sticks and it will be the user’s move.
The loop-entry condition is that the game is not over, which is based on
the fact that there are still sticks remaining to be picked up. But again, this
knowledge is kept by the game object. Finally, we have an updater that
consists of either the computer or the user picking up some sticks. This in
turn changes the value of sticksLeft on each iteration, moving us ever
closer to the condition that there are no sticks left, at which point the game
will be over.

Note that we have left out of this algorithm the details of the user’s
moves and computer’s moves. These are the kinds of actions that are
good to put into separate methods, where we can worry about checking
whether the user made a legal move and other such details.

Figure 4.22 provides the implementation of the OneRowNimApp appli-
cation. It uses a KeyboardReader as a command-line interface and a
OneRowNim instance as it computational object. Thus, it has private in-
stance variables for each of these objects, which are instantiated in the
constructor method. The algorithm we just described has been placed in
the run() method, which is called from main() after the application is
instantiated. The use of the boolean method gameOver() to control the
loop makes this code segment easier to understand. Also, it leaves it up
to the game object to determine when the game is over. From an object-
oriented design perspective, this is an appropriate division of responsibil-Division of labor
ity. If you doubt this, imagine what could go wrong if this determination
was left up to the user interface. A user-interface programmer might end
up, mistakenly, implementing the wrong rule for the game being over. A
similar point applies to the getWinner() method. This determination
rests with the game, not the user interface. If left up to the user interface,
it is possible that a programming mistake could lead to the loss of the
game’s integrity.

The run() method calls userMove() and computerMove() to per-
form the specific set of actions associated with each type of move.
The userMove() method uses the KeyboardReader() to prompt the
user and input his or her move. It then passes the user’s choice to
game.takeSticks(). Note how it checks the return value to determine
whether the move was legal or not and provides an appropriate response
through the interface.

Finally, note how we use private methods to implement the actions as-
sociated with the user’s and computer’s moves. Because these private
methods are not part of the object’s interface and because they can only
be used within the object themselves, they are in a sense secondary to the
object’s public instance methods. We sometimes refer to them as helper
methods. This division of labor allows us to organize all of the details
associated with the moves into a single module. The computerMove()
method uses a temporary strategy of taking a single stick and passes
the number 1 to game.takeSticks(). Finally, computerMove() re-
ports its choice through the interface. After we have covered operators of
the int data type in the next chapter, we will be able to describe better
strategies for the computer to make a move.

This example shows how simple and straightforward it is to use our
KeyboardReader user interface. In fact, for this problem, our interface

SECTION 4.5 • Case Study: The One Row Nim Game 179

� �
public c l a s s OneRowNimApp
{ private KeyboardReader reader ;

private OneRowNim game ;

public OneRowNimApp()
{ reader = new KeyboardReader () ;

game = new OneRowNim (2 1) ;
} // OneRowNim ()

public void run ()
{ i n t s t i c k s L e f t = game . g e t S t i c k s () ;

reader . d isplay (” Let ’ s play One Row Nim. You go f i r s t .\n”) ;
reader . d isplay (” There are ” + s t i c k s L e f t +

” s t i c k s l e f t .\n”) ;
reader . d isplay (”You can pick up 1 , 2 , or 3 a t a time\n . ”) ;
while (game . gameOver () == f a l s e)
{ i f (game . ge tP layer () == 1) userMove () ;

e lse computerMove () ;
s t i c k s L e f t = game . g e t S t i c k s () ;
reader . d isplay (” There are ” + s t i c k s L e f t +

” s t i c k s l e f t .\n”) ;
} // w h i l e

i f (game . getWinner () == 1)
reader . d isplay (”Game over . You win . Nice game .\n”) ;

e lse reader . d isplay (”Game over . I win . Nice game .\n”) ;
} // r u n ()

private void userMove ()
{ reader . prompt (”Do you take 1 , 2 , or 3 s t i c k s ? : ”) ;

i n t userTakes = reader . getKeyboardInteger () ;
i f (game . t a k e S t i c k s (userTakes))
{ reader . d isplay (”You take ” + userTakes + ” .\n”) ;
} e lse
{ reader . d isplay (”You can ’ t take ” + userTakes +

” . Try again\n”) ;
} // e l s e

} // u s e r M o v e ()

private void computerMove ()
{ game . takeAway (1) ; // T e m p o r a r y s t r a t e g y .

reader . d isplay (” I take 1 s t i c k . ”) ;
} // c o m p u t e r M o v e ()

public s t a t i c void main (S t r i n g args [])
{ OneRowNimApp app = new OneRowNimApp () ;

app . run () ;
} // m a i n ()

} // OneRowNimApp
 	
Figure 4.22: Definition of OneRowNimApp, a command-line interface to
the OneRowNim.

180 CHAPTER 4 • Input/Output: Designing the User Interface

didn’t require any changes. Although there might be occasions where we
will want to extend the functionality of KeyboardReader, it can be used
without changes for a wide variety of problems in subsequent chapters.

JAVA EFFECTIVE DESIGN Code Reuse. A well-designed user
interface can be used with many computational objects.

4.5.2 A GUI for OneRowNim

The first task is designing a GUI for the OneRowNim is to decide how to
use input, output, and control components to interact with the user. Fol-
lowing the design we used in the GUI for our greeter application, we can
use a JTextField for the user’s input and a JTextArea for the game’s
output. Thus, we will use the JTextArea to report on the progress of the
game and to display any error messages that arise. As in the greeter exam-
ple, we can use both the JTextField and JButton as control elements
and a JLabel as a prompt for the input text field. For the most part then,
the use of GUI components will remain the same as in our previous exam-
ple. This is as we would expect. The relationship between the user and
the interface are pretty similar in both this and the previous application.

In contrast, the relationship between the interface and the game are
quite different from what we saw in the greeter application. As in the
previous application, the GUI will still need a reference to its associated
computational object, in this case the game:� �

private OneRowNim game ;
. . .

game = new OneRowNim () ;
 	
The biggest difference between this GUI and the one we used with
the greeter application occurs in the details of the interaction between
the GUI and the game. These details are the responsibility of the
actionPerformed() method, whose actions depend on the actual
progress of the individual game.

Unlike in the command-line version, there is no need to use a loop con-
struct in the actionPerformed() method. Instead, because we are us-Java’s event loop
ing event-driven programming here, we will rely on Java’s event loop to
move the game from one turn to another.

As in the greeter example, the actionPerformed() method will be
called automatically whenever the JButton is clicked. It is the responsi-
bility of the GUI to ensure that it is the user’s turn whenever this action
occurs. Therefore, we design actionPerformed() so that each time it
is called, it first performs the user’s move and then, assuming the game

SECTION 4.5 • Case Study: The One Row Nim Game 181

is not over and an error did not occur on the user’s move, it performs the
computer’s move. Thus, the basic algorithm is as follows:� �

Let the user move .
I f game : game i s not over and computer turn

l e t the computer move .
Game : how many s t i c k s are l e f t .
d isplay : repor t how many s t i c k s are l e f t
I f game : game i s over

Stop accept ing moves .
Report the winner .
 	

After the user’s move, it is possible that the user picked up the last stick,
which means that the game would be over. In that case, the computer
would not get a move. Or, the user could have made an error. In that case
it would still be the user’s move. These possibilities have to be considered
in the algorithm before the computer gets to move. As the pseudocode
shows, it is the OneRowNim object’s responsibility to keep track of whether
the game is over and whose turn it is.

Figure 4.23 shows the complete implementation of the OneRowNimGUI
class. In terms of its instance variables, constructor, and its buildGUI()
method, there are only a few minor differences between this GUI and
the GreeterGUI (Fig. 4.20). This GUI has instance variables for its
JTextField, JTextArea, and JButton, as well as one for OneRowNim
instance, its computational object. It needs to be able to refer to these
objects throughout the class. Hence we give them class scope.

The constructor method plays the same role here as in the previous
GUI: It creates an instance of the computational object, builds the GUI’s
layout, and then displays the interface on the console.

All of the changes in the buildGUI() method have to do with
application-specific details, such as the text we use as the prompt and
the goButton’s label. One new method we use here is the setText()
method. Unlike the append() method, which is used to add text to the
existing text in a JTextArea, the setText() method replaces the text in
a JTextArea or a JTextField.

Next let’s consider the private userMove() and computerMove()
methods. Their roles are very similar to the corresponding methods in
the command-line interface: They encapsulate the details involved in per-
forming the players’ moves. The primary difference here is that for the
user move we input the user’s choice from a JTextField rather than
from the keyboard. We use getText() to retrieve the user’s input from
the JTextField and we use Integer.parseInt() to convert to an
int value:� �

i n t userTakes = I n t e g e r . p a r s e I n t (i n F i e l d . getText ()) ;
 	
Another difference is that we use a JTextField to display the program’s
messages to the user.

As we have noted, the main differences between this and the
GreeterGUI occur in the actionPerformed() method. Note

182 CHAPTER 4 • Input/Output: Designing the User Interface

� �
import j avax . swing . ∗ ;
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s OneRowNimGUI extends JFrame implements Act ionLis tener
{ private JTextArea display ;

private J T e x t F i e l d i n F i e l d ;
private JButton goButton ;
private OneRowNim game ;

public OneRowNimGUI(S t r i n g t i t l e)
{ game = new OneRowNim (2 1) ;

buildGUI () ;
s e t T i t l e (t i t l e) ;
pack () ;
s e t V i s i b l e (t rue) ;

} // OneRowNimGUI ()
private void buildGUI ()
{ Container contentPane = getContentPane () ;

contentPane . setLayout (new BorderLayout ()) ;
d isplay = new JTextArea (2 0 , 3 0) ;
d isplay . s e t T e x t (” Let ’ s play Take Away. There are ” + game . g e t S t i c k s () +

” s t i c k s .\n” + ” Pick up 1 , 2 , or 3 a t a time .\n” + ”You go f i r s t .\n”) ;
i n F i e l d = new J T e x t F i e l d (1 0) ;
goButton = new JButton (”Take S t i c k s ”) ;
goButton . addActionListener (t h i s) ;
JPanel inputPanel = new JPanel () ;
inputPanel . add (new JLabe l (”How many s t i c k s do you take : ”)) ;
inputPanel . add (i n F i e l d) ;
inputPanel . add (goButton) ;
contentPane . add (” Center ” , display) ;
contentPane . add (”South” , inputPanel) ;

} // buildGUI
private void userMove ()
{ i n t userTakes = I n t e g e r . p a r s e I n t (i n F i e l d . getText ()) ;

i f (game . t a k e S t i c k s (userTakes))
display . append (”You take ” + userTakes + ” .\n”) ;

e lse display . append (”You can ’ t take ” + userTakes + ” . Try again\n”) ;
}// userMove ()
private void computerMove ()
{ i f (game . gameOver ()) return ;

i f (game . ge tP layer () == 2)
{ game . t a k e S t i c k s (1) ; // Temporary s t r a t e g y

display . append (” I take one s t i c k . ”) ;
} // i f

} // computerMove ()
private void endGame ()
{ goButton . setEnabled (f a l s e) ; // Disable button and t e x t f i e l d

i n F i e l d . setEnabled (f a l s e) ;
i f (game . getWinner () == 1)

display . append (”Game over . You win . Nice game.\n”) ;
e lse display . append (”Game over . I win . Nice game.\n”) ;

} // endGame ()
public void actionPerformed (ActionEvent e)
{ i f (e . getSource () == goButton)
{ userMove () ;

computerMove () ;
i n t s t i c k s L e f t = game . g e t S t i c k s () ;
d isplay . append (” There are ” + s t i c k s L e f t + ” s t i c k s l e f t .\n”) ;
i f (game . gameOver ()) endGame () ;

} // i f
} // actionPerformed ()

} // OneRowNimGUI
 	
Figure 4.23: The OneRowNimGUI class.

SECTION 5 • File Input 183

there how we use OneRowNim’s public methods, getPlayer(),
gameOver() and getWinner() to control the interaction with the user.

One issue that differs substantially from the command-line interface is:
How do we handle the end of the game? Because we are using Java’s built-
in event loop, the GUI will continue to respond to user’s events, unless we
stop it from doing so. One way to do this is to disable the JButton and
the JTextField. By disabling a control element, we render it unable to
respond to events. To do this we use the setEnabled() method, passing
it the value false to, in effect, “turn off” that component:� �

i f (game . gameOver ())
{ goButton . setEnabled (f a l s e) ; // E n d t h e g a m e

i n F i e l d . setEnabled (f a l s e) ;
. . .

}
 	
Although it doesn’t apply in this situation, the setEnabled() method
can be used repeatedly in a GUI to turn components on and off as the
context of the interaction dictates.

This example shows how simple and straightforward it can be to build
a GUI for just about any application. One main design issue is deciding GUI input, output, and control
what kinds of input, output, and control elements to use. For most ap-
plications, we can use JTextField, JTextArea, JLabel, and JButton
as the GUI’s basic elements. A second design issue concerns the develop-
ment of the actionPerformed() method, which must be designed in
an application-specific way. Here we apply what we’ve learned regard-
ing Java’s event-programming model: We designate one or more of our
elements to serve as an ActionListener and we design algorithms to
handle the action events that occur on that element.

Of course, for some applications we may need two JTextFields to
handle input. At some point, we also might want to introduce JMenus and
other advanced GUI elements. Some of these options will be introduced in
upcoming chapters. Others will be covered in Chapter 13, which provides
a more comprehensive view of Java’s GUI capabilities.

JAVA EFFECTIVE DESIGN GUI Design A well-designed GUI
makes appropriate use of input, output, and control elements.

4.6 From the Java Library: java.io.File
and File Input (Optional)

In addition to command-line and GUI user interfaces, there is one more
standard user interface, files. In this section we show how the Scanner
class, that was used in Chapter 2 for keyboard input, can also read input
from files. Reading input from a file is relevant to only certain types of
programming problems. It is hard to imagine how a file would be used
in playing the One Row Nim game but a file might very well be useful

184 CHAPTER 4 • Input/Output: Designing the User Interface

to store a collection of riddles that could be read and displayed by a Java
program. We will develop such a program later in this section.

Java has two types of files, text files and binary files. A text file stores a
sequence of characters and is the type of file created by standard text edi-
tors like NotePad and WordPad on a Windows computer or SimpleText on a
Macintosh. A binary file has a more general format that can store numbers
and other data the way they are stored in the computer. In this section we

Figure 4.24: A UML class diagram
of the File class with a partial list
of public methods

will consider only text files. Binary files are considered in Chapter 11.

4.6.1 File Input with the File and Scanner Classes
An instance of the java.io.File class stores information that a
Scanner object needs to create an input stream that is connected to the
sequence of characters in a text file. A partial list of the public methods
of the File class is given in the UML class diagram in Figure 4.26. We
will need to use only the File() constructor in this section. The File
instance created with the statement� �

F i l e t h e F i l e = new F i l e (” r i d d l e s . t x t ”) ;
 	

Figure 4.25: A UML class diagram
of the Scanner class with an ex-
panded list of public methods

will obtain and store information about the ”riddles.txt” file in the same
directory as the java code being executed, if such a file exists. If no such
file exists, the File object stores information needed to create such a file
but does not create it. In Chapter 11, we will describe how other objects
can use a file object to create a file in which to write data. If we wish to
create a File object that describes a file in a directory other than the one
containing the Java program, we must call the constructor with a string ar-
gument that specifies the file’s complete path name—that is, one that lists
the sequence of directories containing the file. In any case, while we will
not use it at this time, the exists() method of a File instance can be
used to determine whether or not a file has been found with the specified
name.

In order to read data from a file with a Scanner object we will need
to use methods that were not discussed in Chapter 2. An expanded list
of methods of the Scanner class is given in Figure 4.27. Note the there
is a Scanner() constructor with a File object as an argument. Unlike
the other create() method that was used in Chapter 2, this create()
throws an exception that must be handled. The following code will create
a Scanner object that will be connected to an input stream that can read
from a file:� �

t r y
{ F i l e t h e F i l e = new F i l e (” r i d d l e s . t x t ”) ;

f i l e S c a n = new Scanner (t h e F i l e) ;
f i l e S c a n = f i l e S c a n . useDel imiter (”\ r\n”) ;

} catch (IOException e)
{ e . p r i n t S t a c k T r a c e () ;
} // c a t c h ()
 	

We will discuss the try-catch commands when exceptions are covered
in Chapter 10. Until then, the try-catch structures can be copied exactly
as above, if you wish to use a Scanner object for file input. In the code

SECTION 6 • File Input 185

above, the useDelimiter() method has been used to set the Scanner
object so that spaces can occur in strings that are read by the Scanner
object. For the definition of a class to read riddles from a file, the above
code belongs in a constructor method.

After we create a Scanner object connected to a file, we can make a
call to nextInt(), nextDouble(), or next() method to read, respec-
tively, an integer, real number, or string from the file. Unlike the strategy
for using a Scanner object to get keyboard input, it is suggested that
you test to see if there is more data in a file before reading it. This can
be done with the hasNext(), hasNextInt(), and hasNextDouble()
methods. These methods return the value true if there are more data in
the file.

The program in Figure 4.26 is the complete listing of a class that reads
riddles from a file and displays them. Note that, in the body of the method
readRiddles(), the statements:� �

S t r i n g ques = null ;
S t r i n g ans = null ;
Riddle theRiddle = null ;
 	

make explicit the fact that variables that refer to objects are assigned null
as a value when they are declared. The statements:� �

i f (f i l e S c a n . hasNext ())
ques = f i l e S c a n . next () ;

i f (f i l e S c a n . hasNext ())
{ ans = f i l e S c a n . next () ;

theRiddle = new Riddle (ques , ans) ;
}
 	

will read Strings into the variables ques and ans only if the file contains
lines of data for them. Otherwise the readRiddle() method will return
a null value. The main() method uses this fact to terminate a while
loop when it runs out of string data to assign to Riddle questions and
answers. There is a separate method, displayRiddle() using a sepa-
rate instance of Scanner attached to the keyboard to display the question
of a riddle before the answer.

The contents of the ”riddles.txt” file should be a list of riddles with
each question and answer on a separate line. For example The following
three riddles saved in a text file would form a good example to test the
RiddleFileReader class.� �

What i s black and white and red a l l over ?
An embarrassed zebra
What i s black and white and read a l l over ?
A newspaper
What other word can be made with the l e t t e r s of ALGORITHM?
LOGARITHM
 	

186 CHAPTER 4 • Input/Output: Designing the User Interface� �
import j ava . io . ∗ ;
import j ava . u t i l . Scanner ;
public c l a s s RiddleFi leReader
{ private Scanner f i l e S c a n ; // F o r f i l e i n p u t

private Scanner kbScan ; // F o r k e y b o a r d i n p u t

public RiddleFi leReader (S t r i n g fName)
{ kbScan = new Scanner (System . in) ;

t r y
{ F i l e t h e F i l e = new F i l e (fName) ;

f i l e S c a n = new Scanner (t h e F i l e) ;
f i l e S c a n = f i l e S c a n . useDel imiter (”\ r\n”) ;

} catch (IOException e)
{ e . p r i n t S t a c k T r a c e () ;
} // c a t c h ()

} // R i d d l e F i l e R e a d e r () c o n s t r u c t o r

public Riddle readRiddle ()
{ S t r i n g ques = null ;

S t r i n g ans = null ;
Riddle theRiddle = null ;
i f (f i l e S c a n . hasNext ())

ques = f i l e S c a n . next () ;
i f (f i l e S c a n . hasNext ())
{ ans = f i l e S c a n . next () ;

theRiddle = new Riddle (ques , ans) ;
} // i f

return theRiddle ;
} // r e a d R i d d l e ()

public void displayRiddle (Riddle aRiddle)
{ System . out . p r i n t l n (aRiddle . getQuestion ()) ;

System . out . p r i n t (” Input any l e t t e r to see answer : ”) ;
S t r i n g s t r = kbScan . next () ; // I g n o r e KB i n p u t

System . out . p r i n t l n (aRiddle . getAnswer ()) ;
System . out . p r i n t l n () ;

} // d i s p l a y R i d d l e ()

public s t a t i c void main (S t r i n g [] args)
{ RiddleFi leReader r f r =

new RiddleFi leReader (” r i d d l e s . t x t ”) ;
Riddle r i d d l e = r f r . readRiddle () ;
while (r i d d l e != null)
{ r f r . displayRiddle (r i d d l e) ;

r i d d l e = r f r . readRiddle () ;
} // w h i l e

} // m a i n ()

} // R i d d l e F i l e R e a d e r c l a s s
 	
Figure 4.26: A program which reads riddles from a file and displays them.

When the main() method is executed, the user will see output in the
console window that looks like:� �

What i s black and white and red a l l over ?
Input any l e t t e r to see answer : X
An embarrassed zebra

What i s black and white and read a l l over ?
Input any l e t t e r to see answer :
 	

CHAPTER 4 • Chapter Summary 187

Files are covered in depth in Chapter 11. Information on writing data
to a file and reading data from a file without using the Scanner class can
be found in that chapter.

SELF-STUDY EXERCISES
EXERCISE 4.3 Modify the RiddleFileReader class to create a pro-

gram NumberFileReaderthat opens a file named ”numbers.txt” and re-
ports the sum of the squares of the integers in the file. Assume that the
file ”numbers.txt” contains a list of integers in which each integer is on
a separate line. The program should print the sum of the squares in the
System.out console window. In this case, there is no need to have a
method to display the data being read or a Scanner object connected to
the keyboard. You will want a constructor method and a method that
reads the numbers and computes the sum of squares.

CHAPTER SUMMARYTechnical Terms
abstract class
abstract interface
abstract method
AWT
binary file
buffer
command-line

interface
container
control element
event-driven

programming

event loop
graphical user

interface (GUI)
helper method
inheritance
input operation
input stream
interface
layout manager
listener

model-view-
controller (MVC)
architecture

output operation
output stream
stream
Swing
text file
top-level container
user interface
wrapper class

Summary of Important Points

• An input operation is any action that transfers data from the user to the
computer’s main memory via one of the computer’s input devices. An
output operation is any action that transfers data from the computer’s
main memory to one of the computer’s output devices.

• The user interface is that part of the program that handles the input
and output interactions between the user and the program. As an in-
terface, it limits or constrains the manner in which the user can interact
with the program.

• In a command-line interface, user input is taken from the keyboard,
and the program’s output is displayed on some kind of console.

• A buffer is a portion of main memory where input is held until it is
needed by the program. Using a buffer between the keyboard and the
program allows you to use the Backspace key to delete a character.

188 CHAPTER 4 • Input/Output: Designing the User Interface

• A wrapper class contains methods for converting primitive data into
objects and for converting data from one type to another.

• Designing appropriate prompts is an important aspect of designing a
good user interface.

• I/O operations must watch out for certain types of I/O exceptions.

• GUI programming involves a computational model known as event-
driven programming, which means that GUI programs react to events
that are generated mostly by the user’s interactions with elements in
the GUI.

• Java has two packages of GUIs, the older java.awt and the newer
javax.swing.

• Swing components are based on the object-oriented model-view-
controller (MVC) architecture.

• The extends keyword is used to specify subclass/superclass relation-
ships in the Java class hierarchy.

• A top-level container is a GUI container that cannot be added to an-
other container; it can only have components added to it. All GUI
programs must be contained in a top-level container.

• There are generally three kinds of GUI components, corresponding to
the three main functions of a user interface: input, output, and control.

• Events are handled by special objects called listeners. A listener is a
specialist that listens constantly for a certain type of event.

• An interface is a special Java class that contains only methods and
constants (final variables).

CHAPTER 4 • Solutions to Self-Study Exercises 189

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 4.1 The following modification of the GreeterApp class is an im-
plementation of the High Low Game:� �
{ private KeyboardReader reader ;

private i n t secretNumber ;

public HighLowApp ()
{ reader = new KeyboardReader () ;

secretNumber = 1 + (i n t) (Math . random () ∗ 1 0 0) ;
} // H i g h L o w A p p () c o n s t r u c t o r

public void run ()
{ i n t userGuess = −1;

reader . d isplay (”Guess my s e c r e t number between 1 and 1 0 0 . ”) ;
while (userGuess != secretNumber)
{ reader . prompt (” Please input your guess here > ”) ;

userGuess = reader . getKeyboardInteger () ;
i f (userGuess > secretNumber)

reader . d isplay (”Your guess was too high . ”) ;
i f (userGuess < secretNumber)

reader . d isplay (”Your guess was too low . ”) ;
} // w h i l e

reader . d isplay (” Congratulat ions . Your guess was c o r r e c t . ”) ;
} // r u n ()

public s t a t i c void main (S t r i n g args [])
{ HighLowApp app = new HighLowApp () ;

app . run () ;
} // m a i n ()

}// H i g h L o w A p p
 	

190 CHAPTER 4 • Input/Output: Designing the User Interface

SOLUTION 4.2 The following modification of GreeterGUI eliminates the
JButton.� �
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s GreeterGUI2 extends JFrame
implements Act ionLis tener

{ private JTextArea display ;
private J T e x t F i e l d i n F i e l d ;
private Greeter g r e e t e r ;

public GreeterGUI2 (S t r i n g t i t l e)
{ g r e e t e r = new Greeter () ;

buildGUI () ;
s e t T i t l e (t i t l e) ;
pack () ;
s e t V i s i b l e (t rue) ;

} // G r e e t e r G U I 2 ()

private void buildGUI ()
{ Container contentPane = getContentPane () ;

contentPane . setLayout (new BorderLayout ()) ;
d isplay = new JTextArea (1 0 , 3 0) ;
i n F i e l d = new J T e x t F i e l d (1 0) ;
i n F i e l d . addActionListener (t h i s) ;
JPanel inputPanel = new JPanel () ;
inputPanel . add (new

JLabe l (” Input your name and type enter : ”)) ;
inputPanel . add (i n F i e l d) ;
contentPane . add (” Center ” , display) ;
contentPane . add (”South” , inputPanel) ;

} // b u i l d G U I ()

public void actionPerformed (ActionEvent e)
{ i f (e . getSource () == i n F i e l d)

{ S t r i n g name = i n F i e l d . getText () ;
d isplay . append (g r e e t e r . g r e e t (name) + ”\n”) ;

}
} // a c t i o n P e r f o r m e d ()

} // G r e e t e r G U I 2
 	

CHAPTER 4 • Exercises 191

SOLUTION 4.3 Java code that prints out the sum of the squares of a set of
integers read from a file named ”numbers.txt”:� �
import j ava . u t i l . Scanner ;

public c l a s s NumberFileReader
{ private Scanner f i l e S c a n ; // F o r f i l e i n p u t

public NumberFileReader (S t r i n g fName)
{ t r y

{ F i l e t h e F i l e = new F i l e (fName) ;
f i l e S c a n = new Scanner (t h e F i l e) ;

} catch (IOException e)
{ e . p r i n t S t a c k T r a c e () ;
} // c a t c h ()

} // N u m b e r F i l e R e a d e r ()

public void readNumbers ()
{ i n t num = 0 ; // T o s t o r e i n t e g e r s r e a d

i n t sum = 0 : // T o s t o r e sum o f s q u a r e s

while (f i l e S c a n . hasNextInt ())
{ num = f i l e S c a n . n e x t I n t () ;

sum = sum + num ∗ num;
} // w h i l e

System . out . p r i n t l n (”The sum of squares = ” + sum) ;
} // r e a d N u m b e r s ()

public s t a t i c void main (S t r i n g [] args)
{ NumberFileReader nfr =

new NumberFileReader (”numbers . t x t ”) ;
n f r . readNumbers ()

} // m a i n ()

} // N u m b e r F i l e R e a d e r
 	
EXERCISES
Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

EXERCISE 4.1 Fill in the blanks in each of the following sentences:

a. An is a Java program that can be embedded in a Web page.
b. A method that lacks a body is an method.
c. An is like a class except that it contains only instance methods, no

instance variables.
d. In a Java class definition a class can a class and an inter-

face.
e. Classes and methods not defined in a program must be from the Java

class library.
f. A subclass of a class inherits that class’s instance variables and in-

stance methods.
g. An object can refer to itself by using the keyword.
h. The JButton, JTextField, and JComponent classes are defined in the

package.
i. Java GUIs utilize a form of control known as programming.

192 CHAPTER 4 • Input/Output: Designing the User Interface

j. When the user clicks on a program’s JButton, an will automatically
be generated.

k. Two kinds of objects that generate ActionEvents are and
.

l. JButtons, JTextFields, and JLabels are all subclasses of .
m. The JFrame class is a subclass of .
n. If java class intends to handle ActionEvents, it must implement the

interface.
o. When an applet is started, its method is called automatically.

EXERCISE 4.2 Explain the difference between the following pairs of concepts:
a. Class and interface.
b. Extending a class and instantiating an object.
c. Defining a method and implementing a method.
d. A protected method and a public method.
e. A protected method and a private method.
f. An ActionEvent and an ActionListener() method.

EXERCISE 4.3 Draw a hierarchy chart to represent the following situation.
There are lots of languages in the world. English, French, Chinese, and Korean
are examples of natural languages. Java, C, and C++ are examples of formal lan-
guages. French and Italian are considered romance languages, while Greek and
Latin are considered classical languages.

EXERCISE 4.4 Arrange the Java library classes mentioned in the Chapter Sum-
mary into their proper hierarchy, using the Object class as the root of the hierar-
chy.

EXERCISE 4.5 Look up the documentation for the JButton class on Sun’s Web
site:� �
http : //java . sun . com/ j 2 s e /1 .5 .0/ docs/api/
 	
List the signatures of all its constructors.

EXERCISE 4.6 Suppose we want to set the text in our program’s JTextField.
What method should we use and where is this method defined? (Hint: Look up
the documentation for JTextField. If no appropriate method is defined there,
see if it is inherited from a superclass.)

EXERCISE 4.7 Does a JApplet have an init() method? Explain.

EXERCISE 4.8 Does a JApplet have an add() method? Explain.

EXERCISE 4.9 Does a JButton have an init() method? Explain.

EXERCISE 4.10 Does a JButton have an add() method? Explain.

EXERCISE 4.11 Suppose you type the URL for a “Hello, World!” applet into
your browser. Describe what happens—that is, describe the processing that takes
place in order for the applet to display “Hello, World!” in your browser.

EXERCISE 4.12 Suppose you have a program containing a JButton named
button. Describe what happens, in terms of Java’s event handling model, when
the user clicks the button.

EXERCISE 4.13 Java’s Object class contains a public method, toString(),
which returns a string that represents this object. Because every class is a subclass
of Object, the toString() method can be used by any object. Show how you
would invoke this method for a JButton object named button.

CHAPTER 4 • Exercises 193

EXERCISE 4.14 The JFrame that follows contains a semantic error in its
SomeFrame() constructor. The error will cause the actionPerformed()
method never to display “Clicked” even though the user clicks the button in the
JFrame. Why? (Hint: Think scope!)� �
public c l a s s SomeFrame extends JFrame

implements Act ionLis tener
{

// D e c l a r e i n s t a n c e v a r i a b l e s

private JButton button ;

public JFrame ()
{

// I n s t a n t i a t e t h e i n s t a n c e v a r i a b l e

JButton button = new JButton (” Cl ick me”) ;
add (button) ;
button . addActionListener (t h i s) ;

} // i n i t ()

public void actionPerformed (ActionEvent e)
{

i f (e . getSource () == button)
System . out . p r i n t l n (” Clicked ”) ;

} // a c t i o n P e r f o r m e d ()

} // S o m e F r a m e
 	
EXERCISE 4.15 What would be output by the following program?� �
public c l a s s SomeFrame2 extends JFrame
{

// D e c l a r e i n s t a n c e v a r i a b l e s

private JButton button ;
private J T e x t F i e l d f i e l d ;

public SomeFrame ()
{

// I n s t a n t i a t e i n s t a n c e v a r i a b l e s

button = new JButton (” Cl ick me”) ;
add (button) ;
f i e l d = new J T e x t F i e l d (” F i e l d me”) ;
add (f i e l d) ;
System . out . p r i n t l n (f i e l d . getText () + button . getText ()) ;

} // i n i t ()

public s t a t i c void main (S t r i n g [] args) {
SomeFrame2 frame = new SomeFrame2 () ;
frame . s e t S i z e (4 0 0 , 4 0 0) ;
frame . s e t V i s i b l e (t rue) ;

}
} // S o m e F r a m e 2

}
 	
EXERCISE 4.16 Design and implement a GUI that has a JButton, a
JTextField, and a JLabel and then uses the toString() method to display
each object’s string representation.

194 CHAPTER 4 • Input/Output: Designing the User Interface

EXERCISE 4.17 The JButton class inherits a setText(String s) from its
AbstractButton() superclass. Using that method, design and implement a
GUI that has a single button labeled initially, “The Doctor is out.” Each time the
button is clicked, it should toggle its label to, “The Doctor is in” and vice versa.

EXERCISE 4.18 Design and implement a GUI that contains two JButtons, ini-
tially labeled, “Me first!” and “Me next!” Each time the user clicks either button,
the labels on both buttons should be exchanged. (Hint: You don’t need an if-else
statement for this problem.)

EXERCISE 4.19 Modify the GUI in the previous exercise so that it contains three
JButtons, initially labeled “First,” “Second,” and “Third.” Each time the user
clicks one of the buttons, the labels on the buttons should be rotated. Second
should get first’s label, third should get second’s, and first should get third’s label.

EXERCISE 4.20 Design and implement a GUI that contains a JTextField and
two JButtons, initially labeled “Left” and “Right.” Each time the user clicks a
button, display its label in the JTextField. A JButton()’s label can be gotten
with the getText() method.

EXERCISE 4.21 You can change the size of a JFrame by using the setSize(int
h, int v) method, where h and v give its horizontal and vertical dimensions
pixels. Write a GUI application that contains two JButtons, labeled “Big” and
“Small.” Whenever the user clicks on small, set the JFrame’s dimensions to 200
× 100, and whenever the user clicks on big, set the dimensions to 300 × 200.

EXERCISE 4.22 Rewrite your solution to the previous exercise so that it uses a
single button whose label is toggled appropriately each time it is clicked. Obvi-
ously, when the JButton is labeled “Big,” clicking it should give the JFrame its
big dimensions.

EXERCISE 4.23 Challenge: Design and write a Java GUI application that allows
the user to change the JFrame’s background color to one of three choices, indi-
cated by buttons. Like all other Java Components, JFrame’s have an associated
background color, which can be set by the following commands:� �
setBackground (Color . red) ;
setBackground (Color . yellow) ;
 	
The setBackground() method is defined in the Component class, and 13
primary colors—black, blue, cyan, darkGray, gray, green, lightGray,
magenta, orange, pink, red, white, yellow—are defined in the java.awt.Color
class.

ADDITIONAL EXERCISES

EXERCISE 4.24 Given the classes with the following headers� �
public c l a s s Animal . . .
public c l a s s DomesticAnimal extends Animal . . .
public c l a s s FarmAnimal extends DomesticAnimal . . .
public c l a s s HousePet extends DomesticAnimal . . .
public c l a s s Cow extends FarmAnimal . . .
public c l a s s Goat extends FarmAnimal . . .
public c l a s s DairyCow extends Cow . . .
 	
draw a UML class diagram representing the hierarchy created by these
declarations.

CHAPTER 4 • Exercises 195

EXERCISE 4.25 Given the preceding hierarchy of classes, which of the following
are legal assignment statements?� �
DairyCow dc = new FarmAnimal () ;
FarmAnimal fa = new Goat () ;
Cow c1 = new DomesticAnimal () ;
Cow c2 = new DairyCow () ;
DomesticAnimal dom = new HousePet () ;
 	

196 CHAPTER 4 • Input/Output: Designing the User Interface

OBJECTIVES
After studying this chapter, you will

• Understand the role that data play in effective program design.
• Be able to use all of Java’s primitive types and their operators.
• Appreciate the importance of information hiding.
• Be able to use class constants and class methods.
• Know how to use Java’s Math and NumberFormat classes.
• Be able to perform various kinds of data conversions.

OUTLINE
5.1 Introduction
5.2 Boolean Data and Operators

Special Topic: Are We Computers?
5.3 Numeric Data and Operators
5.4 From the Java Library: java.lang.Math
5.5 Numeric Processing Examples
5.6 From the Java Library: java.text.NumberFormat
5.7 Character Data and Operators
5.8 Example: Character Conversions
5.9 Problem Solving = Representation + Action

Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 5

Java Data and Operators

197

198 CHAPTER 5 • Java Data and Operators
Figure 5.1: Can the chess board be
tiled with dominoes?

5.1 Introduction

This chapter has two primary goals. One is to elaborate on Java’s prim-
itive data types, which were first introduced in Chapter 1. We will cover
boolean, integer, character, and real number data types, including the var-
ious operations that you can perform on these types. We will provide ex-
amples, including several modifications of the OneRowNim class, to show
typical uses of the various data types.

Our second goal is to illustrate the idea that programming is a matter of
choosing an appropriate way to represent a problem as well as choosing
an appropriate sequence of actions to solve the problem. Programming
is a form of problem solving that can be viewed as a two-part process:
representation and action.

Representation means finding a way to look at the problem. This might
involve seeing the problem as closely related to a known problem or see-
ing that parts of the problem can be broken up into smaller problems
that you already know how to solve. In terms of programming prob-
lems, representation often means choosing the right kinds of objects and
structures.

Action is the process of taking well-defined steps to solve a problem.
Given a particular way of representing the problem, what steps must we
take to arrive at its solution?

Choosing an appropriate representation is often the key to solving a
problem. For example, consider this problem: Can a chess board, with
its top-left and bottom-right squares removed, be completely tiled by
dominoes that cover two squares at a time?

One way to solve this problem might be to represent the chess board
and dominoes as shown in Figure 5.1. If we represent the board in this
way, then the actions needed to arrive at a solution involve searching for
a tiling that completely covers the board. In other words, we can try one
way of placing the dominoes on the board. If that doesn’t work, we try an-
other way. And so on. This process will be very time consuming, because
there are millions of different ways of trying to tile the board.

An alternative way to represent this problem comes from seeing that
the top-left and bottom-right squares of the board are both white. If you
remove them, you’ll have a board with 62 squares, 32 black and 30 white.
Because each domino must cover one white and one black square, it is

SECTION 5.2 • Boolean Data and Operators 199

impossible to tile a board with an unequal number of black and white
squares.

Thus, by representing the problem as the total number of black and
white squares, the actions required to solve it involve a very simple rea-
soning process. This representation makes it almost trivial to find the so-
lution. On the other hand, the brute force representation presented first—
trying all possible combinations—made it almost impossible to solve the
problem.

5.2 Boolean Data and Operators

As we learned in Chapter 1, the boolean type is one of Java’s primitive
types. For this type, there are only two possible values, true and false.
The boolean type is derived from the work of British mathematician
George Boole, who in the 1850s, developed an algebra to process logical George Boole
expressions such as p and q. Such boolean expressions produce a value that is
either true or false. Every modern programming language provides some
means of representing boolean expressions.

The boolean type has several important uses. As we saw in Chap-
ter 1, expressions of the form num == 7 and 5 < 7 have boolean val-
ues. Similarly, as we saw in Chapter 3, the boolean type is also used to Conditional statement
represent the condition in the if statement:

if (boolean expression)
statement;

For this reason, boolean expressions are also called conditions. Along these
same lines, a boolean variable can be used as a flag or a signal to “remem-
ber” whether or not a certain condition holds. For example, in the follow- Boolean flag
ing code fragment, we use isDone to mark when a particular process is
completed:� �

boolean isDone = f a l s e ; // I n i t i a l i z e t h e f l a g

. . . // Do s o m e p r o c e s s i n g t a s k

isDone = t rue ; // S e t f l a g when t h e t a s k d o n e

. . . // Do s o m e o t h e r s t u f f

i f (isDone) // C h e c k i f f i n i s h e d t h e t a s k

. . . // I f s o , d o s o m e t h i n g

e lse
. . . // Or , d o s o m e t h i n g e l s e
 	

5.2.1 Boolean (or Logical) Operations
Like all the other simple data types, the boolean type consists of certain Data and operations
data—the values true and false—and certain actions or operations that
can be performed on those data. For the boolean type there are four basic
operations: AND (signified by &&), OR (signified by ||), EXCLUSIVE-OR
(signified by ∧), and NOT (signified by !). These are defined in the truth
table shown in Table 5.1. A truth tables defines boolean operators by giving
their values in all possible situations. The first two columns of the table
give possible boolean values for two operands, o1 and o2. An operand is
a value used in an operation. Note that each row gives a different value

200 CHAPTER 5 • Java Data and Operators

assignment to the two operands, so that all possible assignments are repre-
sented. The remaining columns give the values that result for the various
operators given the assignment of values to o1 and o2.

TABLE 5.1 Truth-table definitions of the boolean operators:
AND (&&), OR (||), EXCLUSIVE-OR (∧), and NOT (!)

o1 o2 o1 && o2 o1 || o2 o1 ∧ o2 !o1

true true true true false false
true false false true true false
false true false true true true
false false false false false true

To see how to read this table, let’s look at the AND operation, which is
defined in column 3. The AND operator is a binary operator—that is, it
requires two operands, o1 and o2. If both o1 and o2 are true, then (o1 &&Binary operator
o2) is true (row1). If either o1 or o2 or both o1 and o2 are false, then the
expression (o1 && o2) is false (rows 2 and 3). The only case in which (o1
&& o2) is true is when both o1 and o2 are true (row 4).

The boolean OR operation (column 4 of Table 5.1) is also a binary oper-
ation. If both o1 and o2 are false, then (o1 || o2) is false (row 4). If either o1
or o2 or both o1 and o2 are true, then the expression (o1 || o2) is true (rows
1-3). Thus, the only case in which (o1 || o2) is false is when both o1 and o2
are false.

The boolean EXCLUSIVE-OR operation (column 5 of Table 5.1) is a bi-
nary operation, which differs from the OR operator in that it is true when
either o1 or o2 is true (rows 2 and 3), but it is false when both o1 and o2 are
true (row 1).

The NOT operation (the last column of Table 5.1) is a unary operator—Unary operator
it takes only one operand—and it simply reverses the truth value of its
operand. Thus, if o1 is true, !o1 is false, and vice versa.

5.2.2 Precedence and Associativity
In order to evaluate complex boolean expressions, it is necessary to un-
derstand the order in which boolean operations are carried out by the
computer. For example, what is the value of the following expression?� �

t rue | | t rue && f a l s e
 	
The value of this expression depends on whether we evaluate the || first
or the && first. If we evaluate the || first, the expression’s value will be
false; if we evaluate the && first, the expression’s value will be true. In
the following example, we use parentheses to force one operation to be
done before the other:� �

EXPRESSION EVALUATION
−−−−−−−−−− −−−−−−−−−−
(t rue | | t rue) && f a l s e ==> t rue && f a l s e ==> f a l s e
true | | (t rue && f a l s e) ==> t rue | | f a l s e ==> t rue
 	

SECTION 5.2 • Boolean Data and Operators 201

As these evaluations show, we can use parentheses to force one operator
or the other to be evaluated first. However, in Java, the && operator has Parentheses supersede
higher precedence than the || operator. Therefore, the second alternative
corresponds to the default interpretation that Java would apply to the ex-
pression that has no parentheses. In other words, given the expression
true || true && f alse, the AND operation would be evaluated before the
OR operation even though the OR operator occurs first (i.e., to the left) in
the unparenthesized expression.

TABLE 5.2 Precedence order of the boolean operators

Precedence Order Operator Operation

1 () Parentheses
2 ! NOT
3 ∧ EXCLUSIVE-OR
4 && AND
5 || OR

As this example illustrates, the boolean operators have a built-in prece-
dence order which is used to determine how boolean expressions are to be
evaluated (Table 5.2). A simple method for evaluating an expression is to
parenthesize the expression and then evaluate it. For example, to evaluate
the complex expression� �

t rue | | ! f a l s e ˆ f a l s e && t rue
 	
we would first parenthesize it according to the precedence rules set out in
Table 5.2, which gives the following expression:� �

t rue | | (((! f a l s e) ˆ f a l s e) && t rue)
 	
We can then evaluate this fully parenthesized expression, step by step,
starting at the innermost parentheses:� �

Step 1 . t rue | | ((t rue ˆ f a l s e) && t rue)
Step 2 . t rue | | (t rue && t rue)
Step 3 . t rue | | t rue
Step 4 . t rue
 	

JAVA PROGRAMMING TIP Parentheses. Parentheses can (and
should) be used to clarify any expression that appears ambiguous or
to override Java’s default precedence rules.

In addition to operator precedence, it is necessary to know about an
operator’s associativity in order to evaluate boolean expressions of
the form (op1 || op2 || op3). Should this expression be evaluated as

202 CHAPTER 5 • Java Data and Operators

((op1 || op2) || op3) or as (op1 || (op2 || op3))? The binary boolean opera-
tors all associate from left to right. Thus, the expressions� �

t rue ˆ t rue ˆ t rue // S a m e a s : (t r u e ˆ t r u e) ˆ t r u e

t rue && t rue && t rue // S a m e a s : (t r u e && t r u e) && t r u e

t rue | | t rue | | t rue // S a m e a s : (t r u e | | t r u e) | | t r u e
 	
would be evaluated as follows:� �

EXPRESSION EVALUATION
−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−
(t rue ˆ t rue) ˆ t rue ==> f a l s e ˆ t rue ==> t rue
(t rue && t rue) && t rue ==> t rue && t rue ==> t rue
(t rue | | t rue) | | t rue ==> t rue | | t rue ==> t rue
 	

5.2.3 Short-Circuit Evaluation

Another important feature of the boolean operators is that they utilize a
form of evaluation known as short-circuit evaluation. In short-circuit eval-
uation, a boolean expression is evaluated from left to right, and the evalu-
ation is discontinued as soon as the expression’s value can be determined,
regardless of whether it contains additional operators and operands. For
example, in the expression� �

expr1 && expr2
 	
if expr1 is false, then the AND expression must be false, so expr2 need
not evaluated. Similarly, in the expression� �

expr1 | | expr2
 	
if expr1 is true, then the OR expression must be true, so expr2 need not
evaluated.

In addition to being a more efficient form of evaluating boolean ex-
pressions, short-circuit evaluation has some practical uses. For example,
we can use short-circuit evaluation to guard against null pointer excep-
tions. Recall from Chapter 2 that a null pointer exception results when
you try to use an uninstantiated reference variable—that is, a reference
variable that has not been assigned an object. For example, if we declare a
OneRowNim variable without instantiating it and then try to use it, a null
pointer exception will result:� �

OneRowNim game ; // U n i n s t a n t i a t e d R e f e r e n c e

i f (! game . gameOver ()) // N u l l p o i n t e r e x c e p t i o n

game . t a k e S t i c k s (num) ;
 	

SECTION 5.2 • Boolean Data and Operators 203

In this code, a null pointer exception results when we use game in the
method call game.gameOver(). We can use short-circuit evaluation to
prevent the exception from occurring:� �

i f ((game != null) && (! game . gameOver ())
game . t a k e S t i c k s (num) ;
 	

In this case, because game != null is false, neither method call involv-
ing game is made, thus avoiding the exception.

Special Topic: Are We Computers?

George Boole published his seminal work, An Investigation of the Laws
of Thought, in 1854. His achievement was in developing an algebra for
logic—that is, a purely abstract and symbolic system for representing the
laws of logic. Boole’s was not the first attempt to explore the relationship
between the human mind and an abstract system of computation. Back in
1655, Thomas Hobbes had already claimed that all thought was computa-
tion.

It is estimated that the human brain contains (1012 = 10,000,000,000,000)
neurons, and each neuron contains something like 10,000 dendrites, the
fibers that connect one neuron to another. Together, the neurons and den-
drites make up a web of enormous complexity. Since the 1840s it has been
known that the brain is primarily electrical, and by the 1940s scientists
had developed a pretty good model of the electrical interactions among
neurons. According to this model, neurons emit short bursts of electricity
along their axons, which function like output wires. The bursts leap over
the gap separating axons and dendrites, which function like the neurons’
input wires.

In 1943, just before the first digital computers were developed, War-
ren McCulloch, a neurophysiologist, and Walter Pitts, a mathematician,
published a paper titled, “A Logical Calculus of the Ideas Imminent in
Nervous Activity.” In this paper, they showed that all of the boolean
operators—AND, OR, NOT, and EXCLUSIVE-OR—could be represented
by the behavior of small sets of neurons. For example, they showed that
three neurons could be connected together in such a way that the third
neuron fired if and only if both of the other two neurons fired. This is
exactly analogous to the definition of the boolean AND operator.

A few years later, when the first computers were built, many scientists
and philosophers were struck by the similarity between the logic elements
that made up the computer’s circuits and the neuronal models that Mc-
Culloch and Pitts had developed.

The area of neural networks is a branch of artificial intelligence (one
of the applied areas of computer science) and is based on this insight by
McCulloch and Pitts. Researchers in this exciting and rapidly advancing
field develop neural network models of various kinds of human thinking
and perception.

204 CHAPTER 5 • Java Data and Operators

5.2.4 Using Booleans in OneRowNim

Now that we have introduced the boolean data type, let’s use it to im-
prove the OneRowNim class, the latest version of which, from Chapter 3,
is given in Figure 3.16. Previously we used an int variable, player,
to represent who’s turn it is. For a two-person game, such as One Row
Nim, a boolean variable is well suited for this purpose, because it can
toggle between true and false. For example, let’s declare a variable,
onePlaysNext, and initialize it to true, to represent the fact that player
one will play first:� �

private boolean onePlaysNext = t rue ;
 	
When onePlaysNext is true, it will be player one’s turn. When it is
false, it will be player two’s turn. Note that we are deliberately remaining
uncommitted as to whether one or the other player is the computer.

Given this new variable, it is necessary to redefine the methods that
had previously used the player variable. The first method that needs
revision is the constructor:� �

public OneRowNim(i n t s t i c k s , i n t s t a r t e r)
{ n S t i c k s = s t i c k s ;

onePlaysNext = (s t a r t e r == 1) ;
} // OneRowNim () c o n s t r u c t o r 3
 	

In the constructor, the starter parameter is used with a value of 1 or 2 to
set which player goes first. Note how we use an assignment statement to
set onePlaysNext to true if starter equals 1; otherwise it is set to false.
The assignment statement first evaluates the expression on its right hand
side (starter == 1). Because this is a boolean expression, it will have
a value of true or false, which will be assigned to onePlaysNext. Thus,
the assignment statement is equivalent to the following if/else statement:� �

i f (player == 1)
onePlaysNext = t rue ;

e lse
onePlaysNext = f a l s e ;

,
 	
The remaining changes are shown in Figure 5.2. There are only two in-
stance methods that need revision to accommodate the use of boolean

SECTION 5.3 • Numeric Data and Operators 205

variables. The takeSticks() method contains two revisions. The first
uses the boolean OR operator to test whether a move is valid:� �

public boolean t a k e S t i c k s (i n t num)
{ i f (num < 1 | | num > 3 | | num > n S t i c k s)

return f a l s e ; // E r r o r

e lse // V a l i d move

{ n S t i c k s = n S t i c k s − num;
onePlaysNext = ! onePlaysNext ;
return true ;

} // e l s e

} // t a k e S t i c k s ()
 	
It also uses the boolean NOT operator to toggle the value of
onePlaysNext, to switch to the other player’s turn:� �

onePlaysNext = ! onePlaysNext ;
 	
Finally, the getPlayer() method now uses a if/else statement to return
either 1 or 2 depending on who’s turn it is:� �

public i n t getP layer ()
{ i f (onePlaysNext)

return 1 ;
e lse return 2 ;

} // g e t P l a y e r ()
 	
5.3 Numeric Data and Operators

Java has two kinds of numeric data: integers, which have no fractional
part, and real numbers or floating-point numbers, which contain a frac-
tional component. Java recognizes four different kinds of integers: byte,
short, int, and long, which are distinguished by the number of bits
used to represent them. A binary digit, or bit, is a 0 or a 1. (Recall that
computers read instructions as series of 0s and 1s.) Java has two different
kinds of real numbers, float and double, which are also distinguished
by the number of bits used to represent them. See Table 5.3.

TABLE 5.3 Java’s numeric types

Type Bits Range of Values

byte 8 −128 to +127
short 16 −32768 to 32767
int 32 −2147483648 to 2147483647
long 64 −263 to 263−1

float 32 −3.40292347E +38 to +3.40292347E +38
double 64 −1.79769313486231570E +308 to +1.79769313486231570E +308

206 CHAPTER 5 • Java Data and Operators� �
public c l a s s OneRowNim
{ private i n t n S t i c k s = 7 ;

private boolean onePlaysNext = t rue ;

public OneRowNim ()
{
} // OneRowNim () c o n s t r u c t o r 1

public OneRowNim(i n t s t i c k s)
{ n S t i c k s = s t i c k s ;
} // OneRowNim () c o n s t r u c t o r 2

public OneRowNim(i n t s t i c k s , i n t s t a r t e r)
{ n S t i c k s = s t i c k s ;

onePlaysNext = (s t a r t e r == 1) ;
} // OneRowNim () c o n s t r u c t o r 3

public boolean t a k e S t i c k s (i n t num)
{ i f (num < 1 | | num > 3 | | num > n S t i c k s)

return f a l s e ; // E r r o r

e lse // V a l i d move

{ n S t i c k s = n S t i c k s − num;
onePlaysNext = ! onePlaysNext ;
return true ;

} // e l s e

} // t a k e S t i c k s ()

public i n t g e t S t i c k s ()
{ return n S t i c k s ;
} {\ c o l o r {cyan} // g e t S t i c k s () }
public i n t getP layer ()
{ i f (onePlaysNext) return 1 ;

e lse return 2 ;
} // g e t P l a y e r ()

public boolean gameOver ()
{ return (n S t i c k s <= 0) ;
} // g a m e O v e r ()

public i n t getWinner ()
{ i f (n S t i c k s < 1) return getP layer () ;

e lse return 0 ; // g a m e i s n o t o v e r

} // g e t W i n n e r ()

public void repor t ()
{ System . out . p r i n t l n (”Number of s t i c k s l e f t : ”

+ g e t S t i c k s ()) ;
System . out . p r i n t l n (”Next turn by player ”

+ getP layer ()) ;
} // r e p o r t ()

} // OneRowNim c l a s s
 	
Figure 5.2: The revised OneRowNim uses a boolean variable to keep track
of who’s turn it is.

The more bits a data type has, the more values it can represent. One bit
can represent two possible values, 1 and 0, which can be used to stand for
true and false, respectively. Two bits can represent four possible values:
00, 01, 10, and 11; three bits can represent eight possible values: 000, 001,

SECTION 5.3 • Numeric Data and Operators 207

010, 100, 101, 110, 011, 111. And, in general, an n-bit quantity can represent
2n different values.

As illustrated in Table 5.3, the various integer types represent posi-
tive or negative whole numbers. Perhaps the most commonly used in-
teger type in Java is the int type, which is represented in 32 bits. This
means that Java can represent 232 different int values, which range from
−2,147,483,648 to 2,147,483,647, that is, from −231 to (231− 1). Similarly,
an 8-bit integer, a byte, can represent 28 or 256 different values, ranging Integer data types
from −128 to +127. A 16-bit integer, a short, can represent 216 different
values, which range from −32768 to 32767. And a 64-bit integer, a long,
can represent whole number values ranging from −263 to 263−1.

For floating-point numbers, a 32-bit float type can represent 232 dif-
ferent real numbers and a 64-bit double value can represent 264 different
real numbers.

JAVA EFFECTIVE DESIGN Platform Independence. In Java, a data
type’s size (number of bits) is part of its definition and, therefore,
remains consistent across all platforms. In C and C++, the size of a
data type is dependent on the compiler.

It is worth noting that just as model airplanes are representations of
real airplanes, Java’s numeric types are representations or models of the Data types are abstractions
numbers we deal with in mathematics. In designing Java’s data types,
various trade-offs have been made in order to come up with practical
implementations.

One trade-off is that the set of integers is infinite, but Java’s int type
can only represent a finite number of values. Similarly, Java cannot Representation trade-offs
represent the infinite number of values that occur between, say, 1.111 and
1.112. So, certain real numbers cannot be represented at all. For exam-
ple, because Java uses binary numbers to represent its numeric types, one
number that cannot be represented exactly is 1

10 . This inability to exactly
represent a value is known as round-off error. Being unable to represent
certain values can cause problems in a program. For example, it might be
difficult to represent dollars and cents accurately in a program. Round-off error

Another source of problems in dealing with numeric data is due to lim-
its in their precision. For example, a decimal number represented as a
double value can have a maximum of 17 significant digits, and a float
can have a maximum 8. A significant digit is one that contributes to
the number’s value. If you tried to store values such as 12345.6789 or
0.123456789 in a float variable, they would be rounded off to 12345.679
and 0.12345679, respectively, causing a possible error.

JAVA DEBUGGING TIP Significant Digits. In using numeric data,
be sure the data type you choose has enough precision to represent the
values your program needs.

SELF-STUDY EXERCISES

208 CHAPTER 5 • Java Data and Operators

5.3.1 Numeric Operations
The operations that can be done on numeric data include the standard
algebraic operations: addition (+), subtraction (−), multiplication (*), division
(/), as well as the modulus (%) operator. Note that in Java, the multiplica-
tion symbol is * and not the ×. The arithmetic operators are binary op-
erators, meaning that they each take two operands. Table 5.4 comparesNumeric operators

TABLE 5.4 The standard arithmetic operators in Java

Operation Operator Java Algebra

Addition + x+2 x+2
Subtraction − m−2 m−2
Multiplication * m * 2 2m or 2×m
Division / x/y x÷ y or x

y
Modulus % x%y x modulo y (for integers x and y)

expressions involving the Java operators with their standard algebraic
counterparts.

Although these operations should seem familiar, there are some im-
portant differences between their use in algebra and their use in a Java
program. Consider the following list of expressions:� �

3 / 2 ==> value 1 An i n t e g e r r e s u l t
3 . 0 / 2 . 0 ==> value 1 . 5 A f l o a t i n g−point r e s u l t
3 / 2 . 0 ==> value 1 . 5 A f l o a t i n g−point r e s u l t
3 . 0 / 2 ==> value 1 . 5 A f l o a t i n g−point r e s u l t
 	

In each of these cases we are dividing the quantity 3 by the quantity 2.
However, different results are obtained depending on the type of the
operands involved. When both operands are integers, as in (3/2), the
result must also be an integer. Hence, (3/2) has the value 1, an integer.
Because integers cannot have a fractional part, the 0.5 is simply discarded.
Integer division (/) always gives an integer result. Thus, the value of (6/2)Integer division gives an integer

result is 3 and the value of (7/2) is also 3. Because 3.5 is not an integer, the result
of dividing 7 by 2 cannot be 3.5.

JAVA DEBUGGING TIP Integer Division. A common source of
error among beginning programmers is forgetting that integer
division always gives an integer result.

On the other hand, when either operand is a real number, as in the last
three cases, the result is a real number. Thus, while the same symbol (/)
is used for dividing integers and real numbers, there are really two dif-
ferent operations involved here: integer division and floating-point division.
Using the same symbol (/) for different operations (integer division and
real division) is known as operator overloading. It is similar to method
overloading, which was discussed in Chapter 3.

What if you want to keep the remainder of an integer division? Java
provides the modulus operator (%), which takes two operands. The ex-Modular arithmetic
pression (7 % 5) gives the remainder after dividing 7 by 5—2 in this case.

SECTION 5.3 • Numeric Data and Operators 209

In general, the expression (m % n) (read m mod n) gives the remainder
after m is divided by n. Here are several examples:� �

7 % 5 ==> 7 mod 5 equals 2
5 % 7 ==> 5 mod 7 equals 5
−7 % 5 ==> −7 mod 5 equals −2
7 % −5 ==> 7 mod −5 equals 2
 	

The best way to interpret these examples is to perform long division on
the operands keeping both the quotient and the remainder. For example,
when you do long division on −7÷ 5, you get a quotient of -1 and a re-
mainder of -2. The quotient is the value of −7/5 and the remainder is the
value of −7%5. When you do long division on 7÷−5, you get a quotient
of -1 and a remainder of 2. The quotient is the value of 7/− 5 and the
remainder is the value of 7%−5.

We will encounter many practical uses for the modulus operator in our
programs. For a simple example, we use it when we want to determine
whether an integer is even or odd. Numbers that leave a 0 remainder
when divided by 2 are even:� �

i f (N % 2 == 0)
System . out . p r i n t l n (N + ” i s even”) ;
 	

More generally, we could use the mod operator to define divisibility by 3,
4, 10, or by any number.

Numeric Promotion Rules

Java is considered a strongly typed language because all expressions in
Java, such as (3/2), have a type associated with them. In cases where Expressions have a type
one arithmetic operand is an integer and one is a floating-point num-
ber, Java promotes the integer into a floating-point value and performs a
floating-point operation.

Promotion is a matter of converting one type to another type. For ex-
ample, in the expression (5 + 4.0), the value 5 must be promoted to 5.0
before floating-point addition can be performed on (5.0 + 4.0). Generally
speaking, automatic promotions such as these are allowed in Java when-
ever it is possible to perform the promotion without loss of information. Be-
cause an integer (5) does not have a fractional component, no information
will be lost in promoting it to a real number (5.0). On the other hand, you
cannot automatically convert a real number (5.4) to an integer (5) because
that might lead to loss of information. This leads to the following rule:

JAVA LANGUAGE RULE Integer Promotion. In an operation that
contains an integer and a floating-point operand, the integer is
promoted to a floating-point value before the operation is performed.

This rule is actually an instance of a more general rule, for whenever an
expression involves operands of different types, some operands must be

210 CHAPTER 5 • Java Data and Operators

converted before the expression can be evaluated. Consider the following
example:� �

byte n = 1 2 5 ;
short m = 32000 ;
n ∗ m;
 	

In this case, (n * m) involves two different integer types, byte and short.
Before evaluating this expression Java must first promote the byte to a
short and carry out the operation as the multiplication of two shorts.
Conversion of short to byte would not be possible because there’s no
way to represent the value 32000 as a byte.

It is important to note that this conversion rule applies regardless of
the actual values of the operands. In applying the rule, Java looks at the
operand’s type, not its value. So even if m were assigned a value that
could be represented as a byte (for example, 100), the promotion wouldPromotion is automatic
still go from smaller to larger type. This leads to following the general
rule:

JAVA LANGUAGE RULE Type Promotion. In general, when two
different types are involved in an operation, the smaller type—the one
with fewer bits—is converted to the larger type before the operation is
performed. To do otherwise would risk losing information.

Table 5.5 summarizes the actual promotion rules used by Java in evaluat-
ing expressions involving mixed operands. Note that the last rule implies
that integer expressions involving byte or short or int are performed
as int. This explains why integer literals—such as 56 or −108—are rep-
resented as int types in Java.

TABLE 5.5 Java promotion rules for mixed arithmetic operators.
If two rules apply, choose the one that occurs first in this table.

If either operand is The other is promoted to

double double
float float
long long
byte or short int

5.3.2 Operator Precedence
The built-in precedence order for arithmetic operators is shown in Ta-
ble 5.6. Parenthesized expressions have highest precedence and are evalu-
ated first. Next come the multiplication, division, and modulus operators,
followed by addition and subtraction. When we have an unparenthesized
expression that involves both multiplication and addition, the multiplica-
tion would be done first, even if it occurs to the right of the plus sign. Op-

SECTION 5.3 • Numeric Data and Operators 211

TABLE 5.6 Precedence order of the arithmetic operators

Precedence
Order Operator Operation

1 () Parentheses
2 ∗ / % Multiplication, Division, Modulus
3 + − Addition, Subtraction

erators at the same level in the precedence hierarchy are evaluated from
left to right. For example, consider the following expression:� �

9 + 6 − 3 ∗ 6 / 2
 	
In this case, the first operation to be applied will be the multiplication (*),
followed by division (/), followed by addition (+), and then finally the
subtraction (−). We can use parentheses to clarify the order of evaluation.
A parenthesized expression is evaluated outward from the innermost set
of parentheses:� �

Step 1 . ((9 + 6) − ((3 ∗ 6) / 2))
Step 2 . ((9 + 6) − (18 / 2))
Step 3 . ((9 + 6) − 9)
Step 4 . (15 − 9)
Step 5 . 6
 	

Parentheses can (and should) always be used to clarify the order of oper-
ations in an expression. For example, addition will be performed before
multiplication in the following expression:� �

(a + b) ∗ c
 	
Another reason to use parentheses is that Java’s precedence and promo-
tion rules will sometimes lead to expressions that look fine but contain
subtle errors. For example, consider the following expressions:� �

System . out . p r i n t l n (5 / 3 / 2 . 0) ; // 0 . 5

System . out . p r i n t l n (5 / (3 / 2 . 0)) ; // 3 . 3 3
 	
The first gives a result of 0.5, but the use of parentheses in the second
gives a result of 3.33. If the second is the expected interpretation, then the
parentheses here helped avoid a subtle semantic error.

JAVA PROGRAMMING TIP Parenthesize! To avoid subtle bugs
caused by Java’s precedence and promotion rules, use parentheses to
specify the order of evaluation in an expression.

SELF-STUDY EXERCISE

212 CHAPTER 5 • Java Data and Operators

5.3.3 Increment and Decrement Operators

Java provides a number of unary operators that are used to increment or
decrement an integer variable. For example, the expression k++ uses the
increment operator ++ to increment the value of the integer variable k. The
expression k++ is equivalent to the following Java statements:� �

i n t k ;
k = k + 1 ; // Add 1 t o k a n d a s s i g n t h e r e s u l t b a c k t o k
 	

The unary ++ operator applies to a single integer operand, in this case to
the variable k. It increments k’s value by 1 and assigns the result back to k.
It may be used either as a preincrement or a postincrement operator. In thePreincrement and postincrement
expression k++, the operator follows the operand, indicating that it is being
used as a postincrement operator. This means that the increment operation
is done after the operand’s value is used.

Contrast that with the expression ++k in which the ++ operator precedes
its operand. In this case, it is used as a preincrement operator, which means
that the increment operation is done before the operand’s value is used.

When used in isolation, there is no practical difference between k++
and ++k. Both are equivalent to k = k + 1. However, when used in con-
junction with other operators, there is a significant difference between
preincrement and postincrement. For example, in the following code
segment,� �

i n t j = 0 , k = 0 ; // I n i t i a l l y b o t h j a n d k a r e 0

j = ++k ; // F i n a l v a l u e s o f b o t h j a n d k a r e 1
 	
the variable k is incremented before its value is assigned to j. After execu-Precedence order
tion of the assignment statement, j will equal 1 and k will equal 1. The
sequence is equivalent to� �

i n t j = 0 , k = 0 ; // I n i t i a l l y b o t h j a n d k a r e 0

k = k + 1 ;
j = k ; // F i n a l v a l u e s o f b o t h j a n d k a r e 1
 	

However, in the following example,� �
i n t i = 0 , k = 0 ; // I n i t i a l l y b o t h i a n d k a r e 0

i = k++; // F i n a l v a l u e o f i i s 0 a n d k i s 1
 	
the variable k is incremented after its value is assigned to i. After execution
of the assignment statement, i will have the value 0 and k will have the
value 1. The preceding sequence is equivalent to� �

i n t i = 0 , k = 0 ; // I n i t i a l l y b o t h i a n d k a r e 0

i = k ;
k = k + 1 ; // F i n a l v a l u e o f i i s 0 a n d k i s 1
 	

In addition to the increment operator, Java also supplies the decrement op-Predecrement and postdecrement

SECTION 5.3 • Numeric Data and Operators 213

erator−−, which can also be used in the predecrement and postdecrement
forms. The expression −− k will first decrement k’s value by 1 and then
use k in any expression in which it is embedded. The expression k−−will
use the current value of k in the expression in which k is contained and
then it will decrement k’s value by 1. Table 5.7 summarizes the increment
and decrement operators. The unary increment and decrement operators
have higher precedence than any of the binary arithmetic operators.

TABLE 5.7 Java’s increment and decrement operators

Expression Operation Interpretation

j =++ k Preincrement k = k+1; j = k;
j = k++ Postincrement j = k;k = k+1;
j =−− k Predecrement k = k−1; j = k;
j = k−− Postdecrement j = k;k = k−1;

JAVA LANGUAGE RULE Pre- and Postincrement/Decrement. If
an expression like ++k or −−k occurs in an expression, k is
incremented or decremented before its value is used in the rest of the
expression. If an expression like k++ or k−− occurs in an expression, k
is incremented or decremented after its value is used in the rest of the
expression.

JAVA PROGRAMMING TIP Increment and Decrement
Operators. Because of their subtle behavior, be careful in how you use
the unary increment and decrement operators. They are most
appropriate and useful for incrementing and decrementing loop
variables, as we’ll see later.

SELF-STUDY EXERCISE

5.3.4 Assignment Operators
In addition to the simple assignment operator (=), Java supplies a num-
ber of shortcut assignment operators that allow you to combine an arith-
metic operation and an assignment in one operation. These operations
can be used with either integer or floating-point operands. For example,
the += operator allows you to combine addition and assignment into one
expression. The statement� �

k += 3 ;
 	
is equivalent to the statement� �

k = k + 3 ;
 	

214 CHAPTER 5 • Java Data and Operators

Similarly, the statement� �
r += 3 . 5 + 2 . 0 ∗ 9 . 3 ;
 	

is equivalent to� �
r = r + (3 . 5 + 2 . 0 ∗ 9 . 3) ; // i . e . , r = r + 2 2 . 1 ;
 	

As these examples illustrate, when using the += operator, the expression
on its right-hand side is first evaluated and then added to the current value
of the variable on its left-hand side.

Table 5.8 lists the other assignment operators that can be used in com-
bination with the arithmetic operators. For each of these operations, the
interpretation is the same: Evaluate the expression on the right-hand side

TABLE 5.8 Java’s assignment operators

Operator Operation Example Interpretation

= Simple assignment m = n; m = n;
+= Addition then assignment m += 3; m = m+3;
−= Subtraction then assignment m −= 3; m = m−3;
∗= Multiplication then assignment m ∗= 3; m = m ∗ 3;
/= Division then assignment m /= 3; m = m/3;
%= Remainder then assignment m %= 3; m = m%3;

of the operator and then perform the arithmetic operation (such as addi-
tion or multiplication) to the current value of the variable on the left of the
operator.

SELF-STUDY EXERCISES

5.3.5 Relational Operators
There are several relational operations that can be performed on integers:
<, >, <=, >=, ==, and !=. These correspond to the algebraic operators
<, >, ≤, ≥, =, and 6=. Each of these operators takes two operands (integer
or real) and returns a boolean result. They are defined in Table 5.9.

TABLE 5.9 Relational operators

Operator Operation Java Expression

< Less than 5 < 10
> Greater than 10 > 5
<= Less than or equal to 5 <= 10
>= Greater than or equal to 10 >= 5
== Equal to 5 == 5
!= Not equal to 5 != 4

Note that several of these relational operators require two symbols in
Java. Thus, the familiar equals sign (=) is replaced in Java by ==. This is soEquals vs. assigns
the equality operator can be distinguished from the assignment operator.

SECTION 5.3 • Numeric Data and Operators 215

Also, less than or equal to (<=), greater than or equal to (>=), and not
equal to (!=) require two symbols, instead of the familiar≤,≥, and 6= from
algebra. In each case, the two symbols should be consecutive. It is an error
in Java for a space to appear between the < and = in <=.

JAVA DEBUGGING TIP Equality and Assignment. A common
semantic error among beginning programmers is to use the
assignment operator (=) when the equality operator (==) is intended.

Among the relational operators, the inequalities (<, >, <=, and >=)
have higher precedence than the equality operators (== and !=). In an
expression that involves both kinds of operators, the inequalities would be
evaluated first. Otherwise, the expression is evaluated from left to right.

Taken as a group the relational operators have lower precedence than
the arithmetic operators. Therefore, in evaluating an expression that in-
volves both arithmetic and relational operators, the arithmetic operations
are done first. Table 5.10 includes all of the numeric operators introduced
so far.

TABLE 5.10 Numeric operator precedence including relations

Precedence
Order Operator Operation

1 () Parentheses
2 ++ −− Increment, decrement
3 ∗ / % Multiplication, division, modulus
4 + − Addition, subtraction
5 < > <= >= Relational operators
6 == != Equality operators

To take an example, let us evaluate the following complex expression:� �
9 + 6 <= 25 ∗ 4 + 2
 	

To clarify the implicit operator precedence, we first parenthesize the
expression� �

(9 + 6) <= ((25 ∗ 4) + 2)
 	
and then evaluate it step by step:� �

Step 1 . (9 + 6) <= ((25 ∗ 4) + 2)
Step 2 . (9 + 6) <= (100 + 2)
Step 3 . 15 <= 102
Step 4 . t rue
 	

The following expression is an example of an ill-formed expression:� �
9 + 6 <= 25 ∗ 4 == 2
 	

216 CHAPTER 5 • Java Data and Operators

That the expression is ill formed becomes obvious if we parenthesize it
and then attempt to evaluate it:� �

Step 1 . ((9 + 6) <= (25 ∗ 4)) == 2
Step 2 . (15 <= 100) == 2
Step 3 . t rue == 2 // S y n t a x e r r o r r e s u l t s h e r e
 	

The problem here is that the expression true == 2 is an attempt to com-
pare an int and a boolean value, which can’t be done. As with any other
binary operator, the == operator requires that both of its operands be ofStrong typing
the same type. This is another example of Java’s strong type checking.

SELF-STUDY EXERCISES

5.4 From the Java Library java.lang.Math

THE java.lang.Math class provides many common mathematical
java.sun.com/j2se/1.5.0/docs/api/ functions that will prove useful in performing numerical computations.

As an element of the java.lang package, it is included implicitly in all
Java programs. Table 5.11 lists some of the most commonly used Math
class methods.

TABLE 5.11 A selection of Math class methods

Method Description Examples

int abs(int x) Absolute value of x if x >= 0 abs(x) is x
long abs(long x) if x < 0 abs(x) is −x
float abs(float x)

int ceil(double x) Rounds x to the smallest ceil(8.3) is 9
integer not less than x ceil(−8.3) is −8

int floor(double x) Rounds x to the largest floor (8.9) is 8
integer not greater than x floor(−8.9) is −9

double log(double x) Natural logarithm of x log (2.718282) is 1.0

double pow(double x, double y) x raised to the y power (xy) pow(3, 4) is 81.0
pow(16.0, 0.5) is 4.0

double random() Generates a random random() is 0.5551
number in the interval [0,1) random() is 0.8712

long round(double x) Rounds x to an integer round(26.51) is 27
round (26.499) is 26

double sqrt(double x) Square root of x sqrt(4.0) is 2.0

All Math methods are static class methods and are, therefore, in-
voked through the class name. For example, we would calculate 24

as Math.pow(2,4), which evaluates to 16. Similarly, we compute the
square root of 225.0 as Math.sqrt(225.0), which evaluates to 15.0.

SECTION 5.5 • Numeric Processing Examples 217

Indeed, Java’s Math class cannot be instantiated and cannot be sub-
classed. Its basic definition is� �

public f i n a l c l a s s Math // F i n a l , c a n ’ t s u b c l a s s

{ private Math () {} // P r i v a t e , c a n ’ t i n v o k e

. . .
public s t a t i c native double s q r t (double a)

throws ArithmeticExcept ion ;
}
 	

By declaring the Math class public final, we indicate that it can be
accessed (public) but it cannot be extended or subclassed (final). By
declaring its default constructor to be private, we prevent this class from
being instantiated. The idea of a class that cannot be subclassed and can-
not be instantiated may seem a little strange at first. The justification for it
here is that it provides a convenient and efficient way to introduce helpful
math functions into the Java language.

Defining the Math class in this way makes it easy to use its methods,
because you don’t have to create an instance of it. It is also a very efficient
design because its methods are static elements of the java.lang pack-
age. This means they are loaded into memory at the beginning of your
program’s execution, and they persist in memory throughout your pro-
gram’s lifetime. Because Math class methods do not have to be loaded into
memory each time they are invoked, their execution time will improve
dramatically.

JAVA EFFECTIVE DESIGN Static Methods. A method should be
declared static if it is intended to be used whether or not there is an
instance of its class.

5.5 Numeric Processing Examples

In this section we consider several numeric programming examples. They
are carefully chosen to illustrate different issues and concepts associated
with processing numeric data.

5.5.1 Example: Rounding to Two Decimal Places
As an example of how to use Math class methods, let’s consider the prob-
lem of rounding numbers. When dealing with applications that involve
monetary values—dollars and cents—it is often necessary to round a cal-
culated result to two decimal places. For example, suppose a program
computes the value of a certificate of deposit (CD) to be 75.19999. Be-
fore we output this result, we would want to round it to two decimal
places—to 75.20. The following algorithm can be used to accomplish this: Algorithm design� �

1 . Multiply the number by 100 , giving 7 5 1 9 . 9 9 9 9 .
2 . Add 0 . 5 to the number giving 7 5 2 0 . 4 9 9 9 .
3 . Drop the f r a c t i o n a l part giving 7520
4 . Divide the r e s u l t by 100 , giving 75 .20
 	

218 CHAPTER 5 • Java Data and Operators

Step 3 of this algorithm can be done using the Math.floor(R) method,
which rounds its real argument, R, to the largest integer not less than R
(from Table 5.11). If the number to be rounded is stored in the double
variable R, then the following expression will round R to two decimal
places:� �

R = Math . f l o o r (R ∗ 100 .0 + 0 . 5) / 1 0 0 . 0 ;
 	
Alternatively, we could use the Math.round() method (Table 5.11). This
method rounds a floating-point value to the nearest integer. For exam-
ple, Math.round(65.3333) rounds to 65 and Math.round(65.6666)
rounds to 66. The following expression uses it to round to two decimal
places:� �

R = Math . round (1 0 0 . 0 ∗ R) / 1 0 0 . 0 ;
 	
Note that it is important here to divide by 100.0 and not by 100. Other-
wise, the division will give an integer result and we’ll lose the two decimal
places.

JAVA DEBUGGING TIP Division. Using the correct type of literal in
division operations is necessary to ensure that you get the correct type
of result.

5.5.2 Example: Converting Fahrenheit to Celsius
To illustrate some of the issues that arise in using numeric data, let’s de-
sign a program that performs temperature conversions from Fahrenheit to
Celsius and vice versa.

Problem Decomposition

This problem requires two classes, a Temperature class and a
TemperatureUI class. The Temperature class will perform the temper-What objects do we need?
ature conversions, and TemperatureUI will serve as the user interface
(Fig. 5.3).

Figure 5.3: Interacting ob-
jects: The user interacts with
the user interface (Tempera-
tureUI), which interacts with the
Temperature object.

: TemperatureUI : TemperatureUser

2: result=celsToFahr(100)
1: Convert 100C to F

3: result=212

Class Design: Temperature

The purpose of the Temperature class is to perform the temperature con-
versions. To convert a Celsius temperature to Fahrenheit or vice versa, it isWhat data do we need?
not necessary to store the temperature value. Rather, a conversion method
could take the Celsius (or Fahrenheit) temperature as a parameter, per-
form the conversion, and return the result. Therefore, the Temperature

SECTION 5.5 • Numeric Processing Examples 219

class does not need any instance variables. Note that in this respect the
Temperature class resembles the Math class. Unlike OneRowNim, which
stores the game’s state—the number of sticks remaining and whose turn
it is—the Math and Temperature classes are stateless.

Thus, following the design of the Math class, the Temperature class What methods do we need?
will have two public static methods: one to convert from Fahrenheit to
Celsius and one to convert from Celsius to Fahrenheit. Recall that static
methods are associated with the class rather than with its instances. There-
fore, we needn’t instantiate a Temperature object to use these methods.
Instead, we can invoke the methods through the class itself.

The methods will use the standard conversion formulas: F = 9
5C + 32

and C = 5
9 (F−32). Each of these methods should have a single parameter

to store the temperature value that is being converted.
Because we want to be able to handle temperatures such as 98.6, we

should use real-number data for the methods’ parameters. Generally
speaking, because Java represents real literals such as 98.6 as doubles,
the double type is more widely used than float. Because doubles are
more widely used in Java, using double wherever a floating point value
is needed will cut down on the number of implicit data conversions that a
program would have to perform. Therefore, each of our conversion meth-
ods should take a double parameter and return a double result. These
considerations lead

JAVA PROGRAMMING TIP Numeric Types. Java uses the int type
for integer literals and double for real-number literals. When
possible, using int and double for numeric variables and parameters
reduces the number of implicit conversions a program would have to
perform.

Implementation: Temperature

The implementation of the Temperature class is shown in Figure 5.5.
Note that because celsToFahr() uses the double value temp in its cal-
culation, it uses floating-point literals (9.0, 5.0, and 32.0) in its conversion
expression. This helps to reduce the reliance on Java’s built-in promo-
tion rules, which can lead to subtle errors. For example, to the design

+Temperature()

+fahrToCels(in fahr : double) : double

+celsToFahr(in cels : double) : double

Temperature

F=C * 9/5+32

C=(F-32) * 5/9

Figure 5.4: The Temperature
class. Note that static elements are
underlined in UML. (NEEDS RE-
VISION)

shown in Figure 5.4, suppose we had written what looks like an equivalent
expression using integer literals:� �

return (9 / 5 ∗ temp + 3 2) ; // E r r o r : e q u a l s (t e m p + 3 2)
 	
Because 9 divided by 5 gives the integer result 1, this expression is always
equivalent to temp + 32, which is not the correct conversion formula.
This kind of subtle semantic error can be avoided if you avoid mixing Semantic error

220 CHAPTER 5 • Java Data and Operators

types wherever possible.

JAVA PROGRAMMING TIP Don’t Mix Types. You can reduce the
incidence of semantic errors caused by implicit type conversions if,
whenever possible, you explicitly change all the literals in an
expression to the same type.

Testing and Debugging

The next question to be addressed is how should this program be tested?
As always, you should test the program in a stepwise fashion. As eachTesting strategy
method is coded, you should test it both in isolation and in combination
with the other methods, if possible.

Also, you should develop appropriate test data. It is not enough to justDesigning test data
plug in any values. The values you use should test for certain potential
problems. For this program, the following tests are appropriate:

• Test converting 0 degrees C to 32 degrees F.
• Test converting 100 degrees C to 212 degrees F.
• Test converting 212 degrees F to 100 degrees C.
• Test converting 32 degrees F to 0 degrees C.

The first two tests use the celsToFahr() method to test the freezing
point and boiling point temperatures, two boundary values for this prob-
lem. A boundary value is a value at the beginning or end of the range of
values that a variable or calculation is meant to represent. The second pair
of tests performs similar checks with the fahrToCels() method. One

� �
public c l a s s Temperature
{

public Temperature () {}

public s t a t i c double fahrToCels (double temp)
{

return (5 . 0 ∗ (temp − 3 2 . 0) / 9 . 0) ;
}
public s t a t i c double celsToFahr (double temp)
{

return (9 . 0 ∗ temp / 5 . 0 + 3 2 . 0) ;
}

} // T e m p e r a t u r e
 	
Figure 5.5: The Temperature class.

SECTION 5.5 • Numeric Processing Examples 221

advantage of using these particular values is that we know what results
the methods should return.

JAVA EFFECTIVE DESIGN Test Data. Developing appropriate test
data is an important part of program design. One type of test data
should check the boundaries of the particular calculations you are
making.

JAVA DEBUGGING TIP Test, Test, Test! The fact that your program
runs correctly on some data is no guarantee of its correctness. The
more testing, and the more careful the testing you do, the better.

The TemperatureUI Class

The purpose of the TemperatureUI class is to serve as a user interface—
that is, as an interface between the user and a Temperature object. It
will accept a Fahrenheit or Celsius temperature from the user, pass it to
one of the public methods of the Temperature object for conversion, and
display the result that is returned.

As we discussed in Chapter 4, the user interface can take various forms,
ranging from a command-line interface to a graphical interface. Figure 5.6
shows a design for the user interface based on the command-line interface
developed in Chapter 4. The TemperatureUI uses a KeyboardReader
to handle interaction with the user and uses static methods in the
Temperature class to perform the temperature conversions.

Figure 5.6: A command-line user
interface.

SELF-STUDY EXERCISES

222 CHAPTER 5 • Java Data and Operators

EXERCISE 5.1 Following the design in Figure 5.6, implement the
TemperatureUI class and use it to test the methods in Temperature
class. The run() method should use an input-process-output algorithm:
Prompt the user for input, perform the necessary processing, and output
the result. Note that because Temperature’s conversion methods are
class methods, you do not need to instantiate a Temperature object in
this project. You can invoke the conversion methods directly through the
Temperature class:� �
double fahr = Temperature . celsToFahr (9 8 . 6) ;
 	
EXERCISE 5.2 Following the design for the GUI developed in Chap-

ter 4, implement a GUI to use for testing the Temperature class. The

Input Temperature >>

Conversion Result:

45 C=113.0 F

Labels

Applet Buttons

TextFields

45

C to F F to C

Figure 5.7: Layout design of a GUI
that performs temperature con-
versions.

GUI should have the layout shown in Figure 5.7.

5.5.3 Example: Using Class Constants

As we noted in Chapter 0, in addition to instance variables, which are
associated with instances (objects) of a class, Java also allows class vari-
ables, which are associated with the class itself. One of the most common
uses of such variables is to define named constants to replace literal val-
ues. A named constant is a variable that cannot be changed once it has
been given an initial value. In this section, we use our running example,
OneRowNim, to illustrate using class constants.

Recall that methods and variables that are associated with a class must
be declared with the static modifier. If a variable is declared static,
there is exactly one copy of that variable created no matter how many
times its class is instantiated. To turn a variable into a constant, it must be
declared with the final modifier. Thus, the following would be exam-
ples of a class constants, constant values that are associated with the class
rather than with its instances:� �

public s t a t i c f i n a l i n t PLAYER ONE = 1 ;
public s t a t i c f i n a l i n t PLAYER TWO = 2 ;
public s t a t i c f i n a l i n t MAX PICKUP = 3 ;
public s t a t i c f i n a l i n t MAX STICKS = 7 ;
 	

The final modifier indicates that the value of a variable cannot be
changed. When final is used in a variable declaration, the variable must
be assigned an initial value. After a final variable is properly declared,
it is a syntax error to attempt to try to change its value. For example, given
the preceding declarations, the following assignment statement would
cause a compiler error:� �

PLAYER ONE = 5 ; // S y n t a x e r r o r ; PLAYER ONE i s a c o n s t a n t
 	
Note how we use uppercase letters and underscore characters () in the
names of constants. This is a convention that professional Java program-
mers follow, and its purpose is to make it easy to distinguish the constants

SECTION 5.5 • Numeric Processing Examples 223

from the variables in a program. This makes the program easier to read
and understand.

JAVA PROGRAMMING TIP Readability. To make your programs
more readable, use uppercase font for constant identifiers.

Another way that named constants improve the readability of a pro-
gram is by replacing the reliance on literal values. For example, for the
OneRowNim class, compare the following two if conditions:� �

i f (num < 1 | | num > 3 | | num > n S t i c k s) . . .
i f (num < 1 | | num > MAX PICKUP | | num > n S t i c k s) . . .
 	

Clearly, the second condition is easier to read and understand. In the first
condition, we have no good idea what the literal value 3 represents. In the
second, we know that MAX PICKUP represents the most sticks a player
can pick up.

Thus, to make OneRowNim more readable, we should replace all occur-
rences of the literal value 3 with the constant MAX PICKUP. This same
principle would apply to some of the other literal values in the program.
Thus, instead of using 1 and 2 to represent the two players, we could use Readability
PLAYER ONE and PLAYER TWO to make methods such as the following
easier to read and understand:� �

public i n t getP layer ()
{ i f (onePlaysNext)

return PLAYER ONE ;
e lse return PLAYER TWO;

} // g e t P l a y e r ()
 	

JAVA PROGRAMMING TIP Readability. To make your programs
more readable, use named constants instead of literal values.

Another advantage of named constants (over literals) is that their use
makes the program easier to modify and maintain. For example, suppose
that we decide to change OneRowNim so that the maximum number of Maintainability
sticks that can be picked up is 4 instead of 3. If we used literal values, we
would have to change all occurrences of 4 that were used to represent the

224 CHAPTER 5 • Java Data and Operators

maximum pick up. If we used a named constant, we need only change its
declaration to:� �

public s t a t i c f i n a l i n t MAX PICKUP = 4 ;
 	
JAVA EFFECTIVE DESIGN Maintainability. Constants should be
used instead of literal values in a program. This will make the
program easier to modify and maintain.

So far, all of the examples we have presented show why named con-
stants (but not necessarily class constants) are useful. Not all constants
are class constants. That is, not all constants are declared static. How-
ever, the idea of associating constants with a class makes good sense. In
addition to saving memory resources, by creating just a single copy of
the constant, constants such as MAX STICKS and PLAYER ONE make
more conceptual sense to associate with the class itself rather than with
any particular OneRowNim instance.

Class constants are used extensively in the Java class library. For ex-
ample, as we saw in Chapter 2, Java’s various built-in colors are rep-
resented as constants of the java.awt.Color class—Color.blue and
Color.red. Similarly, java.awt.Label uses int constants to specify
how a label’s text should be aligned: Label.CENTER.

Another advantage of class constants is that they can be used before
instances of the class exist. For example, a class constant (as opposed to
an instance constant) may be used during object instantiation:� �

OneRowNim game = new OneRowNim(OneRowNim. MAX STICKS) ;
 	
Note how we use the name of the class to refer to the class constant. Of
course, MAX STICKS has to be a public variable in order to be accessible
outside the class. To use MAX STICKS as a constructor argument it has
to be a class constant because at this point in the program there are no
instances of OneRowNim. A new version of OneRowNim that uses class
constants is shown in Figure 5.8.

It is important to note that Java also allows class constants to
be referenced through an instance of the class. Thus, once we
have instantiated game, we can refer to MAX STICKS with either
OneRowNim.MAX STICKS or game.MAX STICKS.

SELF-STUDY EXERCISE
EXERCISE 5.3 Implement a command-line interface class named
KBTestOneRowNim, that uses our new version of OneRowNim. Make use
of the MAX STICKS and MAX PICKUP in the user interface.

5.5.4 OBJECT-ORIENTED DESIGN:
Information Hiding

The fact that our new versions of OneRowNim—we’ve developed two new
versions in this chapter—are backward compatible with the previous version

SECTION 5.5 • Numeric Processing Examples 225

� �
public c l a s s OneRowNim
{ public s t a t i c f i n a l i n t PLAYER ONE = 1 ;

public s t a t i c f i n a l i n t PLAYER TWO = 2 ;
public s t a t i c f i n a l i n t MAX PICKUP = 3 ;
public s t a t i c f i n a l i n t MAX STICKS = 1 1 ;
public s t a t i c f i n a l boolean GAME OVER = f a l s e ;

private i n t n S t i c k s = MAX STICKS ;
private boolean onePlaysNext = t rue ;

public OneRowNim ()
{
} // OneRowNim () c o n s t r u c t o r 1

public OneRowNim(i n t s t i c k s)
{ n S t i c k s = s t i c k s ;
} // OneRowNim () c o n s t r u c t o r 2

public OneRowNim(i n t s t i c k s , i n t s t a r t e r)
{ n S t i c k s = s t i c k s ;

onePlaysNext = (s t a r t e r == PLAYER ONE) ;
} // OneRowNim () c o n s t r u c t o r 3

public boolean t a k e S t i c k s (i n t num)
{ i f (num < 1 | | num > MAX PICKUP | | num > n S t i c k s)

return f a l s e ; // E r r o r

e lse // V a l i d move

{ n S t i c k s = n S t i c k s − num;
onePlaysNext = ! onePlaysNext ;
return true ;

} // e l s e

}// t a k e S t i c k s ()

public i n t g e t S t i c k s ()
{ return n S t i c k s ;
} // g e t S t i c k s ()

public i n t getP layer ()
{ i f (onePlaysNext)

return PLAYER ONE ;
e lse return PLAYER TWO;

} // g e t P l a y e r ()

public boolean gameOver ()
{ return (n S t i c k s <= 0) ;
} // g a m e O v e r ()

public i n t getWinner ()
{ i f (n S t i c k s < 1)

return getP layer () ;
e lse return 0 ; // Game i s n o t o v e r

} // g e t W i n n e r ()

public S t r i n g repor t ()
{ return (”Number of s t i c k s l e f t : ” + g e t S t i c k s ()

+ ”\nNext turn by player ” + getP layer () + ”\n”) ;
} // r e p o r t ()

} // OneRowNim c l a s s
 	
Figure 5.8: This version of OneRowNim uses named constants.

226 CHAPTER 5 • Java Data and Operators

is due in large part to the way we have divided up its public and privatePreserving the public interface
elements. Because the new versions still present the same public interface,
programs that use the OneRowNim class, such as the OneRowNimApp from
Chapter 4 (Fig. 4.24), can continue to use the class without changing a
single line of their own code. To confirm this, see the Self-Study Exercise
at the end of this section.

Although we have made significant changes to the underlying rep-Information hiding
resentation of OneRowNim, the implementation details—its data and
algorithms—are hidden from other objects. As long as OneRowNim’s pub-
lic interface remains compatible with the old version, changes to its pri-
vate elements won’t cause any inconvenience to those objects that were
dependent on the old version. This ability to change the underlying im-
plementation without affecting the outward functionality of a class is one
of the great benefits of the information hiding principle.

JAVA EFFECTIVE DESIGN Information Hiding. In designing a
class, other objects should be given access just to the information they
need and nothing more.

The lesson to be learned here is that the public parts of a class should
be restricted to just those parts that must be accessible to other objects.
Everything else should be private. Things work better, in Java program-
ming and in the real world, when objects are designed with the principle
of information hiding in mind.

SELF-STUDY EXERCISE

EXERCISE 5.4 To confirm that our new version of OneRowNim still
works correctly with the user interfaces we developed in Chapter 4, com-
pile and run it with OneRowNimApp (Fig. 4.24).

5.5.5 Example: A Winning Algorithm for One Row Nim
Now that we have access to numeric data types and operators, lets de-
velop an algorithm that can win the One Row Nim game. Recall that
in Chapter 4 we left things such that when the computer moves, it al-
ways takes 1 stick. Let’s replace that strategy with a more sophisticated
approach.

If you have played One Row Nim, you have probably noticed that in
a game with 21 sticks, you can always win the game if you leave your
opponent with 1, 5, 9, 13, 17, or 21 sticks. This is obvious for the case of 1
stick. For the case where you leave your opponent 5 sticks, no matter what
the opponent does, you can make a move that leaves the other player with
1 stick. For example, if your opponent takes 1 stick, you can take 3; if your
opponent takes 2, you can take 2; and, if your opponent takes 3, you can
take 1. In any case, you can win the game by making the right move, if
you have left your opponent with 5 sticks. The same arguments apply for
the other values: 9, 13, 17, and 21.

SECTION 5.5 • Numeric Processing Examples 227

What relationship is common to the numbers in this set? Notice that
if you take the remainder after dividing each of these numbers by 4 you
always get 1:� �

1 % 4 == 1
5 % 4 == 1
9 % 4 == 1

13 % 4 == 1
17 % 4 == 1
21 % 4 == 1
 	

Thus, we can base our winning strategy on the goal of leaving the oppo-
nent with a number of sticks, N, such that N % 4 equals 1.

To determine how many sticks to take in order to leave the opponent
with N, we need to use a little algebra. Let’s suppose that sticksLeft
represents the number of sticks left before our turn. The first thing we
have to acknowledge is that if sticksLeft % 4 == 1, then we have been left
with 1, 5, 9, 13, and so on, sticks, so we cannot force a win. In that case,
it doesn’t matter how many sticks we pick up. Our opponent should win
the game.

So, let’s suppose that sticksLeft % 4 != 1, and let M be the number of
sticks to pickup in order to leave our opponent with N, such that N % 4 ==
1. Then we have the following two equations:� �

s t i c k s L e f t − M == N
N % 4 == 1
 	

We can combine these into a single equation, which can be simplified as
follows:� �

(s t i c k s L e f t − M) % 4 == 1
 	
If sticksLeft - M leaves a remainder of 1 when divided by 4, that means that
sticksLeft - M is equal some integer quotient, Q times 4 plus 1:� �

(s t i c k s L e f t − M) == (Q ∗ 4) + 1
 	
By adding M to both sides and subtracting 1 from both sides of this equa-
tion, we get:� �

(s t i c k s L e f t − 1) == (Q ∗ 4) + M
 	
This equation is saying that (sticksLeft - 1) % 4 == M. That is, that when
you divide sticksLeft-1 by 4, you will get a remainder of M, which is the
number of sticks you should pick up. Thus, to decide how many sticks to
take, we want to compute:� �

M == (s t i c k s L e f t −1) % 4
 	

228 CHAPTER 5 • Java Data and Operators

To verify this, let’s look at some examples:� �
s t i c k s L e f t (s t i c k s L e f t −1) % 4 s t i c k s L e f t

Before After
−−

9 (9−1) % 4 == 0 I l l e g a l Move
8 (8−1) % 4 == 3 5
7 (7−1) % 4 == 2 5
6 (6−1) % 4 == 1 5
5 (5−1) % 4 == 0 I l l e g a l Move
 	

The examples in this table show that when we use (sticksLeft-1 % 4) to
calculate our move, we always leave our opponent with a losing situation.
Note that when sticksLeft equals 9 or 5, we can’t apply this strategy
because it would lead to an illegal move.

Let’s now convert this algorithm into Java code. In addition to incor-
porating our winning strategy, this move() method makes use of two
important Math class methods:� �

public i n t move ()
{ i n t s t i c k s L e f t = nim . g e t S t i c k s () ; // G e t n u m b e r o f s t i c k s

i f (s t i c k s L e f t % (nim . MAX PICKUP + 1) != 1) // I f w i n n a b l e

return (s t i c k s L e f t − 1) % (nim . MAX PICKUP + 1) ;
e lse { // E l s e p i c k r a n d o m

i n t maxPickup = Math . min (nim . MAX PICKUP, s t i c k s L e f t) ;
return 1 + (i n t) (Math . random () ∗ maxPickup) ;

}
}
 	

The move() method will return an int representing the best move pos-
sible. It begins by getting the number of sticks left from the OneRowNim
object, which is referred to as nim in this case. It then checks whether it
can win by computing (sticksLeft-1) % 4. However, note that rather than
use the literal value 4, we use the named constant MAX PICKUP, which is
accessible through the nim object. This is an especially good use for the
class constant because it makes our algorithm completely general – that is,
our winning strategy will continue to work even if the game is changed
so that the maximum pickup is 5 or 6. The then clause computes and re-
turns (sticksLeft-1) % nim.MAX PICKUP+1, but here again it uses the class
constant.

The else clause would be used when it is not possible to make a winning
move. In this case we want to choose a random number of sticks between
1 and some maximum number. The maximum number depends on how
many sticks are left. If there are more than 3 sticks left, then the most we
can pick up is 3, so we want a random number between 1 and 3. However,
if there are 2 sticks left, then the most we can pick up is 2 and we want a
random number between 1 and 2. Note how we use the Math.min()
method to decide the maximum number of sticks that can be picked up:� �

i n t maxPickup = Math . min (nim . MAX PICKUP, s t i c k s L e f t) ;
 	

SECTION 5.6 • From the Java Libraryjava.text.NumberFormat 229

The min() method returns the minimum value between its two argu-
ments.

Finally, note how we use the Math.random() method to calculate a
random number between 1 and the maximum:� �

1 + (i n t) (Math . random () ∗ maxPickup) ;
 	
The random() method returns a real number between 0 and 0.999999 –
that is, a real number between 0 and 1 but not including 1:� �

0 <= Math . random () < 1 . 0
 	
If we multiply Math.random() times 2, the result would be a value be-
tween 0 and 1.9999999. Similarly, if we multiplied it by 3, the result would
be a value between 0 and 2.9999999. In order to use the random value, we
have to convert it into an integer, which is done by using the (int) cast
operator:� �

(i n t) (Math . random () ∗ maxPickup) ;
 	
Recall that when a double is cast into an int, Java just throws away the
fractional part. Therefore, this expression will give us a value between 0
and maxPickup-1. If maxPickup is 3, this will give a value between 0
and 2, whereas we want a random value between 1 and 3. To achieve this
desired value, we merely add 1 to the result. Thus, using the expression� �

1 + (i n t) (Math . random () ∗ maxPickup)
 	
gives us a random number between 1 and maxPickup, where
maxPickup is either 1, 2, or 3, depending on the situation of the game
at that point.

SELF-STUDY EXERCISE

Figure 5.9: The NimPlayer class.

EXERCISE 5.5 Implement a class named NimPlayer that incorporates
the move() method designed in this section. The class should implement
the design shown in Figure 5.9. That is, in addition to the move()method,
it should have an instance variable, nim, which will serve as a reference to
the OneRowNim game. Its constructor method should take a OneRowNim
parameter, allowing the NimPlayer to be given a reference when it is
instantiated.

EXERCISE 5.6 Modify OneRowNim’s command-line interface to play
One Row Nim between the user and the computer, where the NimPlayer
implemented in the previous exercise represents the computer.

java.sun.com/j2se/1.5.0/docs/api/5.6 From the Java Library
java.text.NumberFormat

ALTHOUGH the Math.round() method is useful for rounding num-

+getInstance() : NumberFormat

+getCurrencyInstance() : NumberFormat

+getPercentInstance() : NumberFormat

+format(in n : double) : String

+format(in n : long) : String

+getMaximumFractionDigits() : int

+getMaximumIntegerDigits() : int

+setMaximumFractionDigits(in n : int)

+setMaximumIntegerDigits(in n : int)

NumberFormat

Figure 5.10: The
java.text.NumberFormat
class.

230 CHAPTER 5 • Java Data and Operators

bers, it is not suitable for business applications. Even for rounded values,
Java will drop trailing zeroes. So a value such as $10,000.00 would be
output as $10000.0. This wouldn’t be acceptable for a business report.

Fortunately, Java supplies the java.text.NumberFormat class pre-
cisely for the task of representing numbers as dollar amounts, percentages,
and other formats (Fig. 5.10).

The NumberFormat class is an abstract class, which means that
it cannot be directly instantiated. Instead, you would use its static
getInstance() methods to create an instance that can then be used for
the desired formatting tasks.

Once a NumberFormat instance has been created, its format()
method can be used to put a number into a particular format. The
setMaximumFractionDigits() and setMaximumIntegerDigits()
methods can be used to control the number of digits before and after the
decimal point.

For example, the following statements can be used to format a decimal
number as a currency string in dollars and cents:� �

NumberFormat d o l l a r s = NumberFormat . getCurrencyInstance () ;
System . out . p r i n t l n (d o l l a r s . format (1 0 9 6 2 . 5 5 5)) ;
 	

These statements would cause the value 10962.555 to be shown as
$10,962.56. Similarly, the statements,� �

NumberFormat percent = NumberFormat . g e t P e r c e n t I n s t a n c e () ;
percent . setMaximumFractionDigits (2) ;
System . out . p r i n t l n (percent . format (6 . 5 5)) ;
 	

would display the value 6.55 as 6.55%. The utility of the Math and
NumberFormat classes illustrates the following principle:

JAVA EFFECTIVE DESIGN Code Reuse. Often the best way to solve
a programming task is to find the appropriate methods in the Java
class library.

SELF-STUDY EXERCISE
EXERCISE 5.7 A Certificate of Deposit (CD) is an investment instru-

ment that accumulates interest at a given rate for an initial principal over

Figure 5.11: The BankCD class.

a fixed number of years. The formula for compounding interest is shown
in Table 5.11. It assumes that interest is compounded annually. For daily
compounding, the annual rate must be divided by 365, and the com-
pounding period must be multiplied by 365, giving: a = p(1+ r/365)365n.
Implement a BankCD class that calculates the maturity value of a CD. Fig-
ure 5.11 gives the design of the class. It should have three instance vari-
ables for the CD’s principal, rate, and years. Its constructor method sets
the initial values of these variables when a BankCD is instantiated. Its
two public methods calculate the maturity value using yearly and daily

SECTION 5.7 • Character Data and Operators 231

compounding interest, respectively. Use the Math.pow() method to cal-
culate maturity values. For example, the following expression calculates
maturity value with annual compounding:� �
p r i n c i p a l ∗ Math . pow(1 + rate , years)
 	

TABLE 5.12 Formula for calculating compound interest

a = p(1+ r)n where

• a is the CD’s value at the end of the nth year
• p is the principal or original investment amount
• r is the annual interest rate
• n is the number of years or the compounding period

EXERCISE 5.8 Design a command-line user interface to the BankCD
class that lets the user input principal, interest rate, and years, and re-
ports the CD’s maturity value with both yearly and daily compounding.
Use NumberFormat objects to display percentages and dollar figures in
an appropriate format. The program’s output should look something like
the following (user’s inputs are in cyan):

************************ OUTPUT ********************
Compare daily and annual compounding for a Bank CD.
Input CD initial principal, e.g. 1000.55 > 2500
Input CD interest rate, e.g. 6.5 > 7.8
Input the number of years to maturity, e.g., 10.5 > 5

For Principal = $2,500.00 Rate= 7.8% Years= 5.0
The maturity value compounded yearly is $3,639.43
The maturity value compounded daily is: $3,692.30

************************ OUTPUT ********************

5.7 Character Data and Operators

Another primitive data type in Java is the character type, char. A char-
acter in Java is represented by a 16-bit unsigned integer. This means that
a total of 216 or 65536 different Unicode characters can be represented, Unicode
corresponding to the integer values 0 to 65535. The Unicode character set
is an international standard that has been developed to enable computer
languages to represent characters in a wide variety of languages, not just
English. Detailed information about this encoding can be obtained at� �

http : //www. unicode . org/
 	
It is customary in programming languages to use unsigned integers to

represent characters. This means that all the digits (0, . . . ,9), alphabetic let-
ters (a, . . . ,z,A, . . . ,Z), punctuation symbols (such as . ; , “ ‘’ ! -), and non-
printing control characters (LINE FEED, ESCAPE, CARRIAGE RETURN,
. . .) that make up the computer’s character set are represented in the com-
puter’s memory by integers. A more traditional set of characters is the

232 CHAPTER 5 • Java Data and Operators

ASCII (American Standard Code for Information Interchange) character set. ASCII code
ASCII is based on a 7-bit code and, therefore, defines 27 or 128 different
characters, corresponding to the integer values 0 to 127. In order to make
Unicode backward compatible with ASCII systems, the first 128 Unicode
characters are identical to the ASCII characters. Thus, in both the ASCII
and Unicode encoding, the printable characters have the integer values
shown in Table 5.13.

TABLE 5.13 ASCII codes for selected characters

� �
Code 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Char SP ! ” # $ % & ’ () ∗ + , − . /

Code 48 49 50 51 52 53 54 55 56 57
Char 0 1 2 3 4 5 6 7 8 9

Code 58 59 60 61 62 63 64
Char : ; < = > ? @

Code 65 66 67 68 69 70 71 72 73 74 75 76 77
Char A B C D E F G H I J K L M

Code 78 79 80 81 82 83 84 85 86 87 88 89 90
Char N O P Q R S T U V W X Y Z

Code 91 92 93 94 95 96
Char [\] ˆ ‘

Code 97 98 99 100 101 102 103 104 105 106 107 108 109
Char a b c d e f g h i j k l m

Code 110 111 112 113 114 115 116 117 118 119 120 121 122
Char n o p q r s t u v w x y z

Code 123 124 125 126
Char { | } ˜
 	

5.7.1 Character to Integer Conversions

Is ‘A’ a character or an integer? The fact that character data are stored
as integers in the computer’s memory can cause some confusion about
whether a given piece of data is a character or an integer. In other words,
when is a character, for example ‘A’, treated as the integer (65) instead of
as the character ‘A’? The rule in Java is that a character literal—‘a’ or ‘A’
or ‘0’ or ‘?’—is always treated as a character, unless we explicitly tell Java
to treat it as an integer. So if we display a literal’s value� �

System . out . p r i n t l n (’ a ’) ;
 	

SECTION 5.7 • Character Data and Operators 233

the letter ‘a’ will be displayed. Similarly, if we assign ‘a’ to a char variable
and then display the variable’s value,� �

char ch = ’ a ’ ;
System . out . p r i n t l n (ch) ; // D i s p l a y s ’ a ’
 	

the letter ‘a’ will be shown. If, on the other hand, we wish to output a
character’s integer value, we must use an explicit cast operator as follows:� �

System . out . p r i n t l n ((i n t) ’ a ’) ; // D i s p l a y s 9 7
 	
A cast operation, such as (int), converts one type of data (’a’) into an-
other (97). This is known as a type conversion. Similarly, if we wish to
store a character’s integer value in a variable, we can cast the char into an
int as follows:� �

i n t k = (i n t) ’ a ’ ; // C o n v e r t s ’ a ’ t o 9 7

System . out . p r i n t l n (k) ; // D i s p l a y s 9 7
 	
As these examples show, a cast is a type conversion operator. Java al- The cast operator
lows a wide variety of both explicit and implicit type conversions. Cer-
tain conversions (for example, promotions) take place when methods are
invoked, when assignment statements are executed, when expressions are
evaluated, and so on.

Type conversion in Java is governed by several rules and exceptions. In
some cases Java allows the programmer to make implicit cast conversions.
For example, in the following assignment a char is converted to an int
even though no explicit cast operator is used:� �

char ch ;
i n t k ;
k = ch ; // c o n v e r t a c h a r i n t o a n i n t
 	

Java permits this conversion because no information will be lost. A char- Implicit type conversion
acter char is represented in 16 bits whereas an int is represented in 32
bits. This is like trying to put a small object into a large box. Space will be
left over, but the object will fit inside without being damaged. Similarly,
storing a 16-bit char in a 32-bit int will leave the extra 16 bits unused.
This widening primitive conversion changes one primitive type (char) into
a wider one (int), where a type’s width is the number of bits used in its Widening conversion
representation.

On the other hand, trying to assign an int value to a char variable
leads to a syntax error:� �

char ch ;
i n t k ;
ch = k ; // S y n t a x e r r o r : c a n ’ t a s s i g n i n t t o c h a r
 	

Trying to assign a 32-bit int to 16-bit char is like trying to fit a big object
into an undersized box. The object won’t fit unless we shrink it in some

234 CHAPTER 5 • Java Data and Operators

way. Java will allow us to assign an int value to a char variable, but only
if we perform an explicit cast on it:� �

ch = (char) k ; // E x p l i c i t c a s t o f i n t k i n t o c h a r c h
 	
The (char) cast operation performs a careful “shrinking” of the int by
lopping off the last 16 bits of the int. This can be done without loss of
information provided that k’s value is in the range 0 to 65535—that is, in
the range of values that fit into a char variable. This narrowing primitiveNarrowing conversion
conversion changes a wider type (32-bit int) to a narrower type (16-bit
char). Because of the potential here for information loss, it is up to the
programmer to determine that the cast can be performed safely.

JAVA LANGUAGE RULE Type Conversion. Java permits implicit
type conversions from a narrower type to a wider type. A cast operator
must be used when converting a wider type into a narrower type.

The cast operator can be used with any primitive type. It applies to the
variable or expression that immediately follows it. Thus, parentheses
must be used to cast the expression m + n into a char:� �

char ch = (char) (m + n) ;
 	
The following statement would cause a syntax error because the cast
operator would only be applied to m:� �

char ch = (char)m + n ; // E r r o r : r i g h t s i d e i s a n i n t
 	
In the expression on the right-hand side, the character produced by
(char)m will be promoted to an int because it is part of an integer oper-
ation whose result will still be an int. Therefore, it cannot be assigned to
a char without an explicit cast.

SELF-STUDY EXERCISE

5.7.2 Lexical Ordering
The order in which the characters of a character set are arranged, their
lexical order, is an important feature of the character set. It especially
comes into play for such tasks as arranging strings in alphabetical order.

Although the actual integer values assigned to the individual char-
acters by ASCII and UNICODE encoding seem somewhat arbitrary, the
characters are, in fact, arranged in a particular order. For example, note
that various sequences of digits, ’0’. . .’9’, and letters, ’a’. . .’z’ and
’A’. . .’Z’, are represented by sequences of integers (Table 5.11). This
makes it possible to represent the lexical order of the characters in terms of
the less than relationship among integers. The fact that ‘a’ comes before ‘f’
in alphabetical order is represented by the fact that 97 (the integer code for
‘a’) is less than 102 (the integer code for ‘f’). Similarly, the digit ‘5’ comes
before the digit ‘9’ in an alphabetical sequence because 53 (the integer code
for ‘5’) is less than 57 (the integer code for ‘9’).

SECTION 5.8 • Example: Character Conversions 235

This ordering relationship extends throughout the character set. Thus,
it is also the case that ‘A’ comes before ‘a’ in the lexical ordering because 65
(the integer code for ‘A’) is less than 97 (the integer code for ‘a’). Similarly,
the character ‘[’ comes before ‘}’ because its integer code (91) is less than
125, the integer code for ‘}’.

5.7.3 Relational Operators

Given the lexical ordering of the char type, the following relational oper-
ators can be defined: <, >, <=, >=, ==, !=. Given any two characters, ch1
and ch2, the expression ch1 < ch2 is true if and only if the integer value
of ch1 is less than the integer value of ch2. In this case we say that ch1 char relations
precedes ch2 in lexical order. Similarly, the expression ch1 > ch2 is true if
and only if the integer value of ch1 is greater than the integer value of ch2.
In this case we say that ch1 follows ch2. And so on for the other relational
operators. This means that we can perform comparison operations on any
two character operands (Table 5.14).

TABLE 5.14 Relational operations on characters

Operation Operator Java True Expression

Precedes < ch1 < ch2 ′a′ < ′b′

Follows > ch1 > ch2 ′c′ > ′a′

Precedes or equals <= ch1 <= ch2 ′a′ <= ′a′

Follows or equals >= ch2 >= ch1 ′a′ >= ′a′

Equal to == ch1 == ch2 ′a′ == ′a′

Not equal to != ch1 != ch2 ′a′ != ′b′

5.8 Example: Character Conversions

Another interesting implication of representing the characters as integers
is that we can represent various character operations in terms of inte-
ger operations. For example, suppose we want to capitalize a lower-
case letter. Table 5.13 shows that the entire sequence of lowercase let- Lowercase to uppercase
ters (’a’ ... ’z’) is displaced by 32 from the sequence of uppercase
letters (’A’ ... ’Z’), so we can convert any lowercase letter into its
corresponding uppercase letter by subtracting 32 from its integer value,
provided we perform an explicit cast on the result. When we perform the
cast (char) (’a’ - 32), the resulting value is ’A’, as the following
example shows:� �

(char) (’ a ’ − 32) ==> ’A ’
 	

236 CHAPTER 5 • Java Data and Operators

Recall that in evaluating ’a’ - 32 Java will promote ‘a’ to an int and
then perform the subtraction. Thus, a step-by-step evaluation of the ex-
pression would go as follows:� �

Step 1 . (char) ((i n t) ’ a ’ − 32) // P r o m o t e ’ a ’ t o i n t

Step 2 . (char) (9 7 − 32) // S u b t r a c t

Step 3 . (char) (6 5) // C a s t r e s u l t t o a c h a r

Step 4 . ’A ’ // R e s u l t s i n ’ A ’
 	
Similarly, we can convert an uppercase letter into the corresponding low-Uppercase to lowercase
ercase letter by simply adding 32 to its integer code and casting the result
back to a char:� �

(char) (’ J ’ + 32) ==> ’ j ’
 	
We can group these ideas into a method that performs conversion from
lowercase to uppercase:� �

char toUpperCase (char ch) {
i f ((ch >= ’ a ’) && (ch <= ’ z ’))

return ch − 32 ; // E r r o r : c a n ’ t r e t u r n a n i n t

return ch ;
}
 	

This method takes a single char parameter and returns a char value. It
begins by checking if ch is a lowercase letter—that is, if ch falls between
‘a’ and ‘z’ inclusive. If so, it returns the result of subtracting 32 from ch. If
not, it returns ch unchanged. However, the method contains a syntax error
that becomes apparent if we trace through its steps. If we invoke it withType error
the expression toUpperCase(’b’), then since ‘b’ is between ‘a’ and ‘z’,
the method will return ‘b’ − 32. Because the integer value of ‘b’ is 98, it
will return 98 − 32 or 66, which is the integer code for the character ‘B’.
However, the method is supposed to return a char, so this last statement
will generate the following syntax error:� �

Incompatible type for return . An e x p l i c i t c a s t needed
to convert i n t to char .
>> return ch − 32 ;
>> ˆ
 	

In order to avoid this error, the result must be converted back to char
before it can be returned:� �

char toUpperCase (char ch) {
i f ((ch >= ’ a ’) && (ch <= ’ z ’))

return (char) (ch − 3 2) ; // E x p l i c i t c a s t

return ch ;
}
 	

SECTION 5.9 • Problem Solving = Representation + Action 237

Another common type of conversion is to convert a digit to its correspond-
ing integer value. For example, we convert the character ‘9’ to the integer
9 by making use of the fact that the digit ‘9’ is 9 characters beyond the digit Digit to integer
‘0’ in the lexical order. Therefore, subtracting ‘0’ from ‘9’ gives integer 9 as
a result:� �

(’ 9 ’ − ’ 0 ’) ==> (57 − 48) ==> 9
 	
More generally, the expression ch− ‘0’ will convert any digit, ch, to its
integer value. We can encapsulate these ideas into a method that converts
any digit into its corresponding integer value:� �

i n t d i g i t T o I n t e g e r (char ch) {
i f ((ch >= ’ 0 ’) && (ch <= ’ 9 ’))

return ch − ’ 0 ’ ;
return −1 ;

}
 	
This method takes a single char parameter and returns an int. It first
checks that ch is a valid digit, and if so, it subtracts the character ‘0’ from
it. If not, the method just returns −1, which indicates that the method
received an invalid input parameter. Obviously, when an object invokes
this method, it should first make sure that the value it passes is in fact a
digit.

The Java application program shown in Figure 5.12 illustrates sev-
eral of the ideas discussed in this section. Note that both the
digitToInteger() and toUpperCase() are declared static. This al-
lows us to call them directly from the (static) main() method, as useful
and justifiable shortcut if, as in this case, we are just testing the methods.

5.9 Problem Solving = Representation + Action

As you have seen in this chapter, designing classes involves a careful in-
terplay between representation (data) and action (methods). Our several
modifications to the OneRowNim class illustrate that the data used to rep-
resent an object’s state can either complicate or simplify the design of the
methods needed to solve a problem.

We hope that it is becoming clear to you that in writing object-oriented
programs, choosing an appropriate data representation is just as impor-
tant as choosing the correct algorithm. The concept of an object allows us
to encapsulate representation and action into a single entity. It is a very
natural way to approach problem solving.

If you look closely enough at any problem, you will find this close re-
lationship between representation and action. For example, compare the
task of performing multiplication using Arabic numerals—65 * 12 = 380—
and the same task using Roman numerals—LXV * XII = DCCLXXX. It’s
doubtful that our science and technology would be where they are today

238 CHAPTER 5 • Java Data and Operators� �
public c l a s s Test {

public s t a t i c void main (S t r i n g argv []) {
char ch = ’ a ’ ; // L o c a l v a r i a b l e s

i n t k = (i n t) ’ b ’ ;
System . out . p r i n t l n (ch) ;
System . out . p r i n t l n (k) ;
ch = (char) k ; // C a s t n e e d e d h e r e

System . out . p r i n t l n (ch) ;
System . out . p r i n t l n (toUpperCase (’ a ’)) ;
System . out . p r i n t l n (toUpperCase (ch)) ;
System . out . p r i n t l n (d i g i t T o I n t e g e r (’ 7 ’)) ;

}
public s t a t i c char toUpperCase (char ch) {

i f ((ch >= ’ a ’) && (ch <= ’ z ’))
return (char) (ch − 3 2) ;

return ch ;
}
public s t a t i c i n t d i g i t T o I n t e g e r (char ch) {

i f ((ch >= ’ 0 ’) && (ch <= ’ 9 ’))
return ch − ’ 0 ’ ;

return −1 ;
}

} // T e s t
 	
Figure 5.12: A Java program illustrating character conversions. When run,
the program will generate the following outputs, one per line: a, 98, b, A,
B, 7.

if our civilization had to rely forever on the Roman way of representing
numbers!

JAVA EFFECTIVE DESIGN Representation and
Action. Representation (data) and action (methods) are equally
important parts of the problem-solving process.

CHAPTER SUMMARY Technical Terms
action
binary operator
binary digit (bit)
boundary value
cast operation
class constant
input-process-output

named constant
operand
operator overloading
precedence order
promotion
round off error

short-circuit
evaluation

type conversion
unary operator
Unicode
representation

Summary of Important Points

CHAPTER 5 • Chapter Summary 239

• The way we approach a problem can often help or hinder us in our
ability to solve it. Choosing an appropriate representation for a problem
is often the key to solving it.
• In order to evaluate complex expressions, it is necessary to understand

the precedence order and associativity of the operators involved. Paren-
theses can always be used to override an operator’s built-in precedence.
• Java provides several types of integer data, including the 8-bit byte,

16-bit short, 32-bit int, and 64-bit long types. Unless otherwise
specified, integer literals are represented as int data in a Java program.
• Java provides two types of floating-point data, the 32-bit float type

and the 64-bit double type. Unless otherwise specified, floating-point
literals are represented as double data.
• In general, if a data type uses n bits in its representation, then it can

represent 2n different values.
• The fact that Java’s primitive types are defined in terms of a specific

number of bits is one way that Java promotes platform independence.
• It is necessary to distinguish integer operations from floating-point op-

erations even though the same symbols are used. For example, (7/2) is
3, while (7.0/2) is 3.0.
• In revising a class that is used by other classes it is important to pre-

serve as much of the class’s interface as possible.
• In Java, character data are based on the Unicode character set, which

provides 216 = 65,536 different character codes. To provide backward
compatibility with the ASCII code, the first 128 characters are the ASCII
coded characters.
• Java operators are evaluated according to the precedence hierarchy

shown in Table 5.15. The lower the precedence number, the earlier an
operator is evaluated. So the operators at the top of the table are evalu-
ated before operators that occur below them in the table. Operators at
the same precedence level are evaluated according to their association,
either left to right (L to R) or right to left (R to L).

TABLE 5.15 Java operator precedence and associativity table

Order Operator Operation Association

0 () Parentheses
1 ++ -- . Postincrement, postdecrement,

dotOperator L to R
2 ++ -- + - ! Preincrement, predecrement R to L

Unary plus, unary minus,
boolean NOT

3 (type) new Type cast, object instantiation R to L
4 * / % Multiplication, division, modulus L to R
5 + - + Addition, subtraction, string

concatenation L to R
6 < > <= >= Relational operators L to R
7 == != Equality operators L to R
8 ∧ Boolean XOR L to R
9 && Boolean AND L to R

10 || Boolean OR L to R
11 = += -= *= /= %= Assignment operators R to L

240 CHAPTER 5 • Java Data and Operators

EXERCISES
Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

OBJECTIVES
After studying this chapter, you will

• Be able to solve problems involving repetition.
• Understand the differences among various loop structures.
• Know the principles used to design effective loops.
• Improve your algorithm design skills.
• Understand the goals and principles of structured programming.

OUTLINE
6.1 Introduction
6.2 Flow of Control: Repetition Structures
6.3 Counting Loops
6.4 Example: Car Loan
6.5 Graphics Example: Drawing a Checkerboard
6.6 Conditional Loops
6.7 Example: Computing Averages
6.8 Example: Data Validation
6.9 Principles of Loop Design
6.10 The switch Multiway Selection Structure
6.11 Object-Oriented Design: Structured Programming

Special Topic: What Can Be Computed?
Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 6

Control Structures

241

242 CHAPTER 6 • Control Structures

6.1 Introduction

As we learned in Chapter 3, a control structure is a language element that
changes the flow of control of a program. Thus far, we have used the if
and if/else statements to select between two or more alternate paths in
a program. We have used the while-loop structure to repeat statements.
And we have used method-call-and-return to invoke methods that carry
out certain well-defined tasks in a program.

In this chapter we will extend our repertoire of control structures. We
will introduce the for and do-while statements, both of which are used in
programs that require calculations to be repeated. We will also introduce
the switch statement, which will give us another way, in addition to
if/else, to select from among several alternate paths in a program.

We begin by introducing the idea of a counting loop, which is used for
repetitive tasks when you know beforehand exactly how many repetitions
are necessary. This type of loop is most often implemented using a for
statement.

We then distinguish two kinds of conditional loops, which are used for
performing repetitive tasks where the number of repetitions depends on
some kind of non-counting condition. These kinds of loops are usually
implemented using Java’s while and do-while statements. We give ex-
amples of several kinds of loop bounds and use them to identify several
useful principles of loop design. Finally, we introduce some of the key
principles of the structured programming approach, a disciplined design
approach that preceded the object-oriented approach.

6.2 Flow of Control: Repetition Structures

As we saw in Chapter 3, a repetition structure is a control structure that
repeats a statement or sequence of statements. Many programming tasks
require a repetition structure. Consider some examples.

• You’re working for the National Security Agency trying to decipher se-
cret messages intercepted from foreign spies, and you want to count the
number of times a certain letter, “a,” occurs in a document containing
N characters. In this case, you would want to employ something like
the following (pseudocode) algorithm:� �
i n i t i a l i z e t o t a l A s to 0
for each c h a r a c t e r in the document

i f the c h a r a c t e r i s an ’ a ’
add 1 to t o t a l A s

return t o t a l A s as the r e s u l t
 	
• You’re working for a caterer who wants to number the invitations to a

client’s wedding, so you need to print the numbers between 1 and 5000

SECTION 6.3 • Counting Loops 243

on the invitation cards (it’s a big wedding)! In this case, you want to go
through each number, 1 to 5000, and simply print it out:� �
for each number , N, from 1 to 5000

p r i n t N on the i n v i t a t i o n card
 	
• You are helping the forest service in Alaska to track the number of black

bear sightings, and you want to compute the average number of sight-
ings per month. Suppose the user enters each month’s count at the
keyboard, and uses a special number, say, 9999, to signify the end of
the sequence. However, 9999 should not be figured into the average.
This example differs a bit from the preceding ones, because here you
don’t know exactly how many numbers the user will input:� �
i n i t i a l i z e sumOfBears to 0
i n i t i a l i z e numOfMonths to 0
repeat the fol lowing s teps

read a number from the keyboard
i f the number i s NOT 9999

add i t to the sumOfBears
add 1 to numOfMonths

u n t i l the number read i s 9999
divide sumOfBears by numOfMonths giving average
return average as the r e s u l t
 	
We repeat the process of reading numbers and adding them to a run-
ning total “until the number read is 9999.”
• Student records are stored in a file and you want to calculate Erika

Wilson’s current GPA. Here we need to perform a repetitive process—
searching through the file for Erika Wilson’s record—but again we
don’t know exactly how many times to repeat the process:� �
repeat the fol lowing s teps

read a record from the f i l e
u n t i l Erika Wilson ’ s record i s read
compute Erika Wilson ’ s GPA
return gpa as the r e s u l t
 	

As these examples suggest, two types of loops are used: counting loops
and non-counting loops. Counting loops are used whenever you know
in advance exactly how many times an action must be performed. Non-
counting loops are used when the number of repetitions depends on
some condition—for example, the number of data items input from the
keyboard or the input of a particular record from a file.

6.3 Counting Loops

A counting loop, or counter-controlled loop, is a loop in which you know
beforehand how many times it will be repeated. Among the preceding
examples, the first two are counting loops.

244 CHAPTER 6 • Control Structures

Because you know the exact number of times the loop repeats before-
hand, a counting loop can be made dependent on the value of a counter.
For example, if you want to print the word “Hello” 100 times, you can use
the following while structure:� �

i n t k = 0 ;
while (k < 100) {

System . out . p r i n t l n (” Hello ”) ;
k++;

}
 	
In this case, the counter is the variable k, which counts from 0 through
99—that is, it counts 100 times. Note that we start counting from 0 instead
of 1. Counting from 0 is known as zero indexing and it is a common
programming convention for counting loops. Although it doesn’t really
make any practical difference in this case, later on we will use loops to
process structures, such as strings and arrays, which use zero indexing. ItZero indexing
will be easier to process these structures if our loop counter also starts at 0.

The variable k in this example is called a counter variable or loop counter.Loop counter
Although it is certainly possible to name the counter variable anything we
like, it is customary to use single letters like i, j, and k as loop counters. The
fundamental feature of a counting loop is that we must know beforehand
exactly how many iterations the loop will take.

JAVA EFFECTIVE DESIGN Loop Design. A counting loop can be
used whenever you know exactly how many times a process must be
repeated.

Although we can use a while-structure to code a counting loop, Java’s
for statement is ideally suited for this purpose. For example, the follow-
ing for statement will also print the word “Hello” 100 times:� �

for (i n t k = 0 ; k < 1 0 0 ; k++)
System . out . p r i n t l n (” Hello ”) ;
 	

In fact, this for statement is equivalent to the preceding while structure.
The for statement has the following syntax:

JAVA LANGUAGE RULE For Statement. The for statement has the
following syntax:

for (initializer ; loop entry condition ; updater)
for loop body ;

The for statement begins with the keyword for, which is followed by a
parenthesized list of three expressions separated by semicolons: an ini-
tializer, a loop entry condition, and an updater. Following the paren-
thesized list is the for loop body, which is either a single statement or a
sequence of statements contained in curly brackets, {. . .}.

SECTION 6.3 • Counting Loops 245

True
println("Hello")

Initializer

Updater

Statement

(loop body)

True

False

k++

False

Loop

entry

condition
k<100

k=0

Figure 6.1: Flowchart of the for
statement.

6.3.1 The For Structure

Figure 6.1 shows how the for statement works. It might be useful to
compare this flowchart with the flowchart for the the while structure
(Fig. 6.2), which was introduced in Chapter 3. You see that it has exactly
the same structure. First, the initializer is evaluated. Thus, the initializer
sets the integer variable k to 0. Then the loop entry condition, which must
be a boolean expression, is evaluated. If it is true, the body of the loop is
executed; if it is false, the body of the loop is skipped and control passes to
the next statement following the for statement. The updater is evaluated
after the loop body is executed. After completion of the updater, the loop
entry condition is reevaluated and the loop body is either executed again
or not, depending on the truth value of the loop entry condition. This
process is repeated until the loop entry condition becomes false.

While Statement While Structure

Statement
True

False

Condition

Updater

Statement

(loop body)

True

False

Loop

entry

condition

Initializer

Figure 6.2: Flowchart of the
while statement and while
structure.

246 CHAPTER 6 • Control Structures

Tracing the order in which the for loop components are evaluated
gives this sequence:� �

evaluate i n i t i a l i z e r
evaluate loop entry condi t ion ==> True
execute for loop body ;
evaluate updater
evaluate loop entry condi t ion ==> True
execute for loop body ;
evaluate updater
evaluate loop entry condi t ion ==> True
execute for loop body ;
evaluate updater
.
.
.
eva luate loop entry condi t ion ==> Fa lse
 	

As this trace shows, the loop entry condition controls entry to the body
of the loop and will, therefore, be the last thing done before the loop
terminates.

We have followed the standard convention of declaring the counter
variable in the header of the for statement. This restricts the variable’sLoop variable scope
scope to the for statement itself. It would be a syntax error to use k outside
the scope of the for loop, as in this example:� �

for (i n t k = 0 ; k < 1 0 0 ; k++)
System . out . p r i n t l n (” Hello ”) ;

// S y n t a x e r r o r , k u n d e c l a r e d

System . out . p r i n t l n (”k = ” + k) ;
 	
For some problems, it might be necessary to use the loop variable out-
side the scope of the for statement, in which case the variable should be
declared before the for statement. For example, if we want to print the
value of the loop variable, k, after the loop completes, we have to declare
it before the loop:� �

i n t k = 0 ; // D e c l a r e t h e l o o p v a r i a b l e h e r e

for (k = 0 ; k < 1 0 0 ; k++)
System . out . p r i n t l n (” Hello ”) ;

System . out . p r i n t l n (”k = ” + k) ; // T o u s e i t h e r e
 	
In this example, the loop will exit when k becomes 100, so “k = 100” will
be printed.

6.3.2 Loop Bounds
A counting loop starts at some initial value and counts 0 or more itera-
tions. A loop bound is a value that controls how many times a loop is
repeated. A loop will repeat until its loop bound is reached. In a count-Loop bound
ing loop, the loop entry condition should be a boolean expression that tests
whether the loop’s bound has been reached. Similarly, in a counting loop,
the updater should modify the loop counter so that it makes progress to-

SECTION 6.3 • Counting Loops 247

ward reaching its bound. Counting loops often increment or decrement
their counter by 1, depending on whether the loop is counting forward
or backward. The following method contains a countdown loop, which
prints 10 9 8 7 6 5 4 3 2 1 BLASTOFF. In this case, progress to-
ward the loop bound is made by decrementing the loop counter:� �

public void countdown () {
for (i n t k = 1 0 ; k > 0 ; k−−)

System . out . p r i n t (k + ” ”) ;
System . out . p r i n t l n (”BLASTOFF”) ;

} // c o u n t d o w n ()
 	
Note in this case that we are using unit indexing instead of zero indexing, Unit indexing
because countdowns repeat, or iterate, from 10 down to 1, not from 10
down to 0.

6.3.3 Infinite Loops

If the loop bound is never reached, the loop entry condition will never
become false and the loop will repeat forever. This is known as an infinite
loop. Can you see why each of the following for statements will result in Infinite loop
an infinite loop?� �

for (i n t k = 0 ; k < 1 0 0 ; k−−) // I n f i n i t e l o o p

System . out . p r i n t l n (” Hello ”) ;

for (i n t k = 1 ; k != 1 0 0 ; k+=2) // I n f i n i t e l o o p

System . out . p r i n t l n (” Hello ”) ;

for (i n t k = 9 8 ; k < 1 0 0 ; k = k / 2) // I n f i n i t e l o o p

System . out . p r i n t l n (” Hello ”) ;
 	
In the first example, k starts out at 0 and is decremented on each itera-
tion, taking on values −1,−2,−3, and so on, so k will never reach its loop
bound.

In the second example, k starts out at 1 and is incremented by 2 on each
iteration, taking on the values 3, 5, 7, and so on. Because all these values
are odd, k will never equal 100. A much safer loop bound in this case
would be k <= 100.

In the third example, k starts out at 98 and is halved on each iteration,
taking on the values 49, 24, 12, 6, 3, 1, 0, 0, and so on, forever. Thus, it too
will be stuck in an infinite loop.

Encountering an unintended infinite loop when developing a program
can be very frustrating. If the program is stuck in a loop that gener- Stuck in a loop
ates output, it will be obvious that it is looping, but if no output is be-
ing generated, the computer will appear to “freeze,” no longer respond-
ing to your keyboard or mouse commands. Some programming envi-
ronments allow you to break out of a looping program by typing a spe-
cial keyboard command such as CONTROL-C or CTRL-ALT-DELETE or
CONTROL-APPLE-ESCAPE, but if that doesn’t work you will have to re-
boot the computer, possibly causing a loss of data. The best way to avoid

248 CHAPTER 6 • Control Structures

infinite loops is to determine that the loop’s updater expression will cause
the loop to eventually reach its bound.

JAVA EFFECTIVE DESIGN Loop Design. To guard against infinite
loops, make sure that the loop bound will eventually be reached.

6.3.4 Loop Indentation
Note how indentation is used to distinguish the loop body from both the
heading and from the statement that follows the loop:� �

for (i n t k = 1 0 ; k > 0 ; k−−) // L o o p h e a d i n g

System . out . p r i n t (k + ” ”) ; // I n d e n t t h e b o d y

System . out . p r i n t l n (”BLASTOFF”) // A f t e r t h e l o o p
 	
Indenting the loop body is a stylistic convention intended to make the
code more readable. However, the indentation itself has no effect on how
the code is interpreted by Java. Each of the following code segments
would still produce the same countdown:� �

for (i n t k = 1 0 ; k > 0 ; k−−)
System . out . p r i n t (k + ” ”) ;
System . out . p r i n t l n (”BLASTOFF”) ;

for (i n t k = 1 0 ; k > 0 ; k−−) System . out . p r i n t (k +” ”) ;
System . out . p r i n t l n (”BLASTOFF”) ;

for
(i n t k = 1 0 ; k > 0 ; k−−)
System . out . p r i n t (k + ” ”) ;
System . out . p r i n t l n (”BLASTOFF”) ;
 	

In each case the statement, System.out.println("BLASTOFF"), is
not part of the for loop body and is executed only once when the loop
terminates.

JAVA PROGRAMMING TIP Loop Indentation. To make loops more
readable, indent the loop body to set it off from the heading and to
highlight which statement(s) will be repeated.

JAVA DEBUGGING TIP Loop Indentation. Loop indentation has no
effect on how Java interprets the loop. The loop body is determined
entirely by the syntax of the for statement.

Note that up to this point the loop body has consisted of a single state-
ment, such as a println() statement. But the loop body may con-
sist of any Java statement, including an if or if-else statement or a
compound statement, which contains a sequence of statements enclosed

SECTION 6.3 • Counting Loops 249

within braces. Consider the following examples. The first example prints
the sequence 0, 5, 10, 15, . . . 95. Its loop body consists of a single if
statement:� �

for (i n t k = 0 ; k < 1 0 0 ; k++) // P r i n t 0 5 1 0 . . . 9 5

i f (k % 5 == 0) // L o o p b o d y : s i n g l e i f s t a t e m e n t

System . out . p r i n t l n (”k= ” + k) ;
 	
The next example prints the lowercase letters of the alphabet. In this case,
the loop counter is of type char, and it counts the letters of the alphabet.
The loop body consists of a single print() statement:� �

for (char k = ’ a ’ ; k <= ’ z ’ ; k++) // P r i n t ’ a ’ ’ b ’ . . . ’ z ’

System . out . p r i n t (k + ” ”) ; // L o o p b o d y : s i n g l e p r i n t ()
 	
The next example prints the sequence 5, 10, 15, . . . 50, but it uses several
statements within the loop body:� �

for (i n t k = 1 ; k <= 1 0 ; k++) {// P r i n t 5 1 0 1 5 . . . 5 0

i n t m = k ∗ 5 ; // B e g i n b o d y

System . out . p r i n t (m + ” ”) ;
} // E n d b o d y
 	

In this example, the scope of the local variable m, declared within the loop
body, is limited to the loop body and cannot be used outside of that scope.

JAVA LANGUAGE RULE Loop Body. The body of a for statement
consists of the statement that immediately follows the for loop
heading. This statement can be either a simple statement or a
compound statement—a sequence of statements enclosed within
braces, {. . .}.

Although braces are not required when the body of a for loop consists
of a single statement, some coding styles recommend that braces should
always be used for the body of a loop statement. For example, it is always
correct to code the for loop as� �

for (i n t k = 1 ; k <= 1 0 ; k++) {// P r i n t 1 2 . . . 1 0

System . out . p r i n t (k + ” ”) ; // B e g i n b o d y

} // E n d b o d y
 	

250 CHAPTER 6 • Control Structures

Another advantage of this coding style is that you can easily place addi-
tional statements in the loop body by placing them within the braces.

JAVA DEBUGGING TIP Missing Braces. A common programming
error for novices is to forget to use braces to group the statements they
intend to put in the loop body. When braces are not used only the first
statement after the loop heading will be iterated.

SELF-STUDY EXERCISES
EXERCISE 6.1 Identify the syntax error in the following for loop

statements.

a.� �
for (i n t k = 5 , k < 100 , k++)

System . out . p r i n t l n (k) ;
 	
b.� �

for (i n t k = 0 ; k < 12 ; k−−;)
System . out . p r i n t l n (k) ;
 	

EXERCISE 6.2 Identify those statements that result in infinite loops.

a.� �
for (i n t k = 0 ; k < 1 0 0 ; k = k)

System . out . p r i n t l n (k) ;
 	
b.� �

for (i n t k = 1 ; k == 1 0 0 ; k = k + 2)
System . out . p r i n t l n (k) ;
 	

c.� �
for (i n t k = 1 ; k >= 1 0 0 ; k = k − 2)

System . out . p r i n t l n (k) ;
 	
EXERCISE 6.3 Suppose you’re helping your little sister learn to count

by fours. Write a for loop that prints the following sequence of numbers:
1, 5, 9, 13, 17, 21, 25.

EXERCISE 6.4 What value will j have when the following loop
terminates?� �
for (i n t i = 0 ; i < 1 0 ; i ++) {

i n t j ;
j = j + 1 ;

}
 	

SECTION 6.3 • Counting Loops 251

6.3.5 Nested Loops

A nested loop is a structure in which one loop is contained inside the body
of another loop, such as when a for loop body contains a for loop. For
example, suppose you are working for Giant Auto Industries, and your
boss wants you to print a table for buyers to figure the cost of buying mul-
tiple quantities of a certain part. The cost of individual parts ranges from
$1 to $9. The cost of N items is simply the unit price times the quantity.
Thus, you’ll want to print something like the following table of numbers,
where the prices per unit are listed in the top row, and the prices for 2, 3
and 4 units are listed in subsequent rows:� �

1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
 	

To produce this multiplication table, we could use the following nested
for loops:� �

1 for (i n t row = 1 ; row <= 4 ; row++) { // F o r e a c h o f 4 r o w s

2 for (i n t c o l = 1 ; c o l <= 9 ; c o l ++) // F o r e a c h o f 9 c o l u m n s

3 System . out . p r i n t (c o l ∗ row + ”\ t ”) ; // P r i n t n u m b e r

4 System . out . p r i n t l n () ; // S t a r t a new r o w

5 } // f o r r o w
 	
Note how indenting is used here to distinguish the levels of nesting and to
make the code more readable. In this example, the outer loop controls the Inner and outer loop
number of rows in the table, hence, our choice of row as its loop counter.
The println() statement is executed after the inner loop is done iterating,
which allows us to print a new row on each iteration of the outer loop. The
inner loop prints the nine values in each row by printing the expression
col*row. Obviously, the value of this expression depends on both loop
variables.

Let’s dissect this example a bit. How many times is the for statement
in line 2 executed? The inner loop is executed once for each iteration of
the outer loop. Thus, it is executed four times, which is the same number
of times that line 4 is executed. How many times is the statement on line
3 executed? The body of the inner loop is executed 36 times—9 times for
each execution of line 2.

Sometimes it is useful to use the loop variable of the outer loop as the Algorithm design
bound for the inner loop. For example, consider the following pattern:� �

#
#
#
#
#
 	

252 CHAPTER 6 • Control Structures

Note that the number of # symbols in each row varies inversely with the
row number. In row 1, we have five symbols; in row 2 we have four; and
so on down to row 5, where we have one #.

To produce this kind of two-dimensional pattern, we need two coun-
ters: one to count the row number, and one to count the number of #
symbols in each row. Because we have to print each row’s symbols before
moving on to the next row, the outer loop will count row numbers, and
the inner loop will count the symbols in each row. But note that the inner
loop’s bound will depend on the row number. Thus, in row 1 we want
five symbols; in row 2 we want four symbols; and so on. If we let row be
the row number, then in each row we want to print 6 − row symbols. The
following table shows the relationship we want:

Row Bound (6-row) Number of Symbols

1 6-1 5
2 6-2 4
3 6-3 3
4 6-4 2
5 6-5 1

If we let j be the counter for the inner loop, then j will be bound by the
expression 6 − row. This leads to the following nested loop structure:� �

for (i n t row = 1 ; row <= 5 ; row++) { // F o r e a c h r o w

for (i n t j = 1 ; j <= 6 − row ; j ++) // P r i n t t h e r o w

System . out . p r i n t (’ # ’) ;
System . out . p r i n t l n () ; // S t a r t a new l i n e

} // f o r r o w
 	
Note that the bound of the inner loop varies according to the value of row,
the loop counter for the outer loop.

SELF-STUDY EXERCISE
EXERCISE 6.5 As the engineer hired to design ski jumps, write a nested
for loop to print the following pattern:� �
#
#
#
#
#
 	
6.4 Example: Car Loan

Recall the self-study exercise from Chapter 5 that calculated the value of a
bank CD (a) given its initial principle (p), interest rate (r), and number of
years (n), using the formula a = p(1+r)n. This section explains how to use

SECTION 6.4 • Example: Car Loan 253

the same formula to calculate the cost of a car loan for different interest
rates over various time periods.

Problem Description

For example, suppose you are planning on buying a car that costs $20,000.
You find that you can get a car loan ranging anywhere from 8 to 11 percent,
and you can have the loan for periods as short as two years and as long as
eight years. Let’s use our loop constructs to create a table to show what the
car will actually cost you, including financing. In this case, a will represent
the total cost of the car, including the financing, and p will represent the
price tag on the car ($20,000):� �

8% 9% 10% 11%
Year 2 $23 , 4 6 9 . 8 1 $23 , 9 4 3 . 8 2 $24 , 4 2 7 . 3 9 $24 , 9 2 0 . 7 1
Year 3 $25 , 4 2 4 . 3 1 $26 , 1 9 8 . 4 2 $26 , 9 9 6 . 0 7 $27 , 8 1 7 . 9 8
Year 4 $27 , 5 4 1 . 5 9 $28 , 6 6 5 . 3 2 $29 , 8 3 4 . 8 6 $31 , 0 5 2 . 0 9
Year 5 $29 , 8 3 5 . 1 9 $31 , 3 6 4 . 5 0 $32 , 9 7 2 . 1 7 $34 , 6 6 2 . 1 9
Year 6 $32 , 3 1 9 . 7 9 $34 , 3 1 7 . 8 5 $36 , 4 3 9 . 3 8 $38 , 6 9 2 . 0 0
Year 7 $35 , 0 1 1 . 3 0 $37 , 5 4 9 . 3 0 $40 , 2 7 1 . 1 9 $43 , 1 9 0 . 3 1
Year 8 $37 , 9 2 6 . 9 6 $41 , 0 8 5 . 0 2 $44 , 5 0 5 . 9 4 $48 , 2 1 1 . 6 0
 	

Algorithm Design

The key element in this program is the nested for loop that generates the
table. Because the table contains seven rows, the outer loop should iterate Nested loop design
seven times, through the values 2,3, . . .8:� �

for (i n t years = 2 ; years <= 8 ; years ++)
 	
The inner loop should iterate through each of the interest rates, 8 through
11:� �

for (i n t years = 2 ; years <= 8 ; years ++) {
for (i n t r a t e = 8 ; r a t e <= 1 1 ; r a t e ++) {
} // f o r r a t e

} // f o r y e a r s
 	
The financing calculation should be placed in the body of the inner loop
together with a statement to print one cell (not row) of the table. Suppose
the variable we use for a in the formula is carPriceWithLoan, and the
variable we use for the actual price of the car is carPrice. Then our inner
loop body is� �

carPriceWithLoan = c a r P r i c e ∗
Math . pow(1 + r a t e /100 .0/365 .0 , years ∗ 3 6 5 . 0) ;

System . out . p r i n t (d o l l a r s . format (carPriceWithLoan) +”\ t ”) ;
 	
Note that the rate is divided by both 100.0 (to make it a percentage) and by
365.0 (for daily compounding), and the year is multiplied by 365.0 before
these values are passed to the Math.pow() method. It is important here

254 CHAPTER 6 • Control Structures

to use 100.0 and not 100 so that the resulting value is a double and not
the int 0.

Implementation
The program must also contain statements to print the row and column
headings. Printing the row headings should be done within the outer
loop, because it must be done for each row. Printing the column head-
ings should be done before the outer loop is entered. Finally, our programFormatting output
should contain code to format the dollar and cents values properly. For
this we use the java.text.NumberFormat class that was described in
Chapter 5. The complete program is shown in Figure 6.3.� �

import j ava . t e x t . NumberFormat ; // F o r f o r m a t t i n g $ n n . dd o r n%

public c l a s s CarLoan {
public s t a t i c void main (S t r i n g args []) {

double c a r P r i c e = 20000 ; // C a r ’ s a c t u a l p r i c e

double carPriceWithLoan ; // T o t a l c o s t o f t h e c a r p l u s f i n a n c i n g

// N u m b e r f o r m a t t i n g c o d e

NumberFormat d o l l a r s = NumberFormat . getCurrencyInstance () ;
NumberFormat percent = NumberFormat . g e t P e r c e n t I n s t a n c e () ;
percent . setMaximumFractionDigits (2) ;

// P r i n t t h e t a b l e

for (i n t r a t e = 8 ; r a t e <= 1 1 ; r a t e ++) // P r i n t t h e c o l u m n h e a d i n g

System . out . p r i n t (”\ t ” + percent . format (r a t e / 1 0 0 . 0) + ”\ t ”) ;
System . out . p r i n t l n () ;

for (i n t years = 2 ; years <= 8 ; years ++) { // F o r y e a r s 2 t h r o u g h 8

System . out . p r i n t (”Year ” + years + ”\ t ”) ; // P r i n t r o w h e a d i n g

for (i n t r a t e = 8 ; r a t e <= 1 1 ; r a t e ++) { // C a l c a n d p r i n t CD v a l u e

carPriceWithLoan = c a r P r i c e ∗
Math . pow(1 + r a t e / 100 .0 / 3 6 5 . 0 , years ∗ 3 6 5 . 0) ;

System . out . p r i n t (d o l l a r s . format (carPriceWithLoan) + ”\ t ”) ;
} // f o r r a t e

System . out . p r i n t l n () ; // S t a r t a new r o w

} // f o r y e a r s

} // m a i n ()

} // C a r L o a n
 	
Figure 6.3: The CarLoan application.

SECTION 6.5 • Graphics Example: Drawing a Checkerboard 255

6.5 Graphics Example: Drawing a Checkerboard

In this section we will combine some of the graphics methods we have
learned with the nested for-loop structure to draw a checkerboard with
checkers on it (Fig. 6.4). For this example, we will just concentrate on
drawing the checkerboard. We will not worry about providing a full
checkerboard representation, of the sort we would need if we were writing
a program to play the game of checkers. So, our design will not involve in-
stance variables for whose turn it is, how many checkers each player has,

Figure 6.4: A checkerboard with
checkers.

where the checkers are located on the board, and other elements of the
game’s state. Still, our visible representation of the board should be de-
signed so that it will eventually be useful when we do develop a checkers
game in Chapter 8.

Problem Description and Specification
The specification for this problem is to develop a program that will draw a
checkerboard and place upon it the checkers in their appropriate starting
positions. As with many of our programs, our design will involve two
classes, one which defines the user interface and the other which repre-
sents the computational object. For this problem, the computational object
will be defined in the CheckerBoard class. The details of its design are
described in the next section.

Because the purpose of this example is to focus on how we
use loops and drawing methods, we will employ a very simple
JFrame interface, whose implementation is given in Figure 6.5. As
shown there, the program simply creates a CheckerBoard instance� �
import j ava . awt . ∗ ;
import j avax . swing . ∗ ;

public c l a s s CheckerBoardFrame extends JFrame {
private CheckerBoard theBoard ;

public CheckerBoardFrame () {
theBoard = new CheckerBoard () ;

}
public void paint (Graphics g) {

super . pa int (g) ;
theBoard . draw (g) ;

} // p a i n t ()

public s t a t i c void main (S t r i n g [] args){
CheckerBoardFrame c = new CheckerBoardFrame () ;
c . s e t S i z e (5 0 0 , 5 0 0) ;
c . s e t V i s i b l e (t rue) ;

}
} // C h e c k e r B o a r d F r a m e
 	

Figure 6.5: The CheckerBoardFrame class.

in its CheckerBoardFrame() constructor, and then invokes the
CheckerBoard’s draw method in its paint() method. The reason we

256 CHAPTER 6 • Control Structures

invoke the draw() method in paint() is because we need to have ac-
cess to the JFrame’s Graphics context, which is passed as an argument
to the draw() method. Recall that the main() method is invoked when
CheckerBoardFrame is run,and then the paint() methods are invoked
automatically by calling the setVisible(true) method in main().
Thus, the action taken by this program is simply to draw a visual rep-
resentation of the checkerboard.

Class Design: CheckerBoard

Figure 6.6: Design of the
CheckerBoard class.

Because the program will invoke its draw() method, this method must
be part of the CheckerBoard’s interface. Hence, it must be declared
public. The task of drawing a checkerboard involves two distinct sub-
tasks: (1) drawing the board itself, which will involve drawing a square
with smaller squares of alternating colors; and, (2) drawing the check-
ers on the checkerboard. A good design for the draw() method would
be simply to invoke helper methods that encapsulate these two subtasks.
This is good method design because it results in relatively small methods,
each of which performs a very well-defined task. Let’s call these methods
drawBoard() and drawCheckers(), respectively. Their signatures are
shown in Figure 6.6, which summarizes the design of the CheckerBoard
class.

Before gettinginto the details of the drawBoard and drawCheckers()
methods, we must first discuss CheckerBoard’s several instance vari-
ables. The first two variables LEFT X and UPPER Y, give the absolute po-
sition of the upper left corner of the checkerboard on the JFrame’s drawing
panel. The SQ SIDE variable gives the size of the checkerboard’s individ-
ual squares. N ROWS and N COLS give the number of rows and columns
in the checkerboard (typically, 8 by 8). All of these variables are integers.
The final four variables, SQ COLOR1, SQ COLOR2, CHECKER COLOR1, and
CHECKER COLOR2, specify the colors of the checkerboard and the check-
ers.

Note that the names of all the instance variables are written in upper-
case letters. This is to identify them as symbolic constants—that is, as fi-
nal variables whose values do not chage once they are initialized. Because
their actual values are not important, we do not show them in the UML
diagram and we won’t discuss them here. Recall that the advantage of
defining class constants, rather than sprinkling literal values throughout
the program, is that they make it easy to modify the program if we decide
to change the size, location, or color of the checkerboard.

Method Design
Returning now to the design of CheckerBoard’s instance methods, the
complete definition of the CheckerBoard class is given in Figure 6.7.
Note how simple its draw() method is. As we noted earlier, in order
to using Java’s drawing commands, it is necessary to have a reference to a
Graphics object. This is passed to the draw()method when the draw()
method is invoked in the program. Because the draw()method delegates
the details of the drawing algorithm to its helper methods, drawBoard()
and drawCheckers(), it has to pass them a reference to the Graphics
object.

The drawBoard() method uses a nested for loop to draw an 8× 8
array of rectangles of alternating colors. The loop variables, row and col,

SECTION 6.5 • Graphics Example: Drawing a Checkerboard 257� �
import j ava . awt . ∗ ;

public c l a s s CheckerBoard {
// D e f a u l t v a l u e s f o r a s t a n d a r d c h e c k e r b o a r d

private f i n a l i n t LEFT X = 1 0 ; // P o s i t i o n o f l e f t

private f i n a l i n t UPPER Y = 1 0 ; // u p p e r c o r n e r

private f i n a l i n t SQ SIDE = 4 0 ; // S i z e o f e a c h s q u a r e

private f i n a l i n t N ROWS = 8 ; // C h e c k e r b o a r d r o w s

private f i n a l i n t N COLS = 8 ; // C h e c k e r b o a r d c o l u m n s

private f i n a l Color SQ COLOR1 = Color . l ightGray ; // C o l o r s

private f i n a l Color SQ COLOR2 = Color . gray ; // o f s q u a r e s

private f i n a l Color CHECKER COLOR1 = Color . white ; // a n d

private f i n a l Color CHECKER COLOR2 = Color . black ; // c h e c k e r s

private void drawBoard (Graphics g) {
for (i n t row = 0 ; row < N ROWS; row++)

// F o r e a c h r o w

for (i n t c o l = 0 ; c o l < N COLS ; c o l ++) { // F o r e a c h s q u a r e

i f ((row + c o l) % 2 == 0)
// A l t e r n a t e c o l o r s

g . se tColor (SQ COLOR1) ;
// L i g h t

e lse
g . se tColor (SQ COLOR2) ;

// o r d a r k

g . f i l l R e c t (LEFT X+ c o l ∗SQ SIDE ,
UPPER Y+row∗SQ SIDE , SQ SIDE , SQ SIDE) ;

} // f o r

} // d r a w B o a r d ()

private void drawCheckers (Graphics g) { // P l a c e c h e c k e r s

for (i n t row = 0 ; row < N ROWS; row++) // F o r e a c h r o w

for (i n t c o l = 0 ; c o l < N COLS ; c o l ++) // F o r e a c h s q u a r e

i f ((row + c o l)%2 == 1) {// One p l a y e r h a s t o p 3 r o w s

i f (row < 3) {
g . se tColor (CHECKER COLOR1) ;
g . f i l l O v a l (LEFT X+ c o l ∗SQ SIDE ,

UPPER Y+row∗SQ SIDE , SQ SIDE−2,SQ SIDE−2) ;
}// i f

i f (row >= N ROWS − 3) { // O t h e r h a s b o t t o m 3 r o w s

g . se tColor (CHECKER COLOR2) ;
g . f i l l O v a l (LEFT X+ c o l ∗SQ SIDE ,

UPPER Y+row∗SQ SIDE , SQ SIDE−2,SQ SIDE−2) ;
}// i f

}// i f

}// d r a w C h e c k e r s ()

public void draw (Graphics g) { // Draw b o a r d a n d c h e c k e r s

drawBoard (g) ;
drawCheckers (g) ;

}// d r a w ()

} // C h e c k e r B o a r d
 	
Figure 6.7: The CheckerBoard class.

258 CHAPTER 6 • Control Structures

both range from 0 to 7. The expression used to determine alternating
colors tests whether the sum of the row and column subscripts is even:
((row+ col)%2 == 0). If their sum is even, we use one color; if odd, we
use the other color.

As the table in the margin shows for a 4×4 board, the sum of a board’s
row and column subscripts alternates between even and odd values.
Thus, in row 2 column 3, the sum of the subscripts is 5.| 0 1 2 3

0 | 0 1 2 3
1 | 1 2 3 4
2 | 2 3 4 5
3 | 3 4 5 6

To switch from one color to the other, we use the Graphics
setColor() method to alternate between the two colors designated for
the checkerboard, SQ COLOR1 and SQ COLOR2. We then use the following
method call to draw the colored squares:� �

g . f i l l R e c t (LEFT X+ c o l ∗SQ SIDE , UPPER Y+row∗SQ SIDE ,
SQ SIDE , SQ SIDE) ;
 	

Note how we use the loop variables, row col, together with the constants
specifying the top left corner of the board (UPPER Y and LEFT X) and the
size of the squares (SQ SIDE) to calculate the location and size of each
square. The calculation here is illustrated in Figure 6.8. The first two pa-
rameters in fillRect(left,top,width,height) specify the coordi-
nates for the rectangle’s top-left corner. These are calculated as a func-
tion of the rectangle’s row and column position within the checkerboard
and the rectangle’s width and height, which are equal for the squares of a
checkerboard.

Figure 6.8: Calculating the loca-
tions of the checkerboard squares.

The drawCheckers() method also uses a nested for loop to trace
through the checkerboard’s rows and columns. In this case, however, we
draw checkers on just the dark-colored squares—that is, those that sat-
isfy the expression (row+ col)%2 == 1)—on the first three rows of each

SECTION 6.6 • Conditional Loops 259

player’s side of the board. So, each player’s checkers initially are located
in the first three rows and last three rows of the checker board:� �

i f ((row + c o l)%2 == 1) {// One p l a y e r h a s t o p 3 r o w s

i f (row < 3){
g . se tColor (CHECKER COLOR1) ;
g . f i l l O v a l (LEFT X+ c o l ∗SQ SIDE ,

UPPER Y+row∗SQ SIDE , SQ SIDE−2,SQ SIDE−2) ;
}// i f

i f (row >= N ROWS − 3) { // O t h e r h a s b o t t o m 3 r o w s

g . se tColor (CHECKER COLOR2) ;
g . f i l l O v a l (LEFT X+ c o l ∗SQ SIDE ,

UPPER Y+row∗SQ SIDE , SQ SIDE−2,SQ SIDE−2) ;
}// i f

}// i f
 	
Because the checkers are circles, we use the fillOval() method to draw
them. Note that the parameters for fillOval(left, top, width,
height) are identical to those for fillRect(). The parameters spec-
ify an enclosing rectangle in which the oval is inscribed. In this case, of
course, the enclosing rectangle is a square, which causes fillOval() to
draw a circle.

Our design of the CheckerBoard class illustrates an important princi-
ple of method design. First, rather than placing all of the commands for
drawing the checkerboard and the checkers into one method, we broke
up this larger task into distinct subtasks. This resulted in small methods,
each of which has a well defined purpose.

JAVA EFFECTIVE DESIGN Method Decomposition. Methods
should be designed to have a clear focus. If you find a method
becoming too long, you should break its algorithm into subtasks and
define a separate method for each subtask.

6.6 Conditional Loops

Unlike the problems in the previous sections, not all loops can be coded as
counting loops. Here’s a problem that can’t be solved by a counting loop.

Mathematicians, especially number theorists, have found that certain
operations on numbers lead to interesting sequences. For example, the
3N+1 problem is a conjecture in number theory, which says that if N is any
positive integer, then the sequence generated by the following rules will
always terminate at 1.� �

Case Operation
−−−− −−−−−−−−−
N i s odd N = 3 ∗ N + 1
N i s even N = N / 2
 	

260 CHAPTER 6 • Control Structures

In other words, start with any positive integer, N. If N is odd, multiply
it by 3 and add 1. If N is even, divide it by 2. In either case, assign the
result back to N. The conjecture states that N will eventually equal 1. For
example, if N is initially 26, then the sequence generated is 26, 13, 40, 20,
10, 5, 16, 8, 4, 2, 1.

The 3N+1 problem is an example of a noncounting loop. Because for
any given N we don’t know how long the 3N+1 sequence will be, weSentinel bound
need a loop that terminates when the loop variable reaches a certain value,
called a sentinel value—when N equals 1. This is an example of a loop that
is terminated by a sentinel bound. With the exception of infinite loops, all
loops are bounded by some condition, which is why they are sometimes
referred to as conditional loop structures. The count and sentinel bounds
are just special cases of the conditional loop structure.

6.6.1 The While Structure, Revisited

Consider the following pseudocode algorithm for the 3N+1 problem:� �
Algorithm for computing the 3N+1 sequence

While N i s not equal to 1 , do : {
P r i n t N.
I f N i s even , divide i t by 2 .
I f N i s odd , mult iply N by 3 and add 1 .

}
P r i n t N
 	

In this structure, the body of the loop prints N and then updates N’s value,
using the 3N+1 rules. Suppose N equals 5 when this code segment begins.
It will print the following sequence: 5, 16, 8, 4, 2, 1. Note that the loop
body is entered as long as N is not equal to 1. So the loop entry condition
in this case is N != 1. Conversely, the loop will terminate when N equals
1. Also note that in this code segment the loop bound is tested before the
body of the loop is executed.

We can implement this algorithm using Java’s while statement, whose
flowchart is shown in Figure 6.2:� �

while (N != 1) { // W h i l e N n o t e q u a l t o 1

System . out . p r i n t (N + ” ”) ; // P r i n t N

i f (N % 2 == 0) // I f N i s e v e n

N = N / 2 ; // d i v i d e i t b y 2

e lse // I f N i s o d d

N = 3 ∗ N + 1 ; // m u l t i p l y b y 3 a n d a d d 1

}
System . out . p r i n t l n (N) ; // P r i n t N
 	

Recall that unlike the for statement, the while statement does not con-
tain syntax for the initializer and the updater. These must be coded sepa-
rately. As we pointed out in Chapter 3, the while structure (as opposed to

SECTION 6.6 • Conditional Loops 261

the while statement) is a segment of code built by the programmer that
satisfies the following design principle:

JAVA EFFECTIVE DESIGN Loop Structure. A properly designed
loop structure must include an initializer, a loop-entry condition, and an
updater. The updater should guarantee that the loop-entry condition
will eventually become false, thereby causing the loop to terminate.

The while structure has the following form:� �
I n i t i a l i z e r S t a t e m e n t s ; // I n i t i a l i z e r

while (loop entry condi t ion) { // B o u n d t e s t

Statements ; // L o o p b o d y

UpdaterStatements ; // U p d a t e r

}
 	
As its form suggests, the while structure is designed so that on some
conditions the loop body will never be executed. Because it tests for the
loop bound before the loop body, it is possible that the loop body is never
executed. We might say that it is designed to perform 0 or more iterations.

For example, going back to the 3N+1 problem, what if N equals 1 ini-
tially? In that case, the loop body will be skipped, because the loop entry
condition is false to begin with. No iterations will be performed, and the
algorithm will simply print the value 1.

The while structure would be an appropriate control structure for the
following type of problem:� �

write the problems on the assignment sheet // I n i t i a l i z e r

while there are problems on the sheet // B o u n d t e s t

do a problem // L o o p b o d y

c r o s s i t o f f the assignment sheet // U p d a t e r
 	
It is possible that the assignment sheet contains no homework problems
to begin with. In that case, there’s no work for the body of the loop to do
and it should be skipped.

SELF-STUDY EXERCISES

EXERCISE 6.6 Identify the syntax error in the following while struc-
tures:

a.� �
i n t k = 5 ;
while (k < 100) {

System . out . p r i n t l n (k) ;
k++

}
 	

262 CHAPTER 6 • Control Structures

b.� �
i n t k = 0 ;
while (k < 12 ;) {

System . out . p r i n t l n (k) ;
k++;

}
 	
EXERCISE 6.7 Determine the output and/or identify the error in each

of the following while structures:

a.� �
i n t k = 0 ;
while (k < 100)

System . out . p r i n t l n (k) ;
 	
b.� �

while (k < 100) {
System . out . p r i n t l n (k) ;
k++;

}
 	
EXERCISE 6.8 Your younger sister is now learning how to count by

sixes. Write a while loop that prints the following sequence of numbers:
0, 6, 12, 18, 24, 30, 36.

EXERCISE 6.9 Here’s another number theory problem. Start with any
positive integer, N. If N is even, divide it by 2. If N is odd, subtract 1 and
then divide it by 2. This will generate a sequence that is guaranteed to
terminate at 0. For example, if N is initially 15, then you get the sequence:
15, 7, 3, 1, 0. Write a method that implements this sequence using a while
statement.

6.6.2 The Do-While Structure

Here’s another problem that can’t be solved with a counting loop. Your
father has been fretting about the bare spots on the front lawn and is con-Problem description
sidering hiring the ChemSure Lawn Service to fertilize. However, your
scientifically minded younger sister wants to reassure him that at the rate
the grass is dying, there will be enough to last through the summer. Using
techniques she learned in biology, your sister estimates that the grass is
dying at the rate of 2 percent per day. How many weeks will it take for
half the lawn to disappear?

One way to solve this problem would be to keep subtracting 2 percent
from the current amount of grass until the amount dipped below 50 per-Algorithm design

SECTION 6.6 • Conditional Loops 263

cent, all the while counting the number of iterations required. Consider
the following pseudocode algorithm:� �

Algorithm for c a l c u l a t i n g grass l o s s
I n i t i a l i z e amtGrass to 100 .0
I n i t i a l i z e nDays to 0
Repeat the fol lowing statements

amtGrass −= amtGrass ∗ 0 . 0 2 ;
++nDays ;

As long as amtGrass > 5 0 . 0
P r i n t nDays / 7
 	

We begin by initializing amtGrass to 100.0, representing 100 percent.
And we initialize our counter, nDays to 0. Then we repeatedly subtract 2
percent of the amount and increment the counter until the amount drops
below 50 percent. In other words, in this case, we repeat the loop body
as long as the amount of grass remains above 50 percent of the original.
When the loop finishes, we report the number of weeks it took by dividing
the number of days by 7.

The loop bound in this case is known as a limit bound. The loop will Limit bound
terminate when a certain limit has been reached—in this case, when the
amount of grass dips below 50 percent of the original amount. Note that
in this case the loop bound is tested after the loop body. This is appropri-
ate for this problem, because we know in advance that the loop will iter-
ate at least once. We can implement this algorithm using Java’s do-while
statement:� �

public i n t los ingGrass (double perCentGrass) {
double amtGrass = 1 0 0 . 0 ; // I n i t i a l i z e a m o u n t g r a s s

i n t nDays = 0 ; // I n i t i a l i z e d a y c o u n t e r

do { // R e p e a t

amtGrass −= amtGrass ∗ LOSSRATE ; // U p d a t e a m o u n t

++nDays ; // I n c r e m e n t t h e c o u n t e r

} while (amtGrass > perCentGrass) ;
// As l o n g a s e n o u g h g r a s s r e m a i n s

return nDays / 7 ; // R e t u r n t h e n u m b e r o f w e e k s

} // l o s i n g G r a s s ()
 	
The do-while statement is a loop statement in which the loop entry con-
dition occurs after the loop body. It has the following general form:

JAVA LANGUAGE RULE Do-while Statement. The do-while
statement has the following syntax:

do

loop body
while (loop entry condition) ;

Note, again, that unlike the for statement, the do-while statement does
not contain syntax for the initializer and the updater. These must be coded
separately.

264 CHAPTER 6 • Control Structures
Figure 6.9: Flowchart of the
do-while statement and
do-while structure.

Do-While Statement Do-While Structure

Initializer1

Initializer2

Statement

Updater

True

False

Loop

entry

condition

Statement

True

False

Condition

To further highlight the difference between a loop statement and a loop
structure, the do-while structure takes the following form:� �

I n i t i a l i z e r S t a t e m e n t s 1 ; // I n i t i a l i z e r

do { // B e g i n n i n g o f l o o p b o d y

I n i t i a l i z e r S t a t e m e n t s 2 ; // A n o t h e r i n i t i a l i z e r

Statements ; // L o o p b o d y

UpdaterStatements // U p d a t e r

} while (loop entry condi t ion) ; // B o u n d t e s t
 	
Note that initializer statements may be placed before the loop body, at the
beginning of the loop body, or in both places, depending on the particular
problem. Like the other loop structures, updater statements occur within
the body of the loop. A flowchart of the do-while structure is shown in
Figure 6.9.

The do-while structure would be an appropriate control structure for
the following type of problem:� �

do
d i a l the des ired telephone number // I n i t i a l i z e r

i f you get a busy s i g n a l
hang up // U p d a t e r

while there i s a busy s i g n a l // B o u n d t e s t
 	

SECTION 6.6 • Conditional Loops 265

In this case, you want to perform the actions in the body of the loop at
least once and possibly more than once (if you continue to receive a busy
signal).

JAVA EFFECTIVE DESIGN Do-While Loops. The do-while loop is
designed for solving problems in which at least one iteration must
occur.

JAVA EFFECTIVE DESIGN While versus Do-While Structures. For
problems where a noncounting loop is required, the while loop
structure is more general and, therefore, preferable to the do-while
structure. Use do-while only when at least one iteration must occur.

SELF-STUDY EXERCISES
EXERCISE 6.10 Identify the syntax error in the following do-while

structures:
a.� �

i n t k = 0 ;
do while (k < 100)
{ System . out . p r i n t l n (k) ;

k++
}
 	

b.� �
i n t k = 0 ;
do {

System . out . p r i n t l n (k) ;
k++;

} while (k < 12)
 	
EXERCISE 6.11 Your sister has moved on to counting by sevens. Write

a do-while loop that prints the following sequence of numbers: 1, 8, 15,
22, 29, 36, 43.

EXERCISE 6.12 As the owner of Pizza Heaven, every night at the close
of business you quickly enter the price of every pizza ordered that day.
You take the data from the servers’ receipts. Pizzas cost $8, $10, or (the
Heavenly Special) $15. You enter the data without dollar signs, and use
99 to indicate you’re finished for the day. Write a Java method to input
and validate a single pizza data item. If an incorrect price is entered, the
program should print an error message and prompt for corrected input.
Correct input is used to compute a daily total.

EXERCISE 6.13 Because the pizza prices in the previous exercise are
fixed, change the method so you can save time on keyboarding. Instead of
entering the price, you’ll enter codes of 1, 2, or 3 (corresponding to the $8,
$10, and $15 pizzas), and 0 to indicate that you’re finished. Validate that
the data value entered is correct and then convert it to the corresponding
price before returning it.

266 CHAPTER 6 • Control Structures

6.7 Example: Computing Averages

Suppose you want to compute the average of your exam grades in a
course. Grades, represented as real numbers, will be input from the key-Algorithm design: what kind of loop?
board using our KeyboardReader class. To signify the end of the list,
we will use a sentinel value—9999 or −1 or some other value that won’t
be confused with a legitimate grade. Because we do not know exactly
how many grades will be entered, we will use a noncounting loop in this
algorithm. Because there could be no grades to average, we will use a
while structure so it is possible to skip the loop entirely in the case that
there are no grades to average.

The algorithm should add each grade to a running total, keeping track
of the number of grades entered. Thus, this algorithm requires two vari-Algorithm design
ables: one to keep track of the running total and the other to keep track
of the count. Both should be initialized to 0. After the last grade has been
entered, the total should be divided by the count to give the average. In
pseudocode, the algorithm for this problem is as follows:� �

i n i t i a l i z e runningTotal to 0 // I n i t i a l i z e

i n i t i a l i z e count to 0
prompt and read the f i r s t grade // P r i m i n g r e a d

while the grade entered i s not 9999 {// S e n t i n e l t e s t

add i t to the runningTotal
add 1 to the count
prompt and read the next grade // U p d a t e

}
i f (count > 0) // G u a r d a g a i n s t d i v i d e b y 0

divide runningTotal by count
output the average as the r e s u l t
 	

Note that in this problem our loop variable, grade, is read before thePriming read
loop test is made. This is known as a priming read. It is necessary in this
case, because the loop test depends on the value that is read. Within the
loop’s body, the updater reads the next value for grade. This is a standard
convention for coding while structures that involve input, as this prob-
lem does. Note also that we must make sure that count is not 0 before
we attempt to compute the average because dividing by 0 would cause a
divide-by-zero error.

Translating the pseudocode algorithm into Java raises several issues.
Suppose we store each grade that is input in a double variable named
grade. The loop will terminate when grade equals 9999, so its entry con-
dition will be (grade != 9999). Because this condition uses grade, it
is crucial that the grade variable be initialized before the bound test is
made. This requires a priming read. By reading the first value of grade
before the loop entry condition is tested, ensures that the loop will be
skipped if the user happens to enter the sentinel (9999) on the very first
prompt. In addition to reading the first exam score, we must initialize
the variables used for the running total and the counter. Thus, for our
initialization step, we get the following code:Initialization step

SECTION 6.7 • Example: Computing Averages 267

� �
double runningTotal = 0 ;
i n t count = 0 ;
reader . prompt (” Input a grade (e . g . , 8 5 . 3) ” +

” or 9999 to i n d i c a t e the end of the l i s t >> ”) ;
double grade =

reader . getKeyboardDouble () ; // P r i m i n g i n p u t
 	
Within the body of the loop we must add the grade to the running total
and increment the counter. Since these variables are not tested in the loop
entry condition, they will not affect the loop control. Our loop updater
in this case must read the next grade. Placing the updater statement at
the end of the loop body will ensure that the loop terminates immediately Updater step
after the user enters the sentinel value:� �

while (grade != 9999) { // L o o p t e s t : s e n t i n e l

runningTotal += grade ;
count ++;
reader . prompt (” Input a grade (e . g . , 8 5 . 3) ” +

” or 9999 to i n d i c a t e the end of the l i s t >> ”) ;
grade = reader . getKeyboardDouble () ; // U p d a t e : i n p u t

} // w h i l e
 	
You can see that it is somewhat redundant to repeat the same statements
needed to do the initializating and the updating of the grade variable. A
better design would be to encapsulate these into a method and then call Modularity
the method both before and within the loop. The method should take care
of prompting the user, reading the input, converting it to double, and
returning the input value. The method doesn’t require a parameter:� �

private double promptAndRead () {
reader . prompt (” Input a grade (e . g . , 8 5 . 3) ” +

” or 9999 to i n d i c a t e the end of the l i s t >> ”) ;
double grade = reader . getKeyboardDouble () ;

// C o n f i r m i n p u t

System . out . p r i n t l n (”You input ” + grade + ”\n”) ;
return grade ;

}
 	
Note that we have declared this as a private method. It will be used
to help us perform our task but won’t be available to other objects. Such
private methods are frequently called helper methods.

This is a much more modular design. In addition to cutting down on
redundancy in our code, it makes the program easier to maintain. For
example, there is only one statement to change if we decide to change the

268 CHAPTER 6 • Control Structures

prompt message. It also makes the program easier to debug. Input errors
are now localized to the promptAndRead() method.

JAVA EFFECTIVE DESIGN Modularity. Encapsulating code in a
method is a good way to avoid redundancy in a program.

JAVA DEBUGGING TIP Localization. Encapsulating code in a
method removes the need to have the same code at several locations in
a program. By localizing the code in this way, you make it easier to
modify and debug.

Another advantage of encapsulating the input task in a separate method
is that it simplifies the task of calculating the average. This task should
also be organized into a separate method:� �

public double inputAndAverageGrades () {
double runningTotal = 0 ;
i n t count = 0 ;
double grade = promptAndRead () ; // P r i m i n g i n i t i a l i z e r

while (grade != 9999) { // L o o p t e s t : s e n t i n e l

runningTotal += grade ;
count ++;
grade = promptAndRead () ; // U p d a t e : g e t n e x t g r a d e

} // w h i l e

i f (count > 0) // G u a r d a g a i n s t d i v i d e −by− z e r o

return runningTotal / count ; // R e t u r n t h e a v e r a g e

e lse
return 0 ; // S p e c i a l (e r r o r) r e t u r n v a l u e

}
 	
Note that we have declared this as a public method. This will be the
method you call to calculate your course average.

Because we have decomposed the problem into its subtasks, each sub-
task is short and simple, making it easier to read and understand. AsMethod decomposition
we saw in the checkerboard example, the use of small, clearly-focused
methods is a desireable aspect of designing a program.

The complete Average.java application is shown in Figure 6.10. Its
overall design is similar to application programs we designed in previous
chapters. The only instance variable it uses is the KeyboardReader vari-
able. The other variables are declared locally, within the methods. In this
case, declaring them locally makes the algorithms easier to read.

One final point about this program is to note the care taken in the design
of the user interface to explain the program to the user, to prompt the user

SECTION 6.7 • Example: Computing Averages 269� �
import j ava . io . ∗ ;
public c l a s s Average { // C o n s o l e I /O

private KeyboardReader reader = new KeyboardReader () ;

private double promptAndRead () {
reader . prompt (” Input a grade (e . g . , 8 5 . 3) ” +

” or 9999 to i n d i c a t e the end of the l i s t >> ”) ;
double grade = reader . getKeyboardDouble () ;
System . out . p r i n t l n (”You input ” + grade + ”\n”) ; // C o n f i r m i n p u t

return grade ;
}
public double inputAndAverageGrades () {

double runningTotal = 0 ;
i n t count = 0 ;
double grade = promptAndRead () ; // I n i t i a l i z e : p r i m i n g i n p u t

while (grade != 9999) { // L o o p t e s t : s e n t i n e l

runningTotal += grade ;
count ++;
grade = promptAndRead () ; // U p d a t e : g e t n e x t g r a d e

} // w h i l e

i f (count > 0) // G u a r d a g a i n s t d i v i d e −by− z e r o

return runningTotal / count ; // R e t u r n t h e a v e r a g e

e lse
return 0 ; // S p e c i a l (e r r o r) r e t u r n v a l u e

}
public s t a t i c void main (S t r i n g argv []) {

System . out . p r i n t l n (” This program c a l c u l a t e s average grade . ”) ;
Average avg = new Average () ;
double average = avg . inputAndAverageGrades () ;
i f (average == 0) // E r r o r c h e c k

System . out . p r i n t l n (”You didn ’ t enter any grades . ”) ;
e lse

System . out . p r i n t l n (”Your average i s ” + average) ;
} // m a i n ()

} // A v e r a g e
 	
Figure 6.10: A program to compute average grade using a while struc-
ture.

before a value is input, and to confirm the user’s input after the program
has read it.

JAVA EFFECTIVE DESIGN User Interface. Whenever you ask a
user for input, the user should know why you are asking and what you
are asking for. Prompts should be used for this purpose. It is also a
good idea to confirm that the program has received the correct input.

270 CHAPTER 6 • Control Structures

6.8 Example: Data Validation

One frequent programming task is data validation. This task can take dif-
ferent forms depending on the nature of the program. One use for data
validation occurs when accepting input from the user.

In the program in the preceding section, suppose the user types−10 by
mistake when asked to input an exam grade. Obviously this is not a valid
exam grade and should not be added to the running total. How should a
program handle this task?

Because it is possible that the user may take one or more attempts toAlgorithm design
correct an input problem, we should use a do-while structure for this
problem. The program should first input a number from the user. The
number should then be checked for validity. If it is valid, the loop should
exit and the program should continue computing the before getting the
input average grade. If it is not valid, the program should print an error
message and input the number again. A flowchart for this algorithm is
shown in Figure 6.11.

For example, suppose only numbers between 0 and 100 are considered
valid. The data validation algorithm would be as follows:� �

do
Get the next grade // I n i t i a l i z e : p r i m i n g i n p u t

i f the grade < 0 or grade > 100 and grade != 9999
p r i n t an e r r o r message // E r r o r c a s e

// S e n t i n e l t e s t

while the grade < 0 or grade > 100 and grade != 9999
 	
Note here that initialization and updating of the loop variable are per-

User inputs

data

Process

data

Output error

message

No

Yes

Is it

correct?

Figure 6.11: Do-while is a good
structure for the data validation
algorithm.

formed by the same statement. This is acceptable because we must up-
date the value of grade on each iteration before checking its validity. Note
also that for this problem the loop-entry condition is also used in the if
statement to check for an error. This allows us to print an appropriate
error message if the user makes an input error.

Let’s incorporate this data validation algorithm into the promptAnd-
Read() method that we designed in the previous section (Fig. 6.10). The
revised method will handle and validate all input and return a number
between 0 and 100 to the calling method. To reflect its expanded pur-
pose, we will change the method’s name to getAndValidateGrade(),
and incorporate it into a revised application, which we name Validate
(Fig. 6.12).

6.9 Principles of Loop Design

Before moving on, it will be useful to summarize the main principles
involved in correctly constructing a loop.

• A counting loop can be used whenever you know in advance exactly
how many iterations are needed. Java’s for statement is an appropriate
structure for coding a counting loop.

SECTION 6.9 • Principles of Loop Design 271

� �
import j ava . io . ∗ ;
public c l a s s Val idate { // C o n s o l e i n p u t

private KeyboardReader reader = new KeyboardReader () ;

private double getAndValidateGrade () {
double grade = 0 ;
do {

reader . prompt (” Input a grade (e . g . , 8 5 . 3) ” +
” or 9999 to i n d i c a t e the end of the l i s t >> ”) ;

grade = reader . getKeyboardDouble () ;
i f ((grade != 9999) && ((grade < 0) | | (grade > 1 0 0))) // I f e r r o r

System . out . p r i n t l n (” Error : grade must be between 0 and 100 \n”) ;
e lse

System . out . p r i n t l n (”You input ” + grade + ”\n”) ;
// C o n f i r m i n p u t

} while ((grade != 9999) && ((grade < 0) | | (grade > 1 0 0))) ;
return grade ;

}
public double inputAndAverageGrades () {

double runningTotal = 0 ;
i n t count = 0 ;
double grade = getAndValidateGrade () ; // I n i t i a l i z e : p r i m i n g i n p u t

while (grade != 9999) { // L o o p t e s t : s e n t i n e l

runningTotal += grade ;
count ++;
grade = getAndValidateGrade () ; // U p d a t e : g e t n e x t g r a d e

} // w h i l e

i f (count > 0) // G u a r d a g a i n s t d i v i d e −by− z e r o

return runningTotal / count ; // R e t u r n t h e a v e r a g e

e lse
return 0 ; // S p e c i a l (e r r o r) r e t u r n v a l u e

}
public s t a t i c void main (S t r i n g argv []) {

System . out . p r i n t l n (” This program c a l c u l a t e s average grade . ”) ; // E x p l a i n

Average avg = new Average () ;
double average = avg . inputAndAverageGrades () ;
i f (average == 0) // E r r o r c h e c k

System . out . p r i n t l n (”You didn ’ t enter any grades . ”) ;
e lse

System . out . p r i n t l n (”Your average i s ” + average) ;
} // m a i n ()

} // V a l i d a t e
 	
Figure 6.12: A program to compute average grade using a while struc-
ture. This version validates the user’s input.

272 CHAPTER 6 • Control Structures

• A while structure should be used when the problem suggests that the
loop body may be skipped entirely. Java’s while statement is specially
designed for the while structure.
• A do-while structure should be used only when a loop requires one or

more iterations. Java’s do-while statement is specially designed for the
do-while structure.
• The loop variable is used to specify the loop-entry condition. It must be

initialized to an appropriate initial value, and it must be updated on
each iteration of the loop.
• A loop’s bound may be a count, a sentinel, or, more generally, a conditional

bound. It must be correctly specified in the loop-entry expression, and
progress toward the bound must be made in the updater.
• An infinite loop may result if the initializer, loop-entry expression, or

updater expression is not correctly specified.

The loop types are also summarized in Table 6.1.

TABLE 6.1 A summary of the design decisions required when coding a loop

Use If Java Statement

Counting loop Number of iterations known in advance for

While structure Number of iterations not known while
Loop may not be entered at all

Do-while structure Number of iterations not known do-while
Loop must be entered at least once

SELF-STUDY EXERCISE

EXERCISE 6.14 For each of the following problems, decide whether
a counting loop structure, a while structure, or a do-while structure
should be used, and write a pseudocode algorithm.

• Print the names of all visitors to your Web site.

• Validate that a number input by the user is positive.

• Change all the backslashes (\) in a Windows Web page address to the
slashes (/) used in a Unix Web page address.

• Find the car with the best miles-per-gallon ratio among the cars in
the Consumer Reports database.

SECTION 6.10 • The switch Multiway Selection Structure 273

6.10 The switch Multiway Selection Structure

Another selection structure to add to our repertoire is the switch/break
structure. It is meant to provide a shorthand way of coding the following
type of multiway selection structure:� �

i f (i n t e g r a l V a r == i n te g ra l Va l ue 1)
// s o m e s t a t e m e n t s

e lse i f (i n t e g r a l V a r == i n te g ra l Va l ue 2)
// s o m e s t a t e m e n t s

e lse i f (i n t e g r a l V a r == i n te g ra l Va l ue 3)
// s o m e s t a t e m e n t s

e lse // s o m e s t a t e m e n t s
 	
Note that each of the conditions in this case involves the equality of an
integral variable and an integral value. This type of structure occurs so
frequently in programs that most languages contain statements specially
designed to handle it. In Java, we use a combination of the switch and
break statements to implement multiway selection.

The switch is designed to select one of several actions depending on
the value of some integral expression:� �

switch (i n t e g r a l E x p r e s s i o n)
{ case i n t e gr a lV a lu e 1 :

// s o m e s t a t e m e n t s

case i n t e gr a lV a lu e 2 :
// s o m e s t a t e m e n t s

case i n t e gr a lV a lu e 3 :
// s o m e s t a t e m e n t s

default :
some statements

}
 	
The integralExpression must evaluate to a primitive integral value of type
byte, short, int, char, or boolean. It may not be a long, float, Integral expression
double, or a class type. The integralValues must be literals or final vari-
ables. They serve as labels in the one or more case clauses that make up
the switch statement body. The default clause is optional, but it is a
good idea to include it.

A switch statement is executed according to the following rules:

Rule 1. The integralExpression is evaluated.

Rule 2. Control passes to the statements following the case label whose
value equals the integralExpression or, if no cases apply, to the default
clause.

Rule 3. Beginning at the selected label or at the default, all of the state-
ments up to the end of the switch are executed.

274 CHAPTER 6 • Control Structures

Consider the following example:� �
i n t m = 2 ;
switch (m)
{ case 1 :

System . out . p r i n t (” m = 1”) ;
case 2 :

System . out . p r i n t (” m = 2”) ;
case 3 :

System . out . p r i n t (” m = 3”) ;
default :

System . out . p r i n t (” d e f a u l t case ”) ;
}
 	

In this case, because m equals 2, the following output would be produced:� �
m = 2 m = 3 default case
 	

Obviously, this output does not match the following if-else multiway
selection structure, which would output, simply, m = 2:� �

i n t m = 2 ;
i f (m == 1)

System . out . p r i n t (” m = 1”) ;
e lse i f (m == 2)

System . out . p r i n t (” m = 2”) ;
e lse i f (m == 3)

System . out . p r i n t (” m = 3”) ;
e lse

System . out . p r i n t (” d e f a u l t case ”) ;
 	
The reason for this disparity is that the switch executes all statements
following the label that matches the value of the integralExpression (see
again Rule 3 on the previous page).

In order to use the switch as a multiway selection, you must force it to
break out of the case clause after executing that clause’s statements:� �

i n t m = 2 ;
switch (m)
{ case 1 :

System . out . p r i n t (” m = 1”) ;
break ;

case 2 :
System . out . p r i n t (” m = 2”) ;
break ;

case 3 :
System . out . p r i n t (” m = 3”) ;
break ;

default :
System . out . p r i n t (” d e f a u l t case ”) ;

}
 	

SECTION 6.10 • The switch Multiway Selection Structure 275

In this example, the break statement causes control to pass to the end
of the switch, with the effect being that one and only one case will be
executed within the switch. Thus, the output of this code segment will
be simply m = 2, matching exactly the behavior of the multiway if-else
selection structure (Fig. 6.13).

case1 case2

statement1 statement2

break

case n

statement n

break

F F F

TTT

break

Figure 6.13: Flowchart of the mul-
tiway switch structure. Note that
because of the break statement,
one and only one case is executed.

JAVA PROGRAMMING TIP Multiway Selection. A typical use for
the switch statement is to use it together with break to code a
multiway selection structure.

JAVA LANGUAGE RULE break. The break statement transfers
control out of its enclosing block, where a block is any sequence of
statements contained within curly brackets { and }.

JAVA DEBUGGING TIP Switch without break. A common error in
coding the switch-based multiway selection is forgetting to put a
break statement at the end of each clause. This may cause more than
one case to be executed.

276 CHAPTER 6 • Control Structures

SELF-STUDY EXERCISES

EXERCISE 6.15 Identify any errors in the following switch structures
(if there is no error, specify the output):� �
(a) i n t k = 0 ;

switch (k)
case 0 :

System . out . p r i n t l n (” zero ”) ;
break ;

case 1 :
System . out . p r i n t l n (”one”) ;
break ;

default :
System . out . p r i n t l n (” d e f a u l t ”) ;
break ;
 	� �

(b) i n t k = 0 ;
switch (k + 1)
{ case 0 :

System . out . p r i n t l n (” zero ”) ;
break ;

case 1 :
System . out . p r i n t l n (”one”) ;
break ;

default :
System . out . p r i n t l n (” d e f a u l t ”) ;
break ;

}
 	� �
(c) i n t k = 6 ;

switch (k / 3 . 0)
{ case 2 :

System . out . p r i n t l n (” zero ”) ;
break ;

case 3 :
System . out . p r i n t l n (”one”) ;
break ;

default :
System . out . p r i n t l n (” d e f a u l t ”) ;
break ;

}
 	
EXERCISE 6.16 Flavors of ice cream are represented as integers where

0 is vanilla, 1 is chocolate, and 2 is strawberry. Write a switch statement
that checks an integer variable flavor and prints out the name of the ice
cream flavor or prints “Error” in the default case.

EXERCISE 6.17 Modify your solution to the previous exercise to use
constants (final variables) to represent the ice cream flavors.

SECTION 6.11 • OBJECT-ORIENTED DESIGN:Structured Programming 277

6.11 OBJECT-ORIENTED DESIGN:
Structured Programming

Structured programming is the practice of writing programs that are built up
from a small set of predefined control structures. As an overall approach
to programming, structured programming has largely been superseded
by the object-oriented approach. Nevertheless, its design principles are
still relevant to the design of the algorithms and methods that make up a
program’s objects.

The principles of structured programming seem so obvious today that
it may be difficult to appreciate their importance. In the 1960s and 1970s,
one of the main controls used in programs was the infamous go to state-
ment, which could be used to transfer control of a program to any arbi-
trary location within it, and from there to any other arbitrary location,
and so on. This led to incredibly complex and ill-formed programs—so
called “spaghetti code”—that were almost impossible to understand and Spaghetti code
modify.

Structured programming evolved in reaction to the unstructured soft-
ware development practices of the 1960s, which were fraught with budget
overruns, costly delays, and failed products. One of the classic research
results of that era was a 1966 paper by Boehm and Jacopini that showed
that any program using go to’s could be represented by an equivalent pro-
gram that used a sequence of two types of controls: if/else and while
structures. Another influential paper by Edgar Dikjstra (“GoTo Statement
Considered Harmful”) pointed out the various ways in which the go to
statement could lead to impossibly complex programs.

The Pascal language, introduced by Nicklaus Wirth in 1971, was de-
signed to promote structured programming techniques and became the
language of choice within academic institutions because of its suitability
as a teaching language. In Pascal, the go to was replaced with the four
structures that control the flow of execution in a program (Fig. 6.14):

method2method1

Sequence

Repetition while loop Method call and return

True

True

False

False

Selection if/else
Figure 6.14: Flowcharts of the four
types of control structures. Each
small rectangle represents a single
executable statement.

• Sequence—The statements in a program are executed in sequential or-
der unless their flow is interrupted by one of the following control
structures.

278 CHAPTER 6 • Control Structures

• Selection—The if, if/else, and switch statements are branching
statements that allow choice through the forking of the control path
into two or more alternatives.
• Repetition—The for, while, and do-while statements are looping

statements that allow the program to repeat a sequence of statements.
• Method Call—Invoking a method transfers control temporarily to a

named method. Control returns to the point of invocation when the
method is completed.

No matter how large or small a program you write, its flow of control can
be constructed as a combination of these four basic types of structures.

Preconditions and Postconditions
The Java language supplies us with a good collection of control structures,
and Java’s syntax constrains the way we can use them. One of the fea-
tures of the four control structures is that each has a single entry point
and exit (Fig. 6.14). This is an extremely important property. To grasp its
importance, consider the following debugging problem:� �

k = 0 ; // 1 . U n s t r u c t u r e d c o d e

System . out . p r i n t l n (”k= ” + k) ; // 2 . k s h o u l d e q u a l 0 h e r e

goto l a b e l 1 ; // 3 .

l a b e l 2 :
System . out . p r i n t l n (”k= ” + k) ; // 4 . k s h o u l d e q u a l 1 h e r e
 	

In this example a goto statement is used to jump to label1, a label that
marks a section of code somewhere else in the program. Suppose we’re
trying to determine how k has acquired an erroneous value and that its
value is correct in line 2 of this sequence. Given the go to statement on
line 3, there’s no guarantee that control will ever return to the println()
statement on line 4. Thus, in unstructured code it is very difficult to nar-
row the scope of an error to a fixed segment of code. Because the go to
statement can transfer control anywhere in the program, with no guar-
antee of return, any segment of code can have multiple entry points and
multiple exits.

Now contrast the unstructured code with the following well-structured
code:� �

k = 0 ; // 1 . S t r u c t u r e d c o d e

System . out . p r i n t l n (”k= ” + k) ; // 2 . k s h o u l d e q u a l 0 h e r e

someMethod () ; // 3 .

System . out . p r i n t l n (”k= ” + k) ; // 4 . k s h o u l d e q u a l 1 h e r e
 	
In this case, we can be certain that control will eventually return to line 4.
If k’s value is erroneous on line 4, we can trace through someMethod() toDebugging with println()
find the error. Because any segment of a structured program has a single
entry and exit, we can use a pair of println() statements in this way to
converge on the location of the program bug.

An important implication of the single-entry/single-exit property is
that we can use preconditions and postconditions to help us design and
debug our code. The previous example provided a simple example: The

SECTION 11 • OOD: Structured Programming 279

precondition is that k should equal 0 on line 2, and the postcondition is that
k should equal 1 on line 4. Figure 6.15 shows some additional examples.

•� �
i n t k = 0 ; // P r e c o n d i t i o n : k == 0

k = 5 ; // A s s i g n m e n t t o k

// P o s t c o n d i t i o n : k == 5
 	
•� �

i n t k = 0 ; // P r e c o n d i t i o n : k == 0

while (k < 100) { // W h i l e l o o p

k = 2 ∗ k + 2 ;
}
// P o s t c o n d i t i o n : k >= 1 0 0
 	

•� �
/∗
∗ f a c t o r i a l (n) :

∗ f a c t o r i a l (n) i s 1 i f n i s 0

∗ f a c t o r i a l (n) i s n ∗ n−1 ∗ n−2 ∗ . . . ∗ 1 i f n > 0

∗ P r e c o n d i t i o n : n >= 0

∗ P o s t c o n d i t i o n :

∗ f a c t o r i a l (n) = 1 i f n = 0

∗ = n ∗ n−1 ∗ n−2 ∗ . . . ∗ 1 i f n > 0

∗/

public i n t f a c t o r i a l (i n t n) {
i f (n == 0)

return 1 ;
e lse {

i n t f = 1 ; // I n i t a t e m p o r a r y v a r i a b l e

for (i n t k = n ; k >= 1 ; k−−) // F o r n down t o 1

f = f ∗ k ; // A c c u m u l a t e t h e p r o d u c t

return f ; // R e t u r n t h e f a c t o r i a l

} // e l s e

} // f a c t o r i a l ()
 	
Figure 6.15: Using pre- and postconditions to document code.

In the first example, we use pre- and postconditions to define the se-
mantics of an assignment statement. No matter what value k has before
the assignment, the execution of the assignment (k = 5) will make the
postcondition (k == 5) true.

In the second example, the postcondition follows from the semantics of
the while loop. Because the loop-entry condition is k < 100, when the
loop exits the postcondition (k >= 100) must be true.

The third example shows how pre- and postconditions can be used to
design and document methods. The factorial(n) is defined for n ≥ 0 as
follows:� �

f a c t o r i a l (n) i s 1 , i f n == 0
f a c t o r i a l (n) i s n ∗ n−1 ∗ n−2 ∗ . . . ∗ 1 , i f n > 0
 	

280 CHAPTER 6 • Control Structures

In other words, the factorial of N is defined as the cumulative product of
multiplying 1 times 2, times 3, and so on up to N. For example, if N is 5,
then factorial(5) is 1 * 2 * 3 * 4 * 5 = 120.

Note how the factorial computation is done in the method. The variable
f, which is used to accumulate the product, is initialized to 1. Then on each
iteration of the for loop, f is multiplied by k and the product is assigned
back to f. This is similar to the way we accumulate a sum, except in this
case we are accumulating a product.

The precondition on the factorial() method represents the condi-
tion that must be true in order for the method to work correctly. Factorial
is undefined for n < 0, so it is important that n be greater than or equal
to 0 whenever this method is called. Given that the precondition holds,
the postcondition gives a precise specification of what must be true when
the method is finished.

Design: Defensive Programming
The pre- and postconditions for a method can be used to design de-
fensive code—that is, code that guards against errors. For exam-
ple, what action should factorial() take if its precondition fails to
hold? In Java, the best way to handle this situation is to throw an
IllegalArgumentException, as the following example illustrates:� �

public i n t f a c t o r i a l (i n t n) {
i f (n < 0) // P r e c o n d i t i o n f a i l u r e

throw new I l legalArgumentException (” F a c t o r i a l : ”+ n) ;
i f (n == 0)

return 1 ;
e lse {

i n t f = 1 ; // I n i t a t e m p o r a r y v a r i a b l e

for (i n t k = n ; k >= 1 ; k−−) // F o r n down t o 1

f = f ∗ k ; // A c c u m u l a t e t h e p r o d u c t

return f ; // R e t u r n t h e f a c t o r i a l

}
} // f a c t o r i a l ()
 	

An exception is an erroneous condition (an error) that arises during
the running of a program. An Exception is an object that encap-
sulates information about the erroneous condition. A program can
throw an Exception, thereby stopping the program, when an er-
roneous condition is detected. In this example, we create a new
IllegalArgumentException that would report the illegal value of n
with something like the following error message:� �

Exception in thread ”main” java . lang . I l legalArgumentException :
F a c t o r i a l : −1

a t Test . f a c t o r i a l (Param . java : 5)
a t Test . main (Param . java : 1 8)
 	

You have undoubtedly already encountered thrown exceptions during
program development. Java has an extensive hierarchy of Exceptions,
which we will cover in some depth in Chapter 11. For now, however, we
just note how to use the IllegalArgumentException. As its name

SECTION 11 • OOD: Structured Programming 281

implies, an IllegalArgumentException is used when an argument in
a method call is not legal.

Rather than continuing the program with an erroreous data value,
throwing an exception causes the program to stop and print an error mes-
sage. Determining whether an argument is legal or illegal is an impor-
tant use of the method’s preconditions. The failure of the precondition
in factorial() points to a problem elsewhere in the program, because
it is doubtful that the program deliberately passed a negative value to
factorial(). The discovery of this error should lead to modifications
in that part of the program where factorial() was invoked—perhaps
to some validation of the user’s input:� �

i n t num = I n t e g e r . p a r s e I n t (t e x t I n . getText ()) ;
i f (num >= 0) // I f f a c t o r i a l () p r e c o n d i t i o n v a l i d

factNum = f a c t o r i a l (num) ; // C o m p u t e f a c t o r i a l

e lse
System . out . p r i n t l n (” Error ”) ; // R e p o r t i n p u t e r r o r }
 	

This would be the traditional way to handle this kind of error.

Using Pre- and Postconditions
The use of preconditions and postconditions in the ways we’ve described
can help improve a program’s design at several distinct stages of its
development:

• Design stage: Using pre- and postconditions in design helps to clarify
the design and provides a precise measure of correctness.
• Implementation and testing stage: Test data can be designed to demon-

strate that the preconditions and postconditions hold for any method
or code segment.
• Documentation stage: Using pre- and postconditions to document the

program makes the program more readable and easier to modify and
maintain.
• Debugging stage: Using the pre- and postconditions provides precise

criteria that can be used to isolate and locate bugs. A method is incor-
rect if its precondition is true and its postcondition is false. A method
is improperly invoked if its precondition is false.

Like other programming skills and techniques, learning how to use pre-
and postconditions effectively requires practice. One way to develop these
skills is to incorporate pre- and postconditions into the documentation of
the methods you write for laboratories and programming exercises. Ap-
pendix A provides guidelines on how to incorporate pre- and postcondi-
tions into your program’s documentation. However, it would be a mistake
to get in the habit of leaving the identification of pre- and postconditions
to the documentation stage. The method’s documentation, including its
pre- and postconditions, should be developed during the design stage and
should play a role in all aspects of program development.

Effective Program Design
What we’re really saying here is that using pre- and postconditions forces
you to analyze your program’s logic. It is not enough to know that a single

282 CHAPTER 6 • Control Structures

isolated statement within a program works correctly at the present time.
You have to ask yourself: Will it continue to work if you change some
other part of the program? Will other parts of the program continue to
work if you revise it? No matter how clever you are, it is not possible to
keep an entire model of a good-sized program in your head at one time.
It is always necessary to focus on a few essential details and leave aside
certain others. Ideally, what you hope is that the details you’ve left aside
for the moment aren’t the cause of the current bug you’re trying to fix.
Using pre- and postconditions can help you determine the correctness of
the details you choose to set aside.

JAVA EFFECTIVE DESIGN Pre- and Postconditions. Pre- and
postconditions are an effective way of analyzing the logic of your
program’s loops and methods. They should be identified at the
earliest stages of design and development. They should play a role in
the testing and debugging of the program. Finally, they should be
included, in a systematic way, in the program’s documentation.

JAVA PROGRAMMING TIP Develop your program’s
documentation at the same time that you develop its code and include
the pre- and postconditions in the documentation.

As the programs you write become longer and more complex, the chances
that they contain serious errors increase dramatically. There’s no real way
to avoid this complexity. The only hope is to try to manage it. In addi-
tion to analyzing your program’s structure, another important aspect of
program design is the attempt to reduce its complexity.

JAVA EFFECTIVE DESIGN Reducing Complexity. Design your
programs with an aim toward reducing their complexity.

Perhaps the best way to reduce complexity is to build your programs us-
ing a small collection of standard structures and techniques. The basic
control structures (Fig. 6.14) help reduce the potential complexity of a pro-
gram by constraining the kinds of branching and looping structures that
can be built. The control structures help to manage the complexity of your

SECTION 11 • OOD: Structured Programming 283

program’s algorithms. In the same way, the following practices can help
reduce and manage the complexity in a program.

JAVA PROGRAMMING TIP Standard Techniques. Acquire and use
standard programming techniques for standard programming
problems. For example, using a temporary variable to swap the values
of two variables is a standard technique.

JAVA PROGRAMMING TIP Encapsulation. Use methods wherever
appropriate in your own code to encapsulate important sections of
code and thereby reduce complexity.

JAVA PROGRAMMING TIP Code Reuse. Instead of reinventing the
wheel, use library classes and methods whenever possible. These have
been carefully designed by experienced programmers. Library code
has been subjected to extensive testing.

SELF-STUDY EXERCISES
EXERCISE 6.18 Identify the pre- and postconditions on j and k where

indicated in the following code segment:� �
i n t j = 0 ; k = 5 ;
do {

i f (k % 5 == 0) {
// P r e c o n d i t i o n

j += k ;
k−−;

}
e lse k ∗= k ;

} while (j <= k) ;
// P o s t c o n d i t i o n
 	

EXERCISE 6.19 Identify the pre- and postconditions for the following
method, which computes xn for n≥ 0:� �
public double power (double x , i n t n) {

double pow = 1 ;
for (i n t k = 1 ; k <= n ; k++)

pow = pow ∗ x ;
return pow ;

} // p o w e r ()
 	

284 CHAPTER 6 • Control Structures

Special Topic: What Can Be Computed?

Did you ever wonder whether there are problems that cannot be solved by
a computer, no matter what kind of control structures are used? Well, back
in 1939, in his seminal paper titled “On Computable Numbers,” Alan Tur-
ing proved that indeed there are an infinite number of unsolvable prob-
lems. Prior to this, mathematicians and logicians thought all problems
could be solved. So Turing’s proof was quite a blow!

To help him prove this point, Turing defined an abstract computer,
which has come to be known as a Turing machine. A Turing machine
has an alphabet of symbols; a read/write head; an infinitely long tape
on which the read/write head can write symbols, and from which it can
also read symbols; and a control unit, which controls the movement and
action of the read/write head. Note that the Turing machine elements
correspond to key components of a real computer—although Turing in-
vented this concept a decade before the first computers were developed.
The read/write head corresponds to a computer’s central processing unit
(CPU). The tape corresponds to the computer’s memory. And the control
unit corresponds to the computer program.

A Turing machine represents a purely abstract concept of computa-
tion. It represents the pure idea of an algorithmic solution to a problem.
Equipped with this concept, Turing was able to prove that there are un-
solvable problems—that is, problems for which no algorithm can arrive at
a solution.

One such problem is the halting problem. This problem asks whether an
algorithm can be devised to determine whether an arbitrary program will
eventually halt. If there were such an algorithm, it could be used to detect
programs that contain infinite loops, a service that might be really helpful
in an introductory computing lab, among other places! But, alas, there can
be no such algorithm.

Here’s an outline of a proof that shows that the halting problem is un-
solvable. (This particular version of the proof was suggested by J. Glenn
Brookshear in Computer Science: An Overview, Benjamin-Cummings, 1985.)

Suppose you had a program, P, that solves the halting problem. That is,
whenever P is given a self-halting program, it sets a variable isTerminating
to true, and otherwise it sets isTerminating to false. Now let’s create a new
version of P, named P′, which is identical to P except that right after where
P sets isTerminating to true or false, P′ contains the following loop:� �

while (i sTerminat ing == t rue) ; // I n f i n i t e i f i s T e r m i n a t i n g t r u e
 	
In other words, if the input to P′ is a self-terminating program, then P′
will enter an infinite loop and it won’t terminate. Otherwise, if a non-
self-terminating program is input to P′, P′ will skip the loop and will
terminate.

Now what if we give a representation of P′ to itself. Will it halt? The
answer generates a contradiction: If P′ is a self-terminating program, then
when it is input to itself, it will not terminate. And if P′ is not self-
terminating, when it is input to itself, it will terminate. Because our as-
sumption that P solves the halting problem has led to a contradiction, we

CHAPTER 6 • Chapter Summary 285

have to conclude that it wasn’t a very good assumption in the first place.
Therefore, there is no program that can solve the halting problem.

The topic of computability is a fundamental part of the computer sci-
ence curriculum, usually taught in a sophomore- or junior-level theory of
computation course.

CHAPTER SUMMARYTechnical Terms

conditional loop
counting loop
do-while statement
infinite loop
initializer
limit bound
loop body

loop bound
loop entry condition
nested loop
postcondition
precondition
priming read
repetition structure

sentinel bound
unit indexing
updater
while statement
zero indexing

Summary of Important Points

• A repetition structure is a control structure that allows a statement or
sequence of statements to be repeated.
• All loop structures involve three elements—an initializer, a loop entry

condition or a loop boundary condition, and an updater.
• When designing a loop, it is important to analyze the loop structure to

make sure that the loop bound will eventually be satisfied.
• The for statement has the following syntax:
for (initializer ; loop entry condition ; updater)

for loop body ; TABLE 6.2 A summary
of various loop bounds

Bound Example

Counting k < 100
Sentinel input != 9999
Flag done != true
Limit amount < 0.5

• The while statement takes the following form:
while (loop entry condition)

loop body ;
• The do-while statement has the following general form:

do
loop body ;

while (loop entry condition) ;
• When designing a loop, it is important to analyze the loop structure to

make sure that the loop bound will eventually be satisified. Table 6.2
summarizes the types of loop bounds that we have identified.
• Structured programming is the practice of writing programs that are

built up from a small set of predefined control structures—the sequence,
selection, repetition, and method-call structures. An important feature of
these structures is that each has a single entry and exit.
• A precondition is a condition that must be true before a certain code

segment executes. A postcondition is a condition that must be true when
a certain code segment is finished. Preconditions and postconditions
should be used in the design, coding, documentation, and debugging
of algorithms and methods.

286 CHAPTER 6 • Control Structures

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 6.1 Identify the syntax error in the following for loop statements:

a. Commas are used instead of semicolons in the header.� �
for (i n t k = 5 ; k < 1 0 0 ; k++)

System . out . p r i n t l n (k) ;
 	
b. There shouldn’t be 3 semicolons in the header� �

for (i n t k = 0 ; k < 12 ; k−−)
System . out . p r i n t l n (k) ;
 	

SOLUTION 6.2 Identify those statements that result in infinite loops:

a. Infinite loop because k is never incremented.

b. Infinite loop because k is always odd and thus never equal to 100.

SOLUTION 6.3 Your sister is learning to count by fours. Write a for loop that
prints the following sequence of numbers: 1, 5, 9, 13, 17, 21, 25.� �
for (i n t k = 1 ; k <= 2 5 ; k = k+4)

System . out . p r i n t (k + ” ”) ;
 	
SOLUTION 6.4 What value will j have when the following loop terminates? An-
swer: j will be undefined when the loop terminates. It is a local variable whose
scope is limited to the loop body.� �
for (i n t i = 0 ; i < 1 0 ; i ++)
{

i n t j ;
j = j + 1 ;

}
 	
SOLUTION 6.5 Write a nested for loop to print the following geometric pat-
tern:� �
#
#
#
#
#

for (i n t row = 1 ; row <= 5 ; row++) { // For each row
for (i n t c o l = 1 ; c o l <= row ; c o l ++) // Columns per row

System . out . p r i n t (’ # ’) ;
System . out . p r i n t l n () ; // New l i n e

} // row
 	
SOLUTION 6.6 Identify the syntax error in the following while structures:

CHAPTER 6 • Solutions to Self-Study Exercises 287

a. � �
i n t k = 5 ;
while (k < 100) {

System . out . p r i n t l n (k) ;
k++ << Missing semicolon

}
 	
b. � �

i n t k = 0 ;
while (k < 1 2 ;) { << Extra semicolon

System . out . p r i n t l n (k) ;
k++;

}
 	
SOLUTION 6.7 Determine the output and/or identify the error in each of the
following while structures.

a. � �
i n t k = 0 ;
while (k < 100)

System . out . p r i n t l n (k) ; << Missing updater in loop body
 	
Output: infinite loop prints 0 0 0 0 0...

b. � �
while (k < 100) { << Missing i n i t i a l i z e r

System . out . p r i n t l n (k) ;
k++;

}
 	
Output: unpredictable since k’s initial value is not known

SOLUTION 6.8 Your younger sister is now learning how to count by sixes. Write
a while loop that prints the following sequence of numbers: 0, 6, 12, 18, 24, 30, 36.� �

i n t k = 0 ; // I n i t i a l i z e r
while (k <= 36) { // Loop−entry condi t ion

System . out . p r i n t l n (k) ;
k += 6 ; // Updater

}
 	
SOLUTION 6.9 If N is even, divide it by 2. If N is odd, subtract 1 and then
divide it by 2. This will generate a sequence that is guaranteed to terminate at 0.
For example, if N is initially 15, then you get the sequence 15, 7, 3, 1, 0. Write a
method that implements this sequence using a while statement.� �
public s t a t i c void sub1Div2 (i n t N) {

while (N != 0) {
System . out . p r i n t (N + ” ”) ;
i f (N % 2 == 0)

N = N / 2 ;
e lse

N = (N − 1) / 2 ;
}
System . out . p r i n t l n (N) ;

} // sub1Div2 ()
 	
SOLUTION 6.10 Identify the syntax error in the following do-while structures:

288 CHAPTER 6 • Control Structures

a. � �
i n t k = 0 ;
do while (k < 100) << Misplaced condi t ion
{

System . out . p r i n t l n (k) ;
k++;

} << Belongs here
 	
b. � �

i n t k = 0 ;
do {

System . out . p r i n t l n (k) ;
k++;

} while (k < 12) << Missing semicolon
 	

SOLUTION 6.11 Your sister has moved on to counting by sevens. Write a
do-while loop that prints the following sequence of numbers: 1, 8, 15, 22, 29,
36, 43.� �
n = 1 ; // I n i t i a l i z e r
do {

System . out . p r i n t (n + ” ”) ;
n += 7 ; // Updater

} while (n <= 4 3) ; // Loop entry condi t ion
 	

SOLUTION 6.12 Write a method to input and validate pizza sales.� �
public i n t getAndValidatePizzaPrice () {// Uses KeyboardReader

i n t pizza = 0 ;
do {

reader . prompt (” Input a pizza p r i c e (8 , 10 , or 15) ”) ;
reader . prompt (” or 99 to end the l i s t >> ”) ;
pizza = reader . getKeyboardInteger () ;
i f ((pizza != 99) && (pizza != 8) && (pizza != 10) &&

(pizza != 1 5))
System . out . p r i n t l n (” Error : you ’ ve entered an ”

+ ” i n v a l i d pizza p r i c e\n”) ; // Error input
e lse // OK input

System . out . p r i n t l n (”You input ” + pizza + ”\n”) ;
} while ((pizza != 99) && (pizza != 8) &&

(pizza != 10) && (pizza != 1 5)) ;
return pizza ;

} // getAndVal idatePizzaPrice ()
 	

CHAPTER 6 • Solutions to Self-Study Exercises 289

SOLUTION 6.13 Write a method to input and validate pizza sales using the
numbers 1, 2, and 3 to represent pizzas at different price levels.� �
public i n t getAndValidatePizzaPrice () { // Uses KeyboardReader

i n t pizza = 0 ;
do {

reader . prompt (” Input a 1 ,2 or 3 to i n d i c a t e pizza ”
+ ” p r i c e (1 ($8) , 2 ($10) , or 3 ($15)) ”) ;

reader . prompt (” or 0 to end the l i s t >> ”) ;
pizza = reader . getKeyboardInteger () ;
i f ((pizza < 0) | | (pizza > 3)) // Error check

System . out . p r i n t l n (” Error : you ’ ve entered an ”
+ ” i n v a l i d value\n”) ;

e lse // OK input
System . out . p r i n t l n (”You input ” + pizza + ”\n”) ;

} while ((pizza < 0) | | (pizza > 3)) ;
i f (pizza == 1)

return 8 ;
e lse i f (pizza == 2)

return 1 0 ;
e lse i f (pizza == 3)

return 1 5 ;
e lse

return 0 ;
} // getAndVal idatePizzaPrice ()
 	
SOLUTION 6.14 For each of the following problems, decide whether a counting
loop structure, a while structure, or a do-while structure should be used, and
write a pseudocode algorithm.
• Printing the names of all the visitors to a Web site could use a counting loop

because the exact number of visitors is known.� �
for each name in the v i s i t o r ’ s log

p r i n t the name
 	
• Validating that a user has entered a positive number requires a do-while

structure in which you repeatedly read a number and validate it.� �
do

read a number
i f number i s inval id , p r i n t e r r o r message

while number i s i n v a l i d
 	
• Changing all the backslashes (\) in a Windows Web page address, to the slashes

(/) used in a Unix Web page address.� �
for each c h a r a c t e r in the Web page address

i f i t i s a backslash r e p l a c e i t with s l a s h
 	
• Finding the largest in a list of numbers requires a while loop to guard against

an empty list.� �
i n i t i a l i z e maxMPG to s m a l l e s t p o s s i b l e number
while there are more c a r s in the database

i f current car ’ s MPG i s g r e a t e r than maxMPG
r e p l a c e maxMPG with i t
 	

SOLUTION 6.15 Identify any errors in the following switch structures (if there
is no error, specify the output):

290 CHAPTER 6 • Control Structures

a. � �
i n t k = 0 ;
switch (k) // Syntax e r r o r : missing braces
case 0 :

System . out . p r i n t l n (” zero ”) ;
break ;

case 1 :
System . out . p r i n t l n (”one”) ;
break ;

default :
System . out . p r i n t l n (” d e f a u l t ”) ;
break ;
 	

b. � �
i n t k = 0 ;
switch (k + 1)
{

case 0 :
System . out . p r i n t l n (” zero ”) ;
break ;

case 1 :
System . out . p r i n t l n (”one”) ; // Output ”one”
break ;

default :
System . out . p r i n t l n (” d e f a u l t ”) ;
break ;

}
 	
c. � �

i n t k = 6 ;
switch (k / 3 . 0) // Syntax e r r o r : not an i n t e g r a l value
{

case 2 :
System . out . p r i n t l n (” zero ”) ;
break ;

case 3 :
System . out . p r i n t l n (”one”) ;
break ;

default :
System . out . p r i n t l n (” d e f a u l t ”) ;
break ;

}
 	

SOLUTION 6.16 A switch statement to print ice cream flavors:� �
switch (f l a v o r)
{

case 1 :
System . out . p r i n t l n (” V a n i l l a ”) ;
break ;

case 2 :
System . out . p r i n t l n (” Chocolate ”) ;
break ;

case 3 :
System . out . p r i n t l n (” Strawberry ”) ;
break ;

default :
System . out . p r i n t l n (” Error ”) ;

}
 	

CHAPTER 6 • Exercises 291

SOLUTION 6.17� �
public f i n a l i n t VANILLA = 0 ,

CHOCOLATE = 1 ,
STRAWBERRY = 2 ;

switch (f l a v o r)
{

case VANILLA:
System . out . p r i n t l n (” V a n i l l a ”) ;
break ;

case CHOCOLATE:
System . out . p r i n t l n (” Chocolate ”) ;
break ;

case STRAWBERRY:
System . out . p r i n t l n (” Strawberry ”) ;
break ;

default :
System . out . p r i n t l n (” Error ”) ;

}
 	
SOLUTION 6.18 Identify the pre- and postconditions on j and k where indicated
in the following code segment:� �
i n t j = 0 ; k = 5 ;
do {

i f (k % 5 == 0) {
// Precondi t ion : j <= k

j += k ;
k−−;

}
e lse k ∗= k ;

} while (j <= k) ;
// Postcondi t ion : j > k
 	

SOLUTION 6.19 Identify the pre- and postconditions for the following method,
which computes xn for n >= 0.

� �
// Precondi t ion : N >= 0
// Postcondi t ion : power (x , n) == x to the n
public double power (double x , i n t n) {

double pow = 1 ;
for (i n t k = 1 ; k <= n ; k++)

pow = pow ∗ x ;
return pow ;

} // power ()
 	
EXERCISESEXERCISE 6.1 Explain the difference between the following pairs of terms:

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

a. Counting loop and conditional loop.
b. For statement and while statement.
c. While statement and do-while statement.
d. Zero indexing and unit indexing.
e. Sentinel bound and limit bound.
f. Counting bound and flag bound.
g. Loop initializer and updater.
h. Named constant and literal.
i. Compound statement and null statement.

EXERCISE 6.2 Fill in the blank.

292 CHAPTER 6 • Control Structures

a. The process of reading a data item before entering a loop is known as a .

b. A loop that does nothing except iterate is an example of .

c. A loop that contains no body is an example of a statement.

d. A loop whose entry condition is stated as (k < 100 || k >= 0) would be an

example of an loop.

e. A loop that should iterate until the user types in a special value should use a

bound.

f. A loop that should iterate until its variable goes from 5 to 100 should use a

bound.

g. A loop that should iterate until the difference between two values is less than

0.005 is an example of a bound.

EXERCISE 6.3 Identify the syntax errors in each of the following:

a. for (int k = 0; k ¡ 100; k++) System.out.println(k)
b. for (int k = 0; k ¡ 100; k++); System.out.println(k);
c. int k = 0 while k ¡ 100 System.out.println(k); k++;
d. int k = 0; do System.out.println(k); k++; while k ¡ 100 ;

EXERCISE 6.4 Determine the output and/or identify the error in each of the
following code segments:

a. for (int k = 1; k == 100; k += 2) System.out.println(k);
b. int k = 0; while (k ¡ 100) System.out.println(k); k++;
c. for (int k = 0; k ¡ 100; k++) ; System.out.println(k);

EXERCISE 6.5 Write pseudocode algorithms for the following activities, paying
particular attention to the initializer, updater, and boundary condition in each case.

a. a softball game
b. a five-question quiz
c. looking up a name in the phone book

EXERCISE 6.6 Identify the pre- and postconditions for each of the statements
that follow. Assume that all variables are int and have been properly declared.

a. int result = x / y;
b. int result = x
c. int x = 95; do x /= 2; while(x ¿= 0);

EXERCISE 6.7 Write three different loops—a for loop, a while loop, and a
do-while loop—to print all the multiples of 10, including 0, up to and including
1,000.

EXERCISE 6.8 Write three different loops—a for loop, a while loop, and a
do-while loop—to print the following sequence of numbers: 45, 36, 27, 18, 9, 0,
−9, −18, −27, −36, −45.

EXERCISE 6.9 Write three different loops—a for loop, a while loop, and a
do-while loop—to print the following ski-jump design:� �
#
#
#
#
#
#
#
 	

CHAPTER 6 • Exercises 293

EXERCISE 6.10 The Straight Downhill Ski Lodge in Gravel Crest, Vermont, gets
lots of college students on breaks. The lodge likes to keep track of repeat visitors.
Straight Downhill’s database includes an integer variable, visit, which gives the
number of times a guest has stayed at the lodge (1 or more). Write the pseudocode
to catch those visitors who have stayed at the lodge at least twice and to send them
a special promotional package (pseudocode = send promo). (Note: The largest
number of stays recorded is eight. The number nine is used as an end-of-data
flag.)

EXERCISE 6.11 Modify your pseudocode in the previous exercise. In addition
to every guest who has stayed at least twice at the lodge receiving a promotional
package, any guest with three or more stays should also get a $40 coupon good for
lodging, lifts, or food.

EXERCISE 6.12 Write a method that is passed a single parameter, N, and dis-
plays all the even numbers from 1 to N.

EXERCISE 6.13 Write a method that is passed a single parameter, N, that prints
all the odd numbers from 1 to N.

EXERCISE 6.14 Write a method that is passed a single parameter, N, that prints
all the numbers divisible by 10 from N down to 1.

EXERCISE 6.15 Write a method that is passed two parameters—a char Ch and
an int N—and prints a string of N Chs.

EXERCISE 6.16 Write a method that uses a nested for loop to print the follow-
ing multiplication table:� �

1 2 3 4 5 6 7 8 9
1 1
2 2 4
3 3 6 9
4 4 8 12 16
5 5 10 15 20 25
6 6 12 18 24 30 36
7 7 14 21 28 35 42 48
8 8 16 24 32 40 48 56 64
9 9 18 27 36 45 54 63 72 81
 	
EXERCISE 6.17 Write a method that uses nested for loops to print the patterns
that follow. Your method should use the following statement to print the patterns:
System.out.print(’#’).� �
#

#
#

#
#

#
#

#
 	
EXERCISE 6.18 Write a program that asks the user for the number of rows and
the number of columns in a box of asterisks. Then use nested loops to generate the
box.

294 CHAPTER 6 • Control Structures

EXERCISE 6.19 Write a Java application that lets the user input a sequence of
consecutive numbers. In other words, the program should let the user keep en-
tering numbers as long as the current number is one greater than the previous
number.

EXERCISE 6.20 Write a Java application that lets the user input a sequence of
integers terminated by any negative value. The program should then report the
largest and smallest values that were entered.

EXERCISE 6.21 How many guesses does it take to guess a secret number be-
tween 1 and N? For example, I’m thinking of a number between 1 and 100. I’ll
tell you whether your guess is too high or too low. Obviously, an intelligent first
guess would be 50. If that’s too low, an intelligent second guess would be 75. And
so on. If we continue to divide the range in half, we’ll eventually get down to one
number. Because you can divide 100 seven times (50, 25, 12, 6, 3, 1, 0), it will take
at most seven guesses to guess a number between 1 and 100. Write a Java Swing
program that lets the user input a positive integer, N, and then reports how many
guesses it would take to guess a number between 1 and N.

EXERCISE 6.22 Suppose you determine that the fire extinguisher in your
kitchen loses X percent of its foam every day. How long before it drops below
a certain threshold (Y percent), at which point it is no longer serviceable? Write a
Java Swing program that lets the user input the values X and Y and then reports
how many weeks the fire extinguisher will last.

EXERCISE 6.23 Leibnitz’s method for computing π is based on the following
convergent series:

π

4
= 1 − 1

3
+

1
5
− 1

7
+ · · ·

How many iterations does it take to compute π to a value between 3.141 and 3.142
using this series? Write a Java program to find out.

EXERCISE 6.24 Newton’s method for calculating the square root of N starts by
making a (nonzero) guess at the square root. It then uses the original guess to
calculate a new guess, according to the following formula:� �
guess = ((N / guess) + guess) / 2 ;
 	
No matter how wild the original guess is, if we repeat this calculation, the algo-
rithm will eventually find the square root. Write a square root method based on
this algorithm. Then write a program to determine how many guesses are required
to find the square roots of different numbers. Uses Math.sqrt() to determine
when to terminate the guessing.

EXERCISE 6.25 Your employer is developing encryption software and wants
you to develop a Java Swing Program that will display all of the primes less than
N, where N is a number to be entered by the user. In addition to displaying the
primes themselves, provide a count of how many there are.

EXERCISE 6.26 Your little sister asks you to help her with her multiplication
and you decide to write a Java application that tests her skills. The program will
let her input a starting number, such as 5. It will generate multiplication problems
ranging from from 5×1 to 5×12. For each problem she will be prompted to enter
the correct answer. The program should check her answer and should not let
her advance to the next question until the correct answer is given to the current
question.

CHAPTER 6 • Exercises 295

EXERCISE 6.27 Write an application that prompts the user for four values and
draws corresponding bar graphs using an ASCII character. For example, if the
user entered 15, 12, 9, and 4, the program would draw� �
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗
∗∗∗∗
 	
EXERCISE 6.28 Revise the application in the previous problem so that the bar
charts are displayed vertically. For example, if the user inputs 5, 2, 3, and 4, the
program should display� �
∗∗
∗∗ ∗∗
∗∗ ∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗
−−−−−−−−−−−−−
 	
EXERCISE 6.29 The Fibonacci sequence (named after the Italian mathematician
Leonardo of Pisa, ca. 1200) consists of the numbers 0,1,1,2,3,5,8,13, . . . in which
each number (except for the first two) is the sum of the two preceding numbers.
Write a method fibonacci(N) that prints the first N Fibonacci numbers.

EXERCISE 6.30 The Nuclear Regulatory Agency wants you to write a program
that will help determine how long certain radioactive substances will take to de-
cay. The program should let the user input two values: a string giving the sub-
stance’s name and its half-life in years. (A substance’s half-life is the number of
years required for the disintegration of half of its atoms.) The program should re-
port how many years it will take before there is less than 2 percent of the original
number of atoms remaining.

EXERCISE 6.31 Modify the CarLoan program so that it calculates a user’s car
payments for loans of different interest rates and different loan periods. Let the
user input the amount of the loan. Have the program output a table of monthly
payment schedules.

The next chapter also contains a number of loop exercises.

296 CHAPTER 6 • Control Structures

OBJECTIVES
After studying this chapter, you will

• Be more familiar with Java Strings.
• Know how to solve problems that involve manipulating strings.
• Be able to use loops in designing string-processing algorithms.

OUTLINE
7.1 Introduction
7.2 String Basics
7.3 Finding Things Within a String
7.4 Example: Keyword Search
7.5 From the Java Library: StringBuffer
7.6 Retrieving Parts of Strings
7.7 Example: Processing Names and Passwords
7.8 Processing Each Character in a String
7.9 Comparing Strings
7.10 From the Java Library: StringTokenizer
7.11 Handling Text in a Graphics Context (Optional)

Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 7

Strings and String
Processing

297

298 CHAPTER 7 • Strings and String Processing

7.1 Introduction

You have already had an introduction to Strings in the early chapters
of this text. In Chapter 2, we introduced the String data type and
showed how to create String objects and use String methods, such
as length(), concat(), and equals().

We have seen Strings used for GUI I/O operations when used
Strings as the contents of JTextFields and other text components, as
the values of JLabels, as the labels for JButtons, and so on. Strings
are also used extensively in command-line interfaces.

Another important task that Strings are used for are as a standard
way of presenting or displaying information about objects. As we saw
in Chapter 2, one of the key conventions of the Java class hierarchy is
that every class inherits the Object.toString() method, which can
be used to provide a string representation of any object. For example,
Integer.toString() converts an int to a String, so that it can be
used in JTextFields or JLabels.

Programmers often have to work with strings. Think of some of the
tasks performed by a typical word processor, such as cut, paste, copy, and
insert. When you cut and paste text from one part of the document to
another, the program has to move one string of text, the cut, from one
location in the document and insert it in another.

Strings are also important because they are our first look at a data struc-
ture. A data structure is a collection of data that is organized (structured)
in some way. A string is a collection of character (char) data. Strings are
important data structures in a programming language, and they are used
to represent a wide variety of data.

The main purpose of this chapter is to provide a detailed discussion of
Java’s string-related classes, including the String, StringBuffer, and
StringTokenizer classes. These are the important classes for writing
string-processing applications. Our goal is to introduce the important

+String()

+String(in s : String)

+length() :int

+valueOf(in n : int) : String

+concat(in s : String) : String

+valueOf(in d : double) : String

+charAt(in n : int) : char

+equals(in o : Object) : boolean

+indexOf(in ch : int) : int

+indexOf(in ch : int, in start : int) : int

+indexOf(in s : String) : int

+indexOf(in s : String, in start : int) : int

+substring(in strt : int) : String

+substring(in strt : int, in end : int) : String

-value

-count

String

Object

Figure 7.1: The
java.lang.String class.

String methods and illustrate common string-processing algorithms.
We will review how to create strings from scratch and from other data
types. We will learn how to find characters and substrings inside bigger
strings. We will learn how to take strings apart and how to rearrange their
parts. Finally, we will learn how to apply these string-processing skills in
a program that plays the game of Hang Man.

7.2 String Basics

Before we cover the new material on Strings, let’s first review what
we know about this topic. In Java, Strings are considered full-fledged
objects. A String object is a sequence of the characters that make up
the string, plus the methods that are used to manipulate the string. The
java.lang.String class (Fig. 7.1) is a direct subclass of Object, and itAre strings objects?
contains many public methods that can be used to perform useful opera-
tions on strings (such as concatenation). We will discuss a selection of the

SECTION 7.2 • String Basics 299

more commonly used methods, but for a full listing and description of the
String methods see� �

http : //java . sun . com/ j 2 s e /1 .5 .0/ docs/api/
 	
Like other object variables, String variables serve as references to their
respective objects. However, unlike other Java objects, Strings have cer-
tain characteristics in common with the primitive data types. For example,
as we have already seen, Java allows for literal strings. A string literal is
a sequence of zero or more characters contained in double quotes, such as
“Socrates” and “” (the empty string). Java allows us to perform operations
on literal strings, such as concatenation. As we have already seen, the
expression "Hello" + "world" results in the string "Helloworld".
Java also allows us to use string literals to initialize String variables
with an assignment statement. These exceptional features greatly simplify
the use of Strings in our programs. Given how much we use Strings,
incorporating these features into Java seems like a good design decision.

7.2.1 Constructing Strings
To create String objects, the String class provides many constructors,
including the following:� �

public S t r i n g () ; // C r e a t e s a n e m p t y s t r i n g

// C o p y c o n s t r u c t o r : C r e a t e s a c o p y o f a s t r i n g

public S t r i n g (S t r i n g i n i t i a l v a l u e) ;
 	
When we create an object using the first constructor, as in� �

S t r i n g name = new S t r i n g () ;
 	
Java will create a String object and make name the reference to it. Fig-

value=""

count=0

name : String

Figure 7.2: An empty
string is a String object
with value “” and count 0.

ure 7.2 shows a hypothetical representation of a String object. In addi-
tion to storing the sequence of characters that make up the string, Java
also stores an integer value representing the number of characters in the
string. We have chosen to represent these two elements as the private in-
stance variables, value, for the sequence of characters, and count for the
number of characters. In fact, we don’t know exactly how Java stores the
sequence of characters. That information is hidden. As Figure 7.2 illus-
trates, when we use the default constructor, the value of the is the empty
string and its count is 0.

The second constructor is the copy constructor for the String class. A
copy constructor is a constructor that makes a duplicate, sometimes called
a clone, of an object. Many Java classes have copy constructors. Consider
the following statements:� �

S t r i n g s1 = new S t r i n g (” Hello ”) ;) ;
S t r i n g s2 = new S t r i n g (s1) ;
 	

These two statements would result in two distinct String objects, both
storing the word “Hello”.

300 CHAPTER 7 • Strings and String Processing

Note that in the first of the preceding statements, we used the literal
string “Hello” in the constructor. When Java encounters a new literalvalue="Socrates"

count=8

"Socrates" : String

Figure 7.3: The lit-
eral String “Socrates.”

string in a program, it constructs an object for it. For example, if your
program contained the literal “Socrates,” Java would create an object for
it and treat the literal itself as a reference to the object (Fig. 7.3).

We often use a string literal to assign a value to a String variable:� �
S t r i n g s ; // T h e v a l u e o f s i s i n i t i a l l y n u l l

s = ” S o c r a t e s ” ; // s now r e f e r s t o ” S o c r a t e s ” o b j e c t
 	
In this case, the reference variable s is initially null—that is, it has no
referent, no object, to refer to. However, after the assignment statement, s
would refer to the literal object “Socrates,” which is depicted in Figure 7.3.
Given these two statements, we still have only one object, the String
object containing the word “Socrates.”. But now we have two references
to it: the literal string “Socrates,” and the reference variable s.

Assignment statements can also be used as initializers when declaring
a String variable:

value=""

count=0name1

""

value="Socrates"

count=8

: String

: String

name3

name2

"Socrates"

Figure 7.4: The variables name1,
name2, and name3 serve as refer-
ences to the literal String objects
“Socrates” and “”.

� �
S t r i n g name1 = ”” ; // R e f e r e n c e t o t h e e m p t y s t r i n g

S t r i n g name2 = ” S o c r a t e s ” ; // R e f e r e n c e s t o ” S o c r a t e s ”

S t r i n g name3 = ” S o c r a t e s ” ;
 	
In this example, Java does not construct new String objects. Instead, as
Figure 7.4 shows, it simply makes the variables name1, name2, and name3
serve as references to the same objects that are referred to by the literal
strings “” and “Socrates.” This is a direct consequence of Java’s policy of
creating only one object to serve as the referent of a literal string, no mat-
ter how many occurrences there are of that literal in the program. Thus,
these declarations result in no new objects, just new references to existing
objects. The justification for this policy is that it saves lots of memory in
our programs. Instead of creating a String object for each occurrence
of the literal “Socrates,” Java creates one object and lets all occurrences of
“Socrates” refer to that object.

Finally, consider the following declarations, which do invoke the
String constructors:

value="Socrates"

count=8

name5

name6

name4

: String

value=""

count=0

: String

Figure 7.5: Together with the
objects in Figure 7.4, there are
now four different String
objects with eight different
references to them, includ-
ing the literals “Socrates”
and “”.

� �
S t r i n g name4 = new S t r i n g () ; // C r e a t e s a n o b j e c t

S t r i n g name5 = new S t r i n g (” S o c r a t e s ”) ;
S t r i n g name6 = name4 ;
 	

In this case, as shown in Figure 7.5, Java creates two new objects and
sets name4 to refer to the first and name5 to refer to the second. It gives
name4 the empty string as its value, and it gives name5 “Socrates” as its
value. But these two objects must be distinguished from the objects corre-

SECTION 7.2 • String Basics 301

sponding to the literals (“” and “Socrates”) themselves. The declaration of
name6 just creates a second reference to the object referred to by name4.

JAVA LANGUAGE RULE Strings. Java Strings are full-fledged
objects, but they have some properties in common with primitive
types. They can have literal values and they can be used in assignment
statements.

JAVA LANGUAGE RULE String Declaration and
Instantiation. Unless a String() constructor is called explicitly, no
new String object is created when declaring a String variable and
assigning it an initial value.

7.2.2 Concatenating Strings
Another way to build a String object is to concatenate two other strings.
Recall from Chapter 2 that there are two ways to perform string concate-
nation in Java: We can use the concat() method or the concatenation
operator, +.� �

S t r i n g lastName = ” Onassis ” ;
S t r i n g j a c k i e =

new S t r i n g (” J a c q u e l i n e ” + ”Kennedy ” + lastName) ;
System . out . p r i n t l n (” J a c q u e l i n e ” . concat (lastName)) ;
 	

The second of these statements uses the concatenation operator, +, to create String concatenation
the String “Jacqueline Kennedy Onassis.” The third statement uses the
String method, concat(), to print “JacquelineOnassis.”
Using the + symbol as the string concatenation operator is another ex- Operator overloading
ample of operator overloading—using the same operator for two or more
different operations—which we encountered in Chapter 5.

JAVA LANGUAGE RULE String Concatenation. When surrounded
on either side by a String, the + symbol is used as a binary
concatenation operator. It has the effect of joining two strings together
to form a single string.

Note that primitive types are automatically promoted to Strings when
they are mixed with concatenation operators. Thus, the statement� �

System . out . p r i n t l n (”The sum of 5 and 5 = ”+ (5 + 5)) ;
 	
will print the string “The sum of 5 and 5 = 10.” Note that the integer
addition—(5 + 5)—is performed first, before the integer result is converted
into a String. If we had left off the parentheses around the addition oper-
ation, the second plus sign would also be interpreted as a concatenation
operator. Thus,� �

System . out . p r i n t l n (”The concatenat ion of 5 and 5 = ” + 5 + 5) ;
 	

302 CHAPTER 7 • Strings and String Processing

would print “The concatenation of 5 and 5 = 55.”

SELF-STUDY EXERCISES
EXERCISE 7.1 What will be printed by each of the following segments

of code?
a. String s1 = "silly"; System.out.println(s1);
b. String s2 = s1; System.out.println(s2);
c. String s3 = new String (s1 + " stuff");

System.out.println(s3);

EXERCISE 7.2 Write a String declaration that satisfies each of the
following descriptions:
a. Initialize a String variable, str1, to the empty string.
b. Instantiate a String object, str2, and initialize it to the word stop.
c. Initialize a String variable, str, to the concatenation of str1 and str2.

EXERCISE 7.3 Evaluate the following expressions:� �
i n t M = 5 , N = 1 0 ;
S t r i n g s1 = ”51” , s2 = ”75” ;
 	
a. M + N b. M + s1 c. s1 + s2

EXERCISE 7.4 Draw a picture, similar to Figure 7.5, showing the ob-
jects and references that are created by the following declarations:� �
S t r i n g s1 , s2 = ” Hello ” , s3 = ” Hello ” ;
S t r i n g s4 = ” h e l l o ” ;
S t r i n g s5 = new S t r i n g (” Hello ”) ;
S t r i n g s6 = s5 ;
S t r i n g s7 = s3 ;
 	
7.2.3 Indexing Strings
Programmers often need to take strings apart or put them together or re-
arrange them. Just think of the many word-processing tasks, such as cut
and paste, that involve such operations. To help simplify such operations,
it is useful to know how many characters a string contains and to number,
or index, the characters that make up the string.

The number of characters in a string is called its length. The StringString length
instance method, length(), returns an integer that gives the String’s
length. For example, consider the following String declarations and the
corresponding values of the length() method for each case:� �

S t r i n g s t r i n g 1 = ”” ; s t r i n g 1 . length () ==> 0
S t r i n g s t r i n g 2 = ” Hello ” ; s t r i n g 2 . length () ==> 5
S t r i n g s t r i n g 3 = ”World” ; s t r i n g 3 . length () ==> 5
S t r i n g s t r i n g 4 = s t r i n g 2 + ” ”

+ s t r i n g 3 ; s t r i n g 4 . length () ==> 11
 	
The position of a particular character in a string is called its string in-

0 1 2 3 4 5 6 7

Indexes

S o c r a t e s

Figure 7.6: The string “Socrates”
has eight characters, indexed from
0 to 7. This is an example of zero
indexing.

dex. All Strings in Java are zero indexed—that is, the index of the first

SECTION 7.2 • String Basics 303

character is zero. (Remember, zero indexing is contrasted with unit index-
ing, in which we start counting at 1.) For example, in “Socrates,” the letter
S occurs at index 0, the letter o occurs at index 1, r occurs at index 3, and so
on. Thus, the String “Socrates” contains eight characters indexed from
0 to 7 (Fig. 7.6). Zero indexing is customary in programming languages.
We will see other examples of this when we talk about arrays and vectors.

JAVA LANGUAGE RULE String Indexing. Strings are indexed
starting at 0. The first character in a string is at position 0.

JAVA DEBUGGING TIP Zero Versus Unit Indexing. Syntax and
semantic errors will result if you forget that strings are zero indexed.
In a string of N characters, the first character occurs at index 0 and the
last at index N−1. This is different from the String.length()
method, which gives the number of characters in the string, counting
from 1.

7.2.4 Converting Data to Strings
The String.valueOf() method is a class method that is used to con-
vert a value of some primitive type into a String object. For example,
the expression, String.valueOf(128) converts its int argument to
the String “128.”

There are different versions of valueOf(), each of which has the fol-
lowing type of signature:� �

s t a t i c public S t r i n g valueOf (Type) ;
 	
where Type stands for any primitive data type, including boolean,
char, int, double, and so on.

The valueOf() method is most useful for initializing Strings. Be-
cause valueOf() is a class method, it can be used as follows to instantiate
new String objects:� �

S t r i n g number = S t r i n g . valueOf (1 2 8) ; // C r e a t e s ” 1 2 8 ”

S t r i n g t r u t h = S t r i n g . valueOf (t rue) ; // C r e a t e s ” t r u e ”

S t r i n g bee = S t r i n g . valueOf (’B ’) ; // C r e a t e s ” B ”

S t r i n g pi = S t r i n g . valueOf (Math . PI) ;
// C r e a t e s ” 3 . 1 4 1 5 9 ”
 	

We have already seen that Java automatically promotes primitive type
values to String where necessary, so why do we need the valueOf()
methods? For example, we can initialize a String to “3.14159” as follows:� �

S t r i n g pi = new S t r i n g (””+Math . PI) ; // C r e a t e s ” 3 . 1 4 ”
 	
In this case, because it is part of a concatenation expression, the value of
Math.PI will automatically be promoted to a String value. The point

304 CHAPTER 7 • Strings and String Processing

of the valueOf() method is twofold. First, it may be the method that the
Java compiler relies on to perform string promotions such as this one. Sec-
ond, using it in a program—even when it is not completely necessary—
makes the promotion operation explicit rather than leaving it implicit.
This helps to make the code more readable. (Also, see Exercise 7.9.)Readability

SELF-STUDY EXERCISES
EXERCISE 7.5 Evaluate each of the following expressions:

a. String.valueOf (45)
b. String.valueOf (128 - 7)

c. String.valueOf (’X’)

EXERCISE 7.6 Write an expression to satisfy each of the following
descriptions:

a. Convert the integer value 100 to the string ”100”.
b. Convert the character ’V’ to the string ”V”.
c. Initialize a new String object to X times Y.

7.3 Finding Things Within a String

Programmers often have to find the location of a particular character
or substring in a string. For example, user names and passwords are
sometimes stored in a single string in which the name and password
are separated from each other by a special character, such as a colon
(username:password). In order to get the name or password from such
a string, it is convenient to have methods that will search the string and
report the index of the colon character.

The indexOf() and lastIndexOf() methods are instance methods
that can be used to find the index position of a character or a substring
within a String. There are several versions of each:� �

public i n t indexOf (i n t c h a r a c t e r) ;
public i n t indexOf (i n t charac ter , i n t s t a r t i n g I n d e x) ;
public i n t indexOf (S t r i n g s t r i n g) ;
public i n t indexOf (S t r i n g s t r i n g , i n t s t a r t i n g I n d e x) ;

public i n t las t IndexOf (i n t c h a r a c t e r) ;
public i n t las t IndexOf (i n t charac ter , i n t s t a r t i n g I n d e x) ;
public i n t las t IndexOf (S t r i n g s t r i n g) ;
public i n t las t IndexOf (S t r i n g s t r i n g , i n t s t a r t i n g I n d e x) ;
 	

The indexOf() method searches from left to right within a String for
either a character or a substring. The lastIndexOf() method searches
from right to left for a character or substring. To illustrate, suppose we
have declared the following Strings:� �

S t r i n g s t r i n g 1 = ”” ;
S t r i n g s t r i n g 2 = ” Hello ” ;
S t r i n g s t r i n g 3 = ”World” ;
S t r i n g s t r i n g 4 = s t r i n g 2 + ” ” + s t r i n g 3 ;
 	

SECTION 7.3 • Finding Things Within a String 305

Recalling that Strings are indexed starting at 0, searching for o in the
various strings gives the following results:� �

s t r i n g 1 . indexOf (’ o ’) ==> −1 s t r i n g 1 . las t IndexOf (’ o ’) ==> −1
s t r i n g 2 . indexOf (’ o ’) ==> 4 s t r i n g 2 . las t IndexOf (’ o ’) ==>
4
s t r i n g 3 . indexOf (’ o ’) ==> 1 s t r i n g 3 . las t IndexOf (’ o ’) ==>
1
s t r i n g 4 . indexOf (’ o ’) ==> 4 s t r i n g 4 . las t IndexOf (’ o ’) ==>
7
 	

Because string1 is the empty string, “”, it does not contain the let- Sentinel return value
ter o. Therefore, indexOf() returns −1, a value that cannot be a valid
index for a String. This convention is followed in indexOf() and
lastIndexOf(). Because string2 and string3 each contain only one
occurrence of the letter o, both indexOf() and lastIndexOf() return
the same value when used on these Strings. Because string4 contains
two occurrences of o, indexOf() and lastIndexOf() return different
values in this case. As Figure 7.7 shows, the first o in “Hello, World!”

0 1 2 3 4 5 6 7 8 9 10

Indexes

H e l l o Wo r l d

Figure 7.7: The indexing of the
“Hello, World!” string.

occurs at index 4, the value returned by indexOf(). The second o occurs
at index 7, which is the value returned by lastIndexOf().

By default, the single-parameter versions of indexOf() and last-
IndexOf() start their searches at their respective (left or right) ends of
the string. The two-parameter versions of these methods allow you to
specify both the direction and starting point of the search. The second
parameter specifies the starting index. Consider these examples:� �

s t r i n g 4 . indexOf (’ o ’ , 5) ==> 7
s t r i n g 4 . las t IndexOf (’ o ’ , 5) ==> 4
 	

If we start searching in both cases at index 5, then indexOf() will miss
the o that occurs at index 4. The first o it finds will be the one at index 7.
Similarly, lastIndexOf() will miss the o that occurs at index 7 and will
find the o that occurs at index 4.

The indexOf() and lastIndexOf() methods can also be used to
find substrings:� �

s t r i n g 1 . indexOf (” or ”) ==> −1 s t r i n g 1 . las t IndexOf (” or ”) ==> −1
s t r i n g 2 . indexOf (” or ”) ==> −1 s t r i n g 2 . las t IndexOf (” or ”) ==> −1
s t r i n g 3 . indexOf (” or ”) ==> 1 s t r i n g 3 . las t IndexOf (” or ”) ==> 1
s t r i n g 4 . indexOf (” or ”) ==> 7 s t r i n g 4 . las t IndexOf (” or ”) ==> 7
 	

The substring “or” does not occur in either string1 or string2. It does
occur beginning at location 1 in string3 and beginning at location 7 in
string4. For this collection of examples, it doesn’t matter whether we
search from left to right or right to left.

SELF-STUDY EXERCISES
EXERCISE 7.7 Suppose the String variable s has been initialized to

“mom.” Evaluate each of the following expressions:

306 CHAPTER 7 • Strings and String Processing

a. s.indexOf("m"); b. s.indexOf("o"); c. s.indexOf("M");

EXERCISE 7.8 Evaluate the expressions given the String declaration
String s1 = "Java, Java, Java";
a. s1.length()
b. String.valueOf(s1.length())
c. s1.indexOf(’a’)
d. s1.lastIndexOf(’a’)
e. s1.indexOf("av")
f. s1.lastIndexOf("av")

g. s1.indexOf(’a’, 5)
h. s1.lastIndexOf(’a’, 5)
i. s1.indexOf("av", s1.length() - 10)
j. s1.lastIndexOf("av",

s1.length() - 4)
k. s1.indexOf("a", s1.indexOf("va"))

EXERCISE 7.9 Evaluate the following expression:� �
S t r i n g t r i c k y = ” abcdefg01234567 ” ;
t r i c k y . indexOf (S t r i n g . valueOf (t r i c k y . indexOf (” c ”))) ;
 	

7.4 Example: Keyword Search

One of the most widely used Web browser functions is the search utility.
You probably know how it works. You type in a keyword and click on a
button, and it returns with a list of Web pages that contain the keyword.

Suppose you were writing a browser in Java. How would you imple-
ment this function? Of course, we don’t know yet how to read files or
Web pages, and we won’t cover that until Chapter 11. But, for now, we
can write a method that will search a string for all occurrences of a given
keyword. That’s at least part of the task that the browser’s search engine
would have to do.

So we want a method, keywordSearch(), that takes two String pa-Method design
rameters, one for the string that’s being searched, and the other repre-
senting the keyword. Let’s have the method return a String that lists
the number of keyword occurrences, followed by the index of each occur-
rence. For example, if we asked this method to find all occurrences of is in
“This is a test,” it should return the string “2: 2 5” because there are two
occurrences of is, one starting at index 2 and the other at index 5 in the
string.

The algorithm for this method will require a loop, because we want
to know the location of every occurrence of the keyword in the string.
One way to do this would be to use the indexOf() method to search for
the location of substrings in the string. If it finds the keyword at index

Algorithm design

N, it should record that location and then continue searching for more
occurrences starting at index N +1 in the string. It should continue in this
way until there are no more occurrences.� �

Suppose S i s our s t r i n g and K i s the keyword .
I n i t i a l i z e a counter v a r i a b l e and r e s u l t s t r i n g .
Set Ptr to the indexOf () the f i r s t occurrence of K in S .
While (Ptr != −1)

Increment the counter
I n s e r t Ptr i n t o the r e s u l t s t r i n g
Set Ptr to the next l o c a t i o n of the keyword in S

I n s e r t the count i n t o the r e s u l t s t r i n g
Return the r e s u l t s t r i n g as a S t r i n g
 	

SECTION 7.4 • Example: Keyword Search 307

As this pseudocode shows, the algorithm uses a while loop with a sentinel Implementation
bound. The algorithm terminates when the indexOf() method returns a
−1, indicating that there are no more occurrences of the keyword in the
string.

Translating the pseudocode into Java gives us the method shown in Fig-
ure 7.8. Note how string concatenation is used to build the resultStr.
Each time an occurrence is found, its location (ptr) is concatenated to
the right-hand side of the resultStr. When the loop terminates, the
number of occurrences (count) is concatenated to the left-hand side of
the resultStr.� �
/∗ ∗
∗ P r e : s a n d k e y w o r d a r e a n y S t r i n g s

∗ P o s t : k e y w o r d S e a r c h () r e t u r n s a S t r i n g c o n t a i n i n g t h e

∗ n u m b e r o f o c c u r r e n c e s o f k e y w o r d i n s , f o l l o w e d

∗ b y t h e s t a r t i n g l o c a t i o n o f e a c h o c c u r r e n c e

∗/

public S t r i n g keywordSearch (S t r i n g s , S t r i n g keyword) {
S t r i n g r e s u l t S t r = ”” ;
i n t count = 0 ;
i n t ptr = s . indexOf (keyword) ;
while (p t r != −1) {

++count ;
r e s u l t S t r = r e s u l t S t r + ptr + ” ” ;
ptr = s . indexOf (keyword , ptr + 1) ; // N e x t o c c u r r e n c e

}
r e s u l t S t r = count + ” : ” + r e s u l t S t r ; // I n s e r t t h e c o u n t

return r e s u l t S t r ;
// R e t u r n a s a S t r i n g

} // k e y w o r d S e a r c h ()
 	
Figure 7.8: The keywordSearch() method.

Testing and Debugging
What test data should we use for the keywordSearch() method? One What test data do we need?
important consideration in this case is to test that the method works for
all possible locations of the keyword within the string. Thus, the method
should be tested on strings that contain keyword occurrences at the begin-
ning, middle, and end of the string. We should also test the method with
a string that doesn’t contain the keyword. Such tests will help verify that
the loop will terminate properly in all cases. Given these considerations,
Table 7.1 shows the tests that were made. As you can see from these re-
sults, the method did produce the expected outcomes. While these tests
do not guarantee its correctness, they provide considerable evidence that
the algorithm works correctly.

JAVA EFFECTIVE DESIGN Test Data. In designing test data to
check the correctness of a string searching algorithm, it’s important to
use data that test all possible outcomes.

308 CHAPTER 7 • Strings and String Processing

TABLE 7.1 Testing the keywordSearch() method.

Test Performed Expected Result

keywordSearch("this is a test","is") 2: 2 5
keywordSearch("able was i ere i saw elba","a") 4: 0 6 18 24
keywordSearch("this is a test","taste") 0:

7.5 From the Java Library: java.lang.StringBuffer

java.sun.com/j2se/1.5.0/docs/api/
ONE PROBLEM with the keywordSearch() method is that it is not

very efficient because a String in Java is a read-only object. This means
that once it has been instantiated, a String cannot be changed. You
cannot insert new characters or delete existing characters from it.

JAVA LANGUAGE RULE Strings Are Immutable. Once
instantiated, a Java String cannot be altered in any way.

Given this fact, how is it possible that the resultStr in the keyword-
Search() ends up with the correct value? he answer is that every time
we assign a new value to resultStr, Java has to create a new String
object. Figure 7.9 illustrates the process. Thus, given the statement� �

r e s u l t S t r = r e s u l t S t r + ptr + ” ” ;
 	
Java will evaluate the right-hand side, which creates a new String object
whose value would be the concatenation of the right-hand-side elements,
resultStr + ptr + " " (Fig. 7.9a). It would then assign the new ob-
ject as the new referent of resultStr (Fig. 7.9b). This turns the previous
referent of resultStr into an orphan object—that is, into an object that
no longer has any references to it. Java will eventually dispose of these
orphaned objects, removing them from memory in a process known as
garbage collection. However, creating and disposing of objects is a task
that consumes the computer’s time.

The fact that this assignment statement occurs within a loop means
that several new objects are created and later garbage collected. Because
object creation is a relatively time-consuming and memory-consuming
operation, this algorithm is somewhat wasteful of Java’s resources.

value=" "

count=0

: String

: String : String

: String

value="4 "

count=2

value=""

count=0

value="4 "

count=2

resultStr=resultStr+ptr+" "

(b) After assignment

(Orphan object)

(a) Before assignment

resultStr

Figure 7.9: Evaluating resultStr
= resultStr + ptr + " "
creates an orphan object that must be
garbage collected.

Of course, except for the inefficiency of doing it this way, no real harm
is done by this algorithm used in the keywordSearch() method. Java’s
garbage collector will automatically reclaim the memory used by the or-

SECTION 7.5 • From the Java Library: java.lang.StringBuffer 309

phaned object. However, this algorithm does consume more of Java’s
resources than other algorithms we might use.

JAVA LANGUAGE RULE Automatic Garbage Collection. An
object that has no reference to it can no longer be used in a program.
Therefore, Java will automatically get rid of it. This is known as
garbage collection.

A more efficient way to write the keywordSearch() method would
make use of a StringBuffer to store and construct the resultStr.
Like the String class, the java.lang.StringBuffer class also rep-
resents a string of characters. However, unlike the String class, a
StringBuffer can be modified, and it can grow and shrink in length
as necessary. As Figure 7.10 shows, the StringBuffer class contains

Choosing the appropriate data
structure

several of the same kind of methods as the String class, for exam-
ple, charAt() and length(). But it also contains methods that allow
characters and other types of data to be inserted into a string, such as
append(), insert(), and setCharAt(). Most string-processing algo-
rithms use StringBuffers instead of Strings as their preferred data
structure.

JAVA PROGRAMMING TIP StringBuffer. A StringBuffer
should be used instead of a String for any task that involves
modifying a string.

The StringBuffer class provides several methods that are useful for
string processing. The constructor method, StringBuffer(String),
makes it easy to convert a String into a StringBuffer. Similarly, once
you are done processing the buffer, the toString() method makes it
easy to convert a StringBuffer back into a String.

The typical way to use a StringBuffer is shown in the following
revised version of the keywordSearch() method:� �

public S t r i n g keywordSearch (S t r i n g s , S t r i n g keyword) {
// C r e a t e S t r i n g B u f f e r

S t r i n g B u f f e r r e s u l t S t r = new S t r i n g B u f f e r () ;
i n t count = 0 ;
i n t ptr = s . indexOf (keyword) ;
while (p t r != −1) {

++count ;
r e s u l t S t r . append (ptr + ” ”) ; // A p p e n d t o b u f f e r

ptr = s . indexOf (keyword , ptr + 1) ;
}
r e s u l t S t r . i n s e r t (0 , count + ” : ”) ;
return r e s u l t S t r . t o S t r i n g () ; // C o n v e r t b u f f e r t o S t r i n g

} // k e y w o r d S e a r c h ()
 	
We declare resultStr as a StringBuffer instead of a String. Then,

+toString() : String

Object

+StringBuffer()

+StringBuffer(in s : String)

+append(in data : <type>)

+charAt(in n : int) : char

+insert(in n : int, in data : <type>)

+length() : int

+setCharAt(in n : int, in ch : char)

+toString() : String

StringBuffer

Figure 7.10: The
java.lang.StringBuffer
class.

instead of concatenating the ptr and reassigning the resultStr, we
append() the ptr to the resultStr for each occurrence of a keyword.
Similarly, after the loop exits, we insert() the count at the front (index

310 CHAPTER 7 • Strings and String Processing

0) of the resultStr. Finally, we convert resultStr into a String by
using the toString() method before returning the method’s result.

One advantage of the StringBuffer class is that there are several
versions of its insert() and append() methods. These make it pos-
sible to insert any type of data—int, double, Object, and so on—into a
StringBuffer. The method itself takes care of converting the data into
a string for us.

To summarize, String objects in Java are immutable. So when aStrings are immutable
String is “modified,” this really means that a new String object is cre-
ated and the old String object must be garbage collected. This is some-
what inefficient, especially if done repeatedly within a loop. To avoid
these inefficiencies, use a StringBuffer instead of a String in such
contexts.

7.6 Retrieving Parts of Strings

Programmers often need to retrieve an individual character or a part of a
string from a string, as, for example, in a word processing program when
a part of a string is copied or deleted. In this section we look at methods
that help us with these kinds of tasks.

The charAt(int index) method is a String instance method that
can be used to retrieve the character stored at a certain index. The several
varieties of the substring() method can be used to retrieve a substring
of characters from a String. These methods are defined as follows:� �

public char charAt (i n t index)
public S t r i n g subs t r ing (i n t s t a r t I n d e x)
public S t r i n g subs t r ing (i n t s t a r t Ind ex , i n t endIndex)
 	

The charAt()method returns the character located at the index supplied
as its parameter. Thus, str.charAt(0) retrieves the first character in
str, while str.charAt(str.length()-1) retrieves the last character.

The substring() methods work in a similar way, except that you
need to specify both the starting and the ending index of the sub-
string you wish to retrieve. The first version of substring(int
startIndex) takes a single parameter and returns a String consisting
of all the characters beginning with startIndex and continuing up to
the end of the String. For example, if the str is “HelloWorld”, then
str.substring(5) would return “World” and str.substring(3)
would return “loWorld”:� �

S t r i n g s t r = ”HelloWorld” ;
s t r . subs t r ing (5) ==> ”World”
s t r . subs t r ing (3) ==> ”loWorld”
 	

The substring(int, int) version requires that you specify both the
starting and ending index of the substring. The second index always

SECTION 7.6 • Retrieving Parts of Strings 311

points to the character that is one beyond the last character in the String
you want to retrieve. For example,� �

// INDEX : 0123456789
S t r i n g s t r = ”HelloWorld” ;
s t r . subs t r ing (5 , 7) ==> ”Wo”
s t r . subs t r ing (0 , 5) ==> ” Hello ”
s t r . subs t r ing (5 , s t r . length ()) ==> ”World”
 	

Note here that when we want to retrieve “Wo” from str, we specify its
substring as indexes 5 and 7; the 7 points to the character just beyond
“Wo.” Similarly, substring(0,5), picks out the first five characters
(“Hello”). In the third example, the length() method specifies the sub-
string beginning at index 5 and extending to the end of the string. This is
equivalent to str.substring(5):� �

// INDEX : 0123456789
S t r i n g s t r = ”HelloWorld” ;
s t r . subs t r ing (5 , s t r . length ()) ==> ”World”
s t r . subs t r ing (5) ==> ”World”
 	

The fact that the second parameter in substring() refers to the char-
acter one beyond the desired substring may seem a bit confusing at first,
but it is actually a very useful way to designate a substring. For example,
many string-processing problems have to do with retrieving substrings
from a delimited string, which is a string that contains special characters
that separate the string into certain substrings. For example, consider the Delimited strings
string “substring1:substring2,” in which the delimiter is the colon, ’:’.
The following code retrieves the substring preceding the delimiter:� �

S t r i n g s t r = ” subs t r ing1 : subs t r ing2 ” ;
i n t n = s t r . indexOf (’ : ’) ;
s t r . subs t r ing (0 , n) ==> ” subs t r ing1 ”
 	

Thus, by making the second index of substring() refer to the char-
acter one beyond the last character in the desired substring, we can use
indexOf() and substring() together to process delimited strings.
Note that it is not necessary to use a temporary variable n to store the
index of the delimiter, because the two method calls can be nested:� �

S t r i n g s t r = ” subs t r ing1 : subs t r ing2 ” ;
s t r . subs t r ing (0 , s t r . indexOf (’ : ’)) ==> ” subs t r ing1 ”
 	

JAVA DEBUGGING TIP substring(int p1, int p2). Don’t
forget that the second parameter in the substring() methods refers
to the character just past the last character in the substring.

SELF-STUDY EXERCISES

312 CHAPTER 7 • Strings and String Processing

EXERCISE 7.10 Given the String declaration� �
S t r i n g s = ” abcdefghijklmnopqrstuvwxyz ” ;
 	
evaluate each of the following expressions:
a. s.substring(20)
b. s.substring(1, 5)
c. s.substring(23)

d. s.substring(23, 25)
e. s.substring(s.indexOf(’x’))

EXERCISE 7.11 Given the preceding declaration of s, evaluate each of
the following expressions:
a. s.substring(20, s.length())
b. s.substring(s.indexOf(’b’), s.indexOf(’f’))
c. s.substring(s.indexOf("xy"))
d. s.substring(s.indexOf(s.charAt(23)))
e. s.substring(s.length() - 3)

7.7 Example: Processing Names and Passwords

Many computer systems store user names and passwords as delimited
strings, such as� �

smith : bg1s5xxx
mccarthy : 2 f f o 9 0 0 s s i
cho : biff4534ddee4w
 	

Obviously, if the system is going to process passwords, it needs some way
to take apart these name-password pairs.

Let’s write methods to help perform this task. The first method will
be passed a name-password pair and will return the name. The second
method will be passed a name-password pair and will return the pass-
word. In both cases, the method takes a single String parameter and
returns a String result:

Algorithm design

� �
S t r i n g getName (S t r i n g s t r) ;
S t r i n g getPassword (S t r i n g s t r) ;
 	

To solve this problem we can make use of two String methods. We use
the indexOf() method to find the location of the delimiter—which is the
colon, “:”—in the name-password pair and then we use substring() to
take the substring occurring before or after the delimiter. It may be easier
to see this if we take a particular example:� �

INDEX : 1 2
INDEX : 012345678901234567890

jones : b34rdffg12 // (1)

cho : r t f 5 4 6 // (2)
 	
In the first case, the delimiter occurs at index position 5 in the string.
Therefore, to take the name substring, we would use substring(0,5).

SECTION 7.8 • Processing Each Character in a String 313

To take the password substring, we would use substring(6). Of
course, in the general case, we would use variables to indicate the position
of the delimiter, as in the following methods:� �

public s t a t i c S t r i n g getName (S t r i n g s t r) {
i n t posColon = s t r . indexOf (’ : ’) ; // F i n d t h e d e l i m i t e r

S t r i n g r e s u l t = s t r . subs t r ing (0 , posColon) ; // G e t n a m e

return r e s u l t ;
}

public s t a t i c S t r i n g getPassword (S t r i n g s t r) {
i n t posColon = s t r . indexOf (’ : ’) ; // F i n d t h e d e l i m i t e r

S t r i n g r e s u l t = s t r . subs t r ing (posColon + 1) ; // G e t p a s s w d

return r e s u l t ;
}
 	

Note in both of these cases we have used local variables, posColon and
result, to store the intermediate results of the computation—that is, the
index of the “:” and the name or password substring.

An alternative way to code these operations would be to use nested
method calls to reduce the code to a single line:� �

return s t r . subs t r ing (0 , s t r . indexOf (’ : ’)) ;
 	
In this line, the result of str.indexOf(’:’) is passed immediately as
the second argument to str.substring(). This version dispenses with
the need for additional variables. And the result in this case is not unrea-
sonably complicated. But whenever you are faced with a trade-off of this
sort—nesting versus additional variables—you should opt for the style
that will be easier to read and understand.

JAVA EFFECTIVE DESIGN Nested Method Calls. Nested method
calls are fine as long as there are not too many levels of nesting. The
goal should be to produce code that is easy to read and understand.

7.8 Processing Each Character in a String

Many string-processing applications require you to process each character
in a string. For example, to encrypt the string “hello” into “jgnnq”, we
have to go through each letter of the string and change each character to
its substitute.

These types of algorithms usually involve a counting loop bounded by
the length of the string. Recall that the length() method determines Counting loop algorithm
the number of characters in a String and that strings are zero indexed.
This means that the first character is at index 0, and the last character is
at index length()-1. For example, to print each character in a string on

314 CHAPTER 7 • Strings and String Processing

a separate line, we would step through the string from its first to its last
character and print each character::� �

// P r e c o n d i t i o n : s t r i s n o t n u l l

// P o s t c o n d i t i o n : t h e l e t t e r s i n s t r w i l l h a v e b e e n p r i n t e d

public void p r i n t L e t t e r s (S t r i n g s t r) {
for (i n t k = 0 ; k < s t r . length () ; k++) // F o r e a c h c h a r

System . out . p r i n t l n (s t r . charAt (k)) ; // P r i n t i t

}
 	
Note that our loop bound is k < str.length(), since the index ofCounting bound
the last character of any String is length()-1. Note also the use of
str.charAt(k) to retrieve the kth character in str on each iteration of
the loop.

Note the use of pre- and postconditions in the method’s comment
block. The precondition states that str has been properly initialized—
that is, it is not null. The postcondition merely states the expected
behavior of the method.

7.8.1 Off-by-One Error
A frequent error in coding counter-controlled loops is known as the off-
by-one error, which can occur in many different ways. For example, if
we had coded the loop boundary condition as k <= str.length(),
this would cause an off-by-one error, because the last characterOff-by-one error
in str is at location length()-1. This would lead to a Java
IndexOutOfBoundsException, which would be reported as soon as
the program executed this statement.

The only way to avoid off-by-one errors is to check your loop bounds
whenever you code a loop. Always make sure you have the loop counter’s
initial and final values correct.

JAVA DEBUGGING TIP Off-by-One Errors. Loops should be
carefully checked to make sure they don’t commit an off-by-one error.
During program testing, develop data that tests the loop variable’s
initial and final values.

7.8.2 Example: Counting Characters
As another example of an algorithm that processes each character in a
string, consider the problem of computing the frequency of the letters in
a given document. Certain text analysis programs, such as programs that
analyze encrypted data and spam filters, perform this type of function.

The countChar() method will count the number of occurrences of
any particular character in a String (Fig. 7.11). This method takes twoMethod design
parameters: a String parameter that stores the string being searched and
a char parameter that stores the character being counted.

Begin by initializing the local variable, counter, to 0. As in the pre-Algorithm design
vious example, the for loop here will iterate through each character of
the String—from 0 to length()-1. On each iteration a check is made
to see if the character in the kth position (str.charAt(k)) is the char-
acter being counted. If so, counter is incremented. The method ends

SECTION 7.8 • Processing Each Character in a String 315� �
// P r e c o n d i t i o n : N e i t h e r s t r n o r c h a r e n u l l

// P o s t c o n d i t i o n : c o u n t c h a r () == t h e n u m b e r o f c h i n s t r

public i n t countChar (S t r i n g s t r , char ch) {
i n t counter = 0 ; // I n i t i a l i z e a c o u n t e r

for (i n t k = 0 ; k < s t r . length () ; k++) // F o r e a c h c h a r

i f (s t r . charAt (k) == ch) // I f i t ’ s a c h

counter ++; // c o u n t i t

return counter ; // R e t u r n t h e r e s u l t

}
 	
Figure 7.11: A method to count the occurrence of a particular character in
a string.

by returning counter, which, when the method completes, will store an
integer representing the number of ch’s in str.

7.8.3 Example: Reversing a String
Another interesting method that processes each character in a string is the
reverse() method. This is a method that reverses the letters in a string.
For example, the reverse of "java" is "avaj".

The algorithm for the reverse() method should use a simple count- Algorithm design
ing loop to reverse the letters in its String parameter. In this case, how-
ever, we can process the string from right to left, beginning at its last char-
acter and ending with its first character. That way we can just append
each character, left to right, in the result string:� �

/∗
∗ P r e : s i s a n y n o n n u l l s t r i n g

∗ P o s t : s i s r e t u r n e d i n r e v e r s e o r d e r

∗/

public S t r i n g reverse (S t r i n g s) {
S t r i n g B u f f e r r e s u l t = new S t r i n g B u f f e r () ;
for (i n t k = s . length ()−1 ; k >= 0 ; k−−) {

r e s u l t . append (s . charAt (k)) ;
} // f o r

return r e s u l t . t o S t r i n g () ;
} // r e v e r s e ()
 	

Note that as in the other string-manipulation algorithms—for exam-
ple, keywordSearch()—we should us a StringBuffer to store the
method’s result. Thus we declare the result StringBuffer at the be-
ginning of the method and convert it back into a String at the end of the
method.

JAVA PROGRAMMING TIP Changing Each Character in a
String. Algorithms that require you to alter a string should use a
StringBuffer to store the result.

316 CHAPTER 7 • Strings and String Processing

7.8.4 Example: Capitalizing the First Letter

Another string manipulation method is the capitalize() method,
which returns a String whose initial letter is capitalized but whoseAlgorithm design
other letters are lowercase – for example, “Hello”. We use the static
toUpperCase() and toLowerCase() methods from the Character
class to convert individual letters. We could also have used the methods
of the same name that we wrote in Section 5.8. The algorithm converts
the first letter to upper case and then loops through the remaining letters
converting each to lowercase:� �

/∗
∗ P r e : s i s a n y n o n n u l l s t r i n g

∗ P o s t : s i s r e t u r n e d w i t h o n l y i t s f i r s t l e t t e r c a p i t a l i z e d

∗/

public S t r i n g c a p i t a l i z e (S t r i n g s) {
i f (s . length () == 0) // S p e c i a l c a s e : e m p t y s t r i n g

return s ;
S t r i n g B u f f e r r e s u l t = new S t r i n g B u f f e r () ;
r e s u l t . append (Character . toUpperCase (s . charAt (0))) ;

// C o n v e r t t h e f i r s t l e t t e r

for (i n t k = 1 ; k < s . length () ; k++) { // And t h e r e s t

r e s u l t . append (Character . toLowerCase (s . charAt (k))) ;
} // f o r

return r e s u l t . t o S t r i n g () ;
} // c a p i t a l i z e ()
 	

SELF-STUDY EXERCISES

EXERCISE 7.12 Write a Java program to test the methods described in
this section. Organize the methods themselves into a single class, named
StringProcessor, and design a second class to serve as the user inter-
face. Because these methods are similar to the utility methods of the Math
class, it would be useful to declare them static. The user interface should
prompt the user to input a string and should then print out the result of
passing that string to each of the methods we developed.

EXERCISE 7.13 Add a method to the StringProcessor class that
will remove all blanks from a string. It should take a String parameter
and should return a String result.

7.8.5 Miscellaneous String Methods

In addition to the several String class methods we have discussed—
valueOf(), equals(), indexOf(), lastIndexOf(), charAt(),
substring()—Table 7.2 shows some of the other useful methods in the
String class. Note that because of what we said about the read-only na-
ture of Strings, methods such as toUpperCase(), toLowerCase(),
and trim() do not change their string. Instead they produce a new

SECTION 7.9 • Comparing Strings 317

TABLE 7.2 Some useful String methods applied to the literal string ”Perfection.”

Method Signature Example

boolean endsWith(String suffix) "Perfection".endsWith("tion")⇒ true
boolean startsWith(String prefix) "Perfection".startsWith("Per")⇒ true
boolean startsWith(String prefix, int offset) "Perfection".startsWith("fect",3)⇒ true
String toUpperCase() "Perfection".toUpperCase()⇒ "PERFECTION"
String toLowerCase() "Perfection".toLowerCase()⇒ "perfection"
String trim() "Perfection".trim()⇒ "Perfection"

string. If you want to use one of these methods to convert a string, you
must reassign its result back to the original string:� �

S t r i n g s = new S t r i n g (” h e l l o world”) ;
s = s . toUpperCase () ; // s now e q u a l s ” HELLO WORLD ”
 	

7.9 Comparing Strings

Comparing strings is another important task. For example, when a word
processor performs a search and replace operation, it needs to identify
strings in the text that match the target string.

Strings are compared according to their lexicographic order—that is, the
order of their characters. For the letters of the alphabet, lexicographic or-
der just means alphabetical order. Thus, a comes before b and d comes
after c. The string “hello” comes before “jello” because h comes before j in
the alphabet.

For Java and other programming languages, the definition of lexico-
graphic order is extended to cover all the characters that make up the
character set. We know, for example, that in Java’s Unicode character set
the uppercase letters come before the lowercase letters (Table 5.13). So, the
letter H comes before the letter h and the letter Z comes before the letter a.

Lexicographic order can be extended to include strings of characters. H precedes h
Thus, “Hello” precedes “hello” in lexicographic order because its first let-
ter, H, precedes the first letter, h, in “hello.” Similarly, the string “Zero”
comes before “aardvark,” because Z comes before a. To determine lexico-
graphic order for strings, we must perform a character-by-character com-
parison, starting at the first character and proceeding left to right. As an
example, the following strings are arranged in lexicographic order:� �

”” ” ! ” ”0” ”A” ”Andy” ”Z” ”Zero” ”a” ”an” ”and” ”andy” ”candy” ” zero ”
 	

318 CHAPTER 7 • Strings and String Processing

We can define lexicographic order for strings as follows:

JAVA LANGUAGE RULE Lexicographic Order. For strings s1 and
s2, s1 precedes s2 in lexicographic order if its first character precedes
the first character of s2. If their first characters are equal, then s1
precedes s2 if its second character precedes the second character of s2;
and so on. An empty string is handled as a special case, preceding all
other strings.

Perhaps a more precise way to define lexicographic order is to define a
Java method:� �

public boolean precedes (S t r i n g s1 , S t r i n g s2) {
// P i c k s h o r t e r l e n g t h

i n t minlen = Math . min (s1 . length () , s2 . length ()) ;
// F o r e a c h c h a r i n s h o r t e r s t r i n g }

for (i n t k =0; k < minlen ; k++) {
i f (s1 . charAt (k) != s2 . charAt (k)) // I f c h a r s u n e q u a l

// r e t u r n t r u e i f s 1 ’ s c h a r p r e c e d e s s 2 ’ s

return s1 . charAt (k) < s2 . charAt (k) ;
}

// I f a l l c h a r a c t e r s s o f a r a r e e q u a l

// t h e n s 1 < s 2 i f i t i s s h o r t e r t h a n s 2

return s1 . length () < s2 . length () ;
} // p r e c e d e s () }
 	

This method does a character-by-character comparison of the two strings,Algorithm: Loop bound
proceeding left to right, starting at the first character in both strings.
Its for loop uses a counting bound, which starts at k equal to zero
and counts up to the length of the shorter string. This is an impor-
tant point in designing this algorithm. If you don’t stop iterating when
you get past the last character in a string, your program will generate a
StringIndexOutOfBounds exception. To prevent this error, we need to
use the shorter length as the loop bound.

Note that the loop will terminate early if it finds that the respective
characters from s1 and s2 are unequal. In that case, s1 precedes s2 if s1’s kth
character precedes s2’s. If the loop terminates normally, that means that
all the characters compared were equal. In that case, the shorter string
precedes the longer. For example, if the two strings were “alpha” and
“alphabet,” then the method would return true, because “alpha” is shorter
than “alphabet.”

SELF-STUDY EXERCISES
EXERCISE 7.14 Arrange the following strings in lexicographic order:� �
zero bath bin alpha Alpha Zero Zeroes a A z Z
 	
EXERCISE 7.15 Modify the precedes() method so that it will also

return true when s1 and s2 are equal—for example, when s1 and s2 are
both “hello”.

SECTION 7.9 • Comparing Strings 319

7.9.1 Object Identity Versus Object Equality

Java provides several methods for comparing Strings:� �
public boolean equals (Object anObject) ; // O v e r r i d e s O b j e c t . e q u a l s ()

public boolean equalsIgnoreCase (S t r i n g anotherS t r ing) ;
public i n t compareTo (S t r i n g anotherS t r ing) ;
 	

The first comparison method, equals(), overrides the Object.equals()
method. Two Strings are equal if they have the exact same letters in the
exact same order. Thus, for the following declarations, Equality vs. identity� �

S t r i n g s1 = ” h e l l o ” ;
S t r i n g s2 = ” Hello ” ;
 	

s1.equals(s2) is false, but s1.equals("hello") is true.
You have to be careful when using Java’s equals() method. Accord-

ing to the default definition of equals(), defined in the Object class,
“equals” means “identical.” Two Objects are equal only if their names
are references to the same object.

Venus The morning star

Figure 7.12: Venus is the morning
star, so “Venus” and “the morn-
ing star” are two references to the
same object.

This is like the old story of the morning star and the evening star,
which were thought to be different objects before it was discovered that
both were just the planet Venus. After the discovery, it was clear that
“the morning star” and “the evening star” and “Venus” were just three
different references to one and the same object (Fig. 7.12).

We can create an analogous situation in Java by using the following
JButton definitions:� �

JButton b1 = new Button (”a”) ;
JButton b2 = new Button (”a”) ;
JButton b3 = b2 ;
 	

Given these three declarations, b1.equals(b2) and b1.equals(b3)
would be false, but b2.equals(b3) would be true because b2 and b3
are just two names for the same object (Fig. 7.13). So, in this case, “equals”

a

JButton b1=new JButton("a");

JButton b2=new JButton("a");

JButton b3=b2;

a

b3b2b1 (References)

(Labeled buttons)

Figure 7.13: For most objects,
equality means identity. JBut-
tons b2 and b3 are identical (and,
hence, equal), but JButtons b1 and
b2 are not identical (and, hence,
unequal).

really means “identical.”
Moreover, in Java, when it is used to compare two objects, the

equality operator (==) is interpreted in the same way as the default
Object.equals() method. So, it really means object identity. Thus,
b1 == b2 would be false, because b1 and b2 are different objects, but
b2 == b3 would be true because b2 and b3 refer to the same object.

These points are illustrated in the program shown in Figure 7.14. This
program uses methods isEquals() and isIdentical() to perform

320 CHAPTER 7 • Strings and String Processing� �
import j ava . awt . ∗ ;

public c l a s s TestEquals {
s t a t i c Button b1 = new Button (”a”) ;
s t a t i c Button b2 = new Button (”b”) ;
s t a t i c Button b3 = b2 ;

private s t a t i c void i sEqual (Object o1 , Object o2) {
i f (o1 . equals (o2))

System . out . p r i n t l n (o1 . t o S t r i n g () + ” equals ” + o2 . t o S t r i n g ()) ;
e lse

System . out . p r i n t l n (o1 . t o S t r i n g () + ” does NOT equal ” +
o2 . t o S t r i n g ()) ;

} // i s E q u a l ()

private s t a t i c void i s I d e n t i c a l (Object o1 , Object o2) {
i f (o1 == o2)

System . out . p r i n t l n (o1 . t o S t r i n g () + ” i s i d e n t i c a l to ” +
o2 . t o S t r i n g ()) ;

e lse
System . out . p r i n t l n (o1 . t o S t r i n g () + ” i s NOT i d e n t i c a l to ” +

o2 . t o S t r i n g ()) ;
} // i s I d e n t i c a l ()

public s t a t i c void main (S t r i n g argv []) {
i sEqual (b1 , b2) ; // n o t e q u a l

i sEqual (b1 , b3) ; // n o t e q u a l

i sEqual (b2 , b3) ; // e q u a l

i s I d e n t i c a l (b1 , b2) ; // n o t i d e n t i c a l

i s I d e n t i c a l (b1 , b3) ; // n o t i d e n t i c a l

i s I d e n t i c a l (b2 , b3) ; // i d e n t i c a l

} // m a i n ()

} // T e s t E q u a l s
 	
Figure 7.14: The TestEquals program tests Java’s default equals()
method, which is defined in the Object class.

the comparisons and print the results. This program will produce the
following output:� �

j ava . awt . Button [button0 , 0 , 0 , 0 x0 , inval id , label=a]
does NOT equal java . awt . Button [button1 , 0 , 0 , 0 x0 , inval id , label=b]

java . awt . Button [button0 , 0 , 0 , 0 x0 , inval id , label=a]
does NOT equal java . awt . Button [button1 , 0 , 0 , 0 x0 , inval id , label=b]

java . awt . Button [button1 , 0 , 0 , 0 x0 , inval id , label=b]
equals java . awt . Button [button1 , 0 , 0 , 0 x0 , inval id , label=b]

java . awt . Button [button0 , 0 , 0 , 0 x0 , inval id , label=a]
i s NOT i d e n t i c a l to java . awt . Button [button1 , 0 , 0 , 0 x0 , inval id , label=b]

java . awt . Button [button0 , 0 , 0 , 0 x0 , inval id , label=a]
i s NOT i d e n t i c a l to java . awt . Button [button1 , 0 , 0 , 0 x0 , inval id , label=b]

java . awt . Button [button1 , 0 , 0 , 0 x0 , inval id , label=b]
i s i d e n t i c a l to java . awt . Button [button1 , 0 , 0 , 0 x0 , inval id , label=b]
 	

SECTION 7.9 • Comparing Strings 321

7.9.2 String Identity Versus String Equality
In comparing Java Strings, we must be careful to distinguish between
object identity and string equality. Thus, consider the following declara-
tions, which create the situation shown in Figure 7.15.

Figure 7.15: For String objects,
equality and identity are differ-
ent. Two distinct (nonidentical)
String objects are equal if they
store the same string value. So
s1, s2, s4, s5, and s6 are
equal. Strings s1 and s4 are iden-
tical, and so are strings s5 and s6.

String s1=new String ("hello");

String s2=new String ("hello");

String s3=new String ("Hello");

String s4=s1;

String s5="hello";

String s6="hello";

value="hello"

count=5

: String

value="hello"

count=5

: String

value="hello"

count=5

: String

value="Hello"

count=5

: String

value="Hello"

count=5

: String

"Hello""hello" s5 s6 s1 s4 s2

s3

� �
S t r i n g s1 = new S t r i n g (” h e l l o ”) ;
S t r i n g s2 = new S t r i n g (” h e l l o ”) ;
S t r i n g s3 = new S t r i n g (” Hello ”) ;
S t r i n g s4 = s1 ; // s 1 a n d s 4 a r e now i d e n t i c a l

S t r i n g s5 = ” h e l l o ” ;
S t r i n g s6 = ” h e l l o ” ;
 	

Given these declarations, we would get the following results if we com-

Equality vs. identity

pare the equality of the Strings:� �
s1 . equals (s2) ==> t rue s1 . equalsIgnoreCase (s3) ==> t rue
s1 . equals (s3) ==> f a l s e s1 . equals (s5) ==> t rue
s1 . equals (s4) ==> t rue s1 . equals (s6) ==> t rue
 	

and the following results if we compare their identity:� �
s1 == s2 ==> f a l s e s1 == s3 ==> f a l s e
s1 == s4 ==> t rue s1 == s5 ==> f a l s e
s5 == s6 ==> t rue
 	

The only true identities among these Strings are s1 and s4, and s5 and s6.
In the case of s5 and s6, both are just references to the literal string, “hello”,
as we described in Section 7.2. The program in Figure 7.16 illustrates these
points.

SELF-STUDY EXERCISES
EXERCISE 7.16 Given the String declarations,� �
S t r i n g s1 = ” java ” , s2 = ” java ” , s3 = ” Java ” ;
S t r i n g s4 = new S t r i n g (s2) ;
S t r i n g s5 = new S t r i n g (” java ”) ;
 	
evaluate the following expressions:

322 CHAPTER 7 • Strings and String Processing

� �
import j ava . awt . ∗ ;

public c l a s s Tes tS t r ingEquals {
s t a t i c S t r i n g s1 = new S t r i n g (” h e l l o ”) ; // s 1 a n d s 2 a r e e q u a l , n o t i d e n t i c a l

s t a t i c S t r i n g s2 = new S t r i n g (” h e l l o ”) ;
s t a t i c S t r i n g s3 = new S t r i n g (” Hello ”) ; // s 1 a n d s 3 a r e n o t e q u a l

s t a t i c S t r i n g s4 = s1 ; // s 1 a n d s 4 a r e i d e n t i c a l

s t a t i c S t r i n g s5 = ” h e l l o ” ; // s 1 a n d s 5 a r e n o t i d e n t i c a l

s t a t i c S t r i n g s6 = ” h e l l o ” ; // s 5 a n d s 6 a r e i d e n t i c a l

private s t a t i c void t e s t E q u a l (S t r i n g s t r1 , S t r i n g s t r 2) {
i f (s t r 1 . equals (s t r 2))

System . out . p r i n t l n (s t r 1 + ” equals ” + s t r 2) ;
e lse

System . out . p r i n t l n (s t r 1 + ” does not equal ” + s t r 2) ;
} // t e s t E q u a l ()

private s t a t i c void t e s t I d e n t i c a l (S t r i n g s t r 1 , S t r i n g s t r 2) {
i f (s t r 1 == s t r 2)

System . out . p r i n t l n (s t r 1 + ” i s i d e n t i c a l to ” + s t r 2) ;
e lse

System . out . p r i n t l n (s t r 1 + ” i s not i d e n t i c a l to ” + s t r 2) ;
} // t e s t I d e n t i c a l ()

public s t a t i c void main (S t r i n g argv []) {
t e s t E q u a l (s1 , s2) ; // e q u a l

t e s t E q u a l (s1 , s3) ; // n o t e q u a l

t e s t E q u a l (s1 , s4) ; // e q u a l

t e s t E q u a l (s1 , s5) ; // e q u a l

t e s t E q u a l (s5 , s6) ; // e q u a l

t e s t I d e n t i c a l (s1 , s2) ; // n o t i d e n t i c a l

t e s t I d e n t i c a l (s1 , s3) ; // n o t i d e n t i c a l

t e s t I d e n t i c a l (s1 , s4) ; // i d e n t i c a l

t e s t I d e n t i c a l (s1 , s5) ; // n o t i d e n t i c a l

t e s t I d e n t i c a l (s5 , s6) ; // i d e n t i c a l

} // m a i n ()

}// T e s t S t r i n g E q u a l s

−−−−−−Program Output−−−−−
h e l l o equals h e l l o
h e l l o does not equal Hello
h e l l o equals h e l l o
h e l l o equals h e l l o
h e l l o equals h e l l o
h e l l o i s not i d e n t i c a l to h e l l o
h e l l o i s not i d e n t i c a l to Hello
h e l l o i s i d e n t i c a l to h e l l o
h e l l o i s not i d e n t i c a l to h e l l o
h e l l o i s i d e n t i c a l to h e l l o
 	

Figure 7.16: Program illustrating the difference between string equality
and identity.

SECTION 7.10 • From the Java Library: java.util.StringTokenizer 323

a. s1 == s2
b. s1.equals(s2)
c. s1 == s3

d. s1.equals(s3)
e. s2 == s3
f. s2.equals(s4)

g. s2 == s4
h. s1 == s5
i. s4 == s5

EXERCISE 7.17 Why are the variables in TestStringEquals de-
clared static?

EXERCISE 7.18 Given the following declarations,� �
S t r i n g s1 = ” abcdefghijklmnopqrstuvwxyz ” ;
S t r i n g s2 = ” h e l l o world” ;
 	
write Java expressions to carry out each of the following operations:

a. Swap the front and back half of s1 giving a new string.
b. Swap ”world” and ”hello” in s2 giving a new string.
c. Combine parts of s1 and s2 to create a new string ”hello abc”.

7.10 From the Java Library:
java.util.StringTokenizer

ONE OF THE most widespread string-processing tasks is that of breaking
up a string into its components, or tokens. For example, when processing

java.sun.com/j2se/1.5.0/docs/api/a sentence, you may need to break the sentence into its constituent words,
which are considered the sentence tokens. When processing a name-
password string, such as “boyd:14irXp”, you may need to break it into
a name and a password. Tokens are separated from each other by one or
more characters which is known as delimiters. Thus, for a sentence, white
space, including blank spaces, tabs, and line feeds, serve as the delimiters.
For the password example, the colon character serves as a delimiter.

Java’s java.util.StringTokenizer class is specially designed for
Object

+StringTokenizer(in s : String)

+StringTokenizer(in s : String, in d : String)

+countTokens() : int

+hasMoreTokens() : boolean

+nextToken() : String

+nextToken(in delim : String) : String

+hasMoreElements() : boolean

+nextElement() : String

StringTokenizer

+hasMoreElements() : boolean

+nextElement() : String

«interface»

Enumeration

Figure 7.17: The
java.util.StringTokenizer
class.

breaking strings into their tokens (Fig. 7.17). When instantiated with
a String parameter, a StringTokenizer breaks the string into to-
kens, using white space as delimiters. For example, if we instantiated a
StringTokenizer as in the code� �

Str ingTokenizer sTokenizer
= new Str ingTokenizer (” This i s an Engl ish sentence . ”) ;
 	

it would break the string into the following tokens, which would be stored
internally in the StringTokenizer in the order shown:� �

This
i s
an
Engl ish
sentence .
 	

Note that the period is part of the last token (“sentence.”). This is because
punctuation marks are not considered delimiters by default.

324 CHAPTER 7 • Strings and String Processing

If you wanted to include punctuation symbols as delimiters, you could
use the second StringTokenizer() constructor, which takes a second
String parameter (Fig. 7.17). The second parameter specifies a string of
those characters that should be used as delimiters. For example, in the
instantiation,� �

Str ingTokenizer sTokenizer
= new Str ingTokenizer (” This i s an Engl ish sentence . ” ,

”\b\ t \n , ; . ! ”) ;
 	
various punctuation symbols (periods, commas, and so on) are included
among the delimiters. Note that escape sequences (\b\t\n) are used to
specify blanks, tabs, and newlines.

The hasMoreTokens() and nextToken() methods can be used to
process a delimited string, one token at a time. The first method returns
true as long as more tokens remain; the second gets the next token in the
list. For example, here’s a code segment that will break a standard URL
string into its constituent parts:� �

S t r i n g u r l = ” http :// java . t r i n c o l l . edu/˜ j j j /index . html” ;
S tr ingTokenizer sTokenizer = new Str ingTokenizer (url , ” :/ ”) ;
while (sTokenizer . hasMoreTokens ()) {

System . out . p r i n t l n (sTokenizer . nextToken ()) ;
}
 	

This code segment will produce the following output:� �
http
java . t r i n c o l l . edu
˜ j j j
index . html
 	

The only delimiters used in this case were the “:” and “/” symbols. And
note that nextToken() does not return the empty string between “:”
and “/” as a token.

7.11 Handling Text in a Graphics Context
(Optional)

In order to create attractive GUIs, it is often necessary to be able to select
and control the font that is used. Even a simple drawing task, such as
being able to center a message in a panel, requires that we know the font’s
dimensions and be able to manipulate them. In this section, we learn how

+getFont() : Font

+getFontMetrics() : FontMetrics

+setFont(in f : Font)

+setFontMetrics(in f : FontMetrics)

Graphics

Figure 7.18: Methods to access the
Font and FontMetrics objects
associated with each Graphics
context.

to work with Java’s fonts and font control methods.
Each graphics context has an associated Font and FontMetrics ob-

ject, and the Graphics class (Fig. 7.18) provides several methods to ac-
cess them. A FontMetrics is an object that encapsulates important
data about a font, such as its height and width. Java assigns a default
font to each Graphics object. For example, this is the font used by the

SECTION 11 • Handling Text in a Graphics Context 325

drawString() method, which we used in our very first Java programs
back in Chapter 1. The particular font used is system dependent, but to
override the default one can simply invoke the setFont() method:� �

g . se tFont (new Font (”TimesRoman” , Font . ITALIC , 1 2)) ;
 	
In this case, the Font() constructor is used to specify a 12-point, itali-
cized, TimesRoman font. Once the font is set, it will be used in all subse-
quent drawings.

7.11.1 The Font and FontMetrics Classes

The Font class (Fig. 7.19) provides a platform-independent representa-
tion of an individual font. A font is distinguished by its name, size,
and style, and the Font class includes protected instance variables for
these properties, as well as a constructor method that allows these three
characteristics to be specified. +Font(in s : String, in sty : int, in sz : int)

+BOLD : int

+ITALIC : int

+PLAIN : int

 # name : String

 # size : int

 # style : int

Font

Figure 7.19: The Font class.

In order to understand how fonts work, it is necessary to distinguish
between a character, which is a symbol that represents a certain letter or
digit, and a glyph, which is a shape used to display the character. When
you display a string, such as “Hello”, Java maps each individual charac-
ter into a corresponding shape, as defined by the particular font that is
selected.

Java distinguishes between physical and logical fonts. A physical font is
an actual font library that contains the data and tables needed to associate
the correct glyph with a given character. Generally speaking, a given plat-
form (host computer plus operating system) will have a collection of such
fonts available on it.

A logical font is one of five font families that are supported by the Java
runtime environment. These include Serif, SansSerif, Monospaced, Dia-
log, and DialogInput. Java also supports the following font styles: PLAIN,
BOLD, ITALIC, and BOLD+ITALIC. Whereas the physical fonts are plat-
form dependent, the logical fonts and styles are platform independent.
When used in a program, they are mapped to real fonts available on the
host system. If the host system does not have an exact match for the speci-
fied font, it will supply a substitute. For example, if you specify a 48-point,
italic, Monospaced font,� �

Font myFont = new Font (”Monospaced” , Font . ITALIC , 4 8) ;
 	
the system may map this to a 24-point, italic Courier font, if that is the
largest fixed-spaced font available.

The Font() constructor is designed to work with any set of arguments.
Thus, if you supply the name of a font that is not available, the system
will supply a default font as a substitute. For example, on my system,
specifying a nonexistent font named Random,� �

g . se tFont (new Font (”Random” , Font . ITALIC , 12)) ;
g . drawString (” Hello , World ! ! (random , i t a l i c , 12) ” , 30 , 4 5) ;
 	

326 CHAPTER 7 • Strings and String Processing

produces the same font used as the mapping for a font named Dialog.

JAVA EFFECTIVE DESIGN Font Portability. The fact that Font()
will produce a font for virtually any set of arguments is important in
ensuring that a Java program will run on any platform. This is another
example of how Java has been designed for portability.

The Component.setFont() method can be used to assign a specific
font to a button or window or other graphics component. All AWT and
JFC components have an associated font, which can be accessed using the
Component.setFont() and Component.getFont() methods. For
example, the following code could be used to override a Button’s font:� �

Button b = new Button (” Label ”) ;
b . se tFont (new Font (”Times” , Font . ITALIC , 1 4)) ;
 	

If 14-point, italic, Times font is not available on the host system, a substi-
tute will be supplied.

7.11.2 Font Metrics
To illustrate how to use the FontMetrics class, let’s write a “Hello,Problem statement
World!” application that centers its message both horizontally and ver-
tically in its window. The message should be centered regardless of the
size of the application window. Thus, we will have to position the text
relative to the window size, which is something we learned in positioning
geometric shapes. The message should also be centered no matter what
font is used. This will require us to know certain characteristics of the font
itself, such as the height and width of its characters, whether the charac-
ters have a fixed or variable width, and so on. In order to get access to
these properties, we will use the FontMetrics class.

~
Height

Advance

Leading
Baseline

Descent

fontspecs

Figure 7.20: An illustration of the
various font measurements.

Figure 7.20 illustrates the various properties that are associated with
a font. The baseline of a font refers to the line on which the bottom of
most characters occurs. When drawing a string, the x- and y-coordinates
determine the baseline of the string’s first character. Thus, in� �

g . drawString (” Hello , World ! ” , 10 , 4 0) ;
 	
the bottom left of the H in “Hello, World!” would be located at (10, 40).

All characters ascend some distance above the baseline. This is known
as the character’s ascent. Some characters, such as y, may extend below
the baseline, into what’s known as the descent. Each font has a maximum
descent. Similarly, some characters, such as accent characters, may extend
above the maximum ascent into a space known as the leading.

The height of a font is defined as the sum (in pixels) of the ascent, de-
scent, and leading values. The height is a property of the font itself rather
than of any individual character. Except for fixed-width fonts, in which
the width of all characters is the same, the characters that make up a font
have varying widths. The width of an individual character is known as its
advance.

The FontMetrics class (Fig. 7.21) provides methods for accessing a

 # FontMetrics(in font : Font)

+charWidth(in ch : int) : int

+charWidth(in ch : char) : int

+getAscent() : int

+getDescent() : int

+getFont() : Font

+getHeight() : int

+getLeading() : int

+getMaxAdvance() : int

+getMaxDescent() : int

+stringWidth() : int

 # font : Font

FontMetrics

Figure 7.21: The FontMetrics
class.

SECTION 11 • Handling Text in a Graphics Context 327

font’s properties. These can be useful to control the layout of text on a
GUI. For example, when drawing multiple lines of text, the getHeight()
method is useful for determining how much space should be left between
lines. When drawing character by character, the charWidth() method
can be used to determine how much space must be left between charac-
ters. Alternatively, the stringWidth()method can be used to determine
the number of pixels required to draw the entire string.

7.11.3 Example: Centering a Line of Text

Given this background, let’s take on the task of centering a message in an
application window. In order for this application to work for any font, we
must take care not to base its design on characteristics of the particular Algorithm design: Generality
font that we happen to be using. To underscore this point, let’s design
it to work for a font named Random, which, as we noted earlier, will
be mapped to some font by the system on which the application is run.
In other words, we will let the system pick a font for this application’s
message. An interesting experiment would be to run the application on
different platforms to see what fonts are chosen.

The only method we need for this application is the paint() method.
Let’s begin by setting the font used by the graphics context to a random
font. To get the characteristics of this font, we create a FontMetrics
object and get the font metrics for the font we just created:� �

g . se tFont (new Font (”Random” , Font .BOLD, 2 4)) ;
FontMetrics metr i cs = g . getFontMetr ics () ;
 	

The next step is to determine the JFrame’s dimensions using the
getSize() method. This method returns an object of type Dimension.
The java.awt.Dimension class (Fig. 7.22) represents the size (width
and height) of a GUI component. A Dimension makes it possible to ma-
nipulate an object’s width and height as a single entity. Note that the
height and width variables are defined as public, which is an excep-
tion from the usual convention of defining instances variables as private
or protected. The justification for this exception is probably to simplify
the syntax of referring to an object’s width and height. For example, the
following syntax can be used to refer to a component’s dimensions:� �

Dimension d = new Dimension (1 0 0 , 5 0) ;
System . out . p r i n t l n (”width = ” + d . width +

” height = ” + d . height) ;
 	
Note the redundancy built into the Dimension class. For example, in
addition to being able to set a Dimension’s instance variables directly,

+Dimension()

+Dimension(in d : Dimension)

+Dimension(in width : int, in height : int)

+equals(in o : Object) : boolean

+getSize() : Dimension

+setSize(in d : Dimension)

+setSize(in width : int, in height : int)

+toString() : String

+height : int

+width : int

Dimension

Figure 7.22: The Dimension
class.

public access methods are provided. Also, by defining more than one ver-
sion of some access methods, the class achieves a higher level of flexibility.
The same can be said for providing several different constructors, includ-
ing a copy constructor. Finally, note how it overrides the equals() and

328 CHAPTER 7 • Strings and String Processing

toString() methods. These are all examples of good object-oriented
design.

JAVA EFFECTIVE DESIGN Redundancy. Redundancy is often a
desirable characteristic of object design. It makes the object easier to
use and more widely applicable.

The Dimension object is used to calculate the x- and y-coordinates for
the string. In order to center the string horizontally, we need to know
its width, which is supplied by the metrics object. If the JFrame is
d.width pixels wide, then the following expression subtracts the widthCentering text
of the string from the width of the JFrame and then divides the leftover
space in half:� �

// C a l c u l a t e c o o r d i n a t e s

i n t x = (d . width − metr ics . str ingWidth (s t r)) / 2 ;
 	
Similarly, the following expression adds the height of the string to the
height of the JFrame and divides the leftover space in half:� �

i n t y = (d . height + metr ics . getHeight ()) / 2 ;
 	
Taken together, these calculations give the coordinates for the lower left
pixel of the first character in “Hello, World!!” The only remaining task
is to draw the string (Fig. 7.23). Because the paint() method is called
automatically whenever the JFrame is resized, this application, whose
output is shown in Figure 7.24, will re-center its message whenever it is
resized by the user.

JAVA PROGRAMMING TIP Generality. By using a component’s
size and font as the determining factors, you can center text on
virtually any component. These values are available via the
component’s getFont() and getSize() methods.

CHAPTER SUMMARY Technical Terms
ascent
baseline
concatenation
copy constructor
data structure
delimited string
delimiter
empty string

garbage collection
glyph
lexicographic order
logical font
off-by-one error
orphan object
physical font
read only

string
string index
string literal
token
unit indexed
zero indexed

CHAPTER 7 • Chapter Summary 329� �
import j ava . awt . ∗ ;
import j avax . swing . ∗ ;

public c l a s s CenterText extends JFrame {
// P r i n t h e l l o w o r l d ! i n c e n t e r o f f r a m e

public void paint (Graphics g) {
S t r i n g s t r = ” Hello , World ! ” ;
g . se tFont (new Font (”Random” , Font . PLAIN , 2 4)) ; // Random f o n t

FontMetrics metr ics = g . getFontMetr ics () ; //

And i t s m e t r i c s

Dimension d = g e t S i z e () ; // G e t t h e f r a m e ’ s s i z e

// C l e a r t h e f r a m e

g . se tColor (getBackground ()) ;
g . f i l l R e c t (0 , 0 , d . width , d . height) ;
g . se tColor (Color . black) ;

// C a l c u l a t e c o o r d i n a t e s

i n t x = (d . width − metr ics . str ingWidth (s t r)) / 2 ;
i n t y = (d . height + metr ics . getHeight ()) / 2 ;

g . drawString (s t r , x , y) ; // Draw t h e s t r i n g

} // p a i n t ()

public s t a t i c void main (S t r i n g args []) {
CenterText c t = new CenterText () ;
c t . s e t S i z e (4 0 0 , 4 0 0) ;
c t . s e t V i s i b l e (t rue) ;

}
} // C e n t e r T e x t
 	

Figure 7.23: The CenterText application.

Summary of Important Points

• A String literal is a sequence of 0 or more characters enclosed within
double quotation marks. A String object is a sequence of 0 or more
characters, plus a variety of class and instance methods and variables.
• A String object is created automatically by Java the first time it en-

counters a literal string, such as “Socrates,” in a program. Subsequent
occurrences of the literal do not cause additional objects to be instan-
tiated. Instead, every occurrence of the literal “Socrates” refers to the
initial object.

Figure 7.24: The CenterText ap-
plication keeps its message cen-
tered no matter how its window is
resized.

330 CHAPTER 7 • Strings and String Processing

• A String object is created whenever the new operator is used
in conjunction with a String() constructor—for example, new
String("hello").
• The String concatenation operator is the overloaded + symbol; it is

used to combine two Strings into a single String: “hello” + “world”
==> “helloworld”.
• Strings are indexed starting at 0. The indexOf() and lastIndex-
Of() methods are used for finding the first or last occurrence of a char-
acter or substring within a String. The valueOf() methods con-
vert a nonstring into a String. The length() method determines
the number of characters in a String. The charAt() method re-
turns the single character at a particular index position. The vari-
ous substring() methods return the substring at particular index
positions in a String.
• The overloaded equals() method returns true if two Strings con-

tain the same exact sequence of characters. The == operator, when used
on Strings, returns true if two references designate the same String
object.
• String objects are immutable. They cannot be modified.
• A StringBuffer is a string object that can be modified using meth-

ods such as insert() and append().
• A StringTokenizer is an object that can be used to break a String

into a collection of tokens separated by delimiters. The whitespace
characters—tabs, blanks, and newlines—are the default delimiters.
• The FontMetrics class is used to obtain the specific dimensions of

the the various Fonts. It is useful when you wish to center text. Fonts
are inherently platform dependent. For maximum portability, it is best
to use default fonts.

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 7.1 a. silly b. silly c. silly stuff

SOLUTION 7.2

a. String str1 = "";

b. String str2 = new String("stop");

c. String str3 = str1 + str2;

SOLUTION 7.3 a. 15 b. "551" c. "5175"

SOLUTION 7.4 See Figure 7.25.
SOLUTION 7.5 a. "45" b. "121" c. "X"

SOLUTION 7.6

a. String.valueOf(100)

b. String.valueOf(’V’);

c. String s = new String(String.valueOf(X * Y));

SOLUTION 7.7 a. 0 b. 1 c. −1

CHAPTER 7 • Solutions to Self-Study Exercises 331
Figure 7.25: Answer to Exercise
7.4. Note that s1 is null because it
has not been instantiated and has
not been assigned a literal value.

String s1, s2="Hello", s3="Hello";

String s4="hello";

String s5=new String ("Hello");

String s6=s5;

String s7=s3;

value="Hello"

count=5

: String

value="hello"

count=5

: String

value="Hello"

count=5

: String null

"Hello" "hello" s5 s6 s1s4

s2

s3 s7

SOLUTION 7.8

a. 16

b. "16"

c. 1
d. 15
e. 1

f. 13
g. 7
h. 3
i. 7

j. 7

k. 3

SOLUTION 7.9 Evaluate the following expression:� �
S t r i n g t r i c k y = ” abcdefg01234567 ” ;
t r i c k y . indexOf (S t r i n g . valueOf (t r i c k y . indexOf (” c ”))) ;
t r i c k y . indexOf (S t r i n g . valueOf (2)) ;
t r i c k y . indexOf (”2”) ;
Answer : 9
 	
SOLUTION 7.10 a. "uvwxyz"

b. "bcde"

c. "xyz"

d. "xy"

e. "xyz"

SOLUTION 7.11 a. "uvwxyz"

b. "bcde"

c. "xyz"

d. "xyz"

e. "xyz"

SOLUTION 7.12 A class to test the string methods.� �
public c l a s s S t r i n g P r o c e s s o r T e s t {

public s t a t i c void main (S t r i n g [] args) {
KeyboardReader kb = new KeyboardReader () ;
kb . prompt (” Input a S t r i n g or − stop − to qui t : ”) ;
S t r i n g s t r = kb . getKeyboardInput () ;
while (! s t r . equals (” stop ”)) {

kb . display (” Test ing p r i n t L e t t e r s () \n”) ;
S t r i n g P r o c e s s o r . p r i n t L e t t e r s (s t r) ;
kb . display (” t e s t i n g countChars () \n”) ;
kb . display (” Tota l occurences of e = ”) ;
kb . display (S t r i n g P r o c e s s o r . countChar (s t r , ’ e ’) + ”\n”) ;
kb . display (” Test ing reverse () \n”) ;
kb . display (S t r i n g P r o c e s s o r . reverse (s t r)+ ”\n”) ;
kb . display (” Test ing c a p i t a l i z e () \n”) ;
kb . display (S t r i n g P r o c e s s o r . c a p i t a l i z e (s t r) + ”\n\n”) ;
kb . prompt (” Input a S t r i n g or − stop − to qui t : ”) ;
s t r = kb . getKeyboardInput () ;

} // w h i l e

} // m a i n ()

} // S t r i n g P r o c e s s o r T e s t c l a s s
 	

332 CHAPTER 7 • Strings and String Processing

SOLUTION 7.13 Method to remove all blanks from a string:� �
// P r e : s i s a n o n n u l l s t r i n g

// P o s t : s i s r e t u r n e d w i t h a l l i t s b l a n k s r e m o v e d

public S t r i n g removeBlanks (S t r i n g s) {
S t r i n g B u f f e r r e s u l t = new S t r i n g B u f f e r () ;
for (i n t k = 0 ; k < s . length () ; k++)

i f (s . charAt (k) != ’ ’) // I f t h i s i s n o t a b l a n k

r e s u l t . append (s . charAt (k)) ; //

a p p e n d i t t o r e s u l t

return r e s u l t . t o S t r i n g () ;
}
 	

SOLUTION 7.14 A Alpha Z Zero Zeroes a alpha bath bin z zero

SOLUTION 7.15 To modify precedes so that it also returns true when its two
string arguments are equal, just change the operator in the final return statement
to <=:� �

i f (s1 . charAt (k) <= s2 . charAt (k))
return true ;
 	

SOLUTION 7.16 a. true

b. true

c. false

d. false

e. false

f. true

g. false

h. false

i. false

SOLUTION 7.17 The variables in TestStringEquals are declared static
because they are used in static methods. Whenever you call a method di-
rectly from main(), it must be static because main() is static. Remember
that static elements are associated with the class, not with its instances. So
main() can only use static elements because they don’t depend on the existence
of instances.

SOLUTION 7.18

a. String s3 = s1.substring(s1.indexOf(’n’))
+ s1.substring(0,s1.indexOf(’n’));

b. String s4 = s2.substring(6) + " " + s2.substring(0,5);

c. String s5 = s2.substring(0,6) + s1.substring(0,3);

EXERCISES
Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

EXERCISE 7.1 Explain the difference between the following pairs of terms:

a. Unit indexing and zero indexing.
b. Data structure and data type.
c. StringBuffer and String.
d. String and StringTokenizer.
e. Declaring a variable and instantiating a String.
f. A Font and a FontMetrics object.

EXERCISE 7.2 Fill in the blanks.

a. When the first character in a string has index 0, this is known as .

b. A sequence of characters enclosed within quotes is known as a .

CHAPTER 7 • Exercises 333

EXERCISE 7.3 Given the String str with the value “to be or not to be that is the
question,” write Java expressions to extract each of the substrings shown below.
For each substring, provide two sets of answers. One that uses the actual index
numbers of the substrings—for example, the first “to” goes from 0 to 2—and a sec-
ond more general solution that will also retrieve the substring from the following
string “it is easy to become what you want to become.” (Hint: In the second case,
use length() and indexOf() along with substring() in your expressions. If
necessary, you may use local variables to store intermediate results. The answer
to (a) is provided as an example.)

a. the first “to” in the string� �
s t r . subs t r ing (0 , 2)
// A n s w e r 1

s t r . subs t r ing (
s t r . indexOf (” to ”) , s t r . indexOf (” to ”) + 2) // A n s w e r 2
 	

b. the last “to” in the string
c. the first “be” in the string
d. the last “be” in the string

e. the first four characters in the string
f. the last four characters in the string

EXERCISE 7.4 Identify the syntax errors in each of the following, assuming that
s is the literal string “exercise”:
a. s.charAt("hello")
b. s.indexOf(10)
c. s.substring("er")

d. s.lastIndexOf(er)
e. s.length

EXERCISE 7.5 Evaluate each of the following expressions, assuming that s is
the literal string “exercise”:
a. s.charAt(5)
b. s.indexOf("er")
c. s.substring(5)

d. s.lastIndexOf(’e’)
e. s.length()

EXERCISE 7.6 Write your own equalsIgnoreCase() method using only
other String methods.

EXERCISE 7.7 Write your own String equality method without using
String. equals(). (Hint: Modify the precedes() method.)

EXERCISE 7.8 Even though Java’s String class has a built-in toLowerCase()
method, write your own implementation of this method. It should take a String
parameter and return a String with all its letters written in lowercase.

EXERCISE 7.9 Write a method that converts its String parameter so that let-
ters are written in blocks five characters long. For example, consider the following
two versions of the same sentence:� �
Pla in : This i s how we would o r d i n a r i l y wri te a sentence .
Blocked : T h i s i showw ewoul dordi n a r i l ywrit easen tence .
 	
EXERCISE 7.10 Design and implement a Java Swing program that lets the user
type a document into a TextArea and then provides the following analysis of the
document: the number of words in the document, the number of characters in the
document, and the percentage of words that have more than six letters.

EXERCISE 7.11 Design and write a Java Swing program that searches for single-
digit numbers in a text and changes them to their corresponding words. For ex-
ample, the string “4 score and 7 years ago” would be converted into “four score
and seven years ago”.

334 CHAPTER 7 • Strings and String Processing

EXERCISE 7.12 A palindrome is a string that is spelled the same way backward
and forward. For example, mom, dad, radar, 727 and able was i ere i saw elba are all
examples of palindromes. Write a Java Swing program that lets the user type in a
word or phrase and then determines whether the string is a palindrome.

EXERCISE 7.13 Write a maze program that uses a string to store a representa-
tion of the maze. Write a method that accepts a String parameter and prints a
two-dimensional representation of a maze. For example, the maze shown here,
where O marks the entrance and exit can be generated from the following string:� �
S t r i n g : XX XXXXXXXX XXX XXXX XX XXX XX XX XXX X XXXXXXXX X

O
XX XXXXXXX
X XXX XXX
X XX XX
X XX XX XX
X X O
XXXXXXXX X
 	
EXERCISE 7.14 Write a method that takes a delimited string to store a name
and address, from which you can print a mailing label. For example, if the string
contains “Sam Penn:14 Bridge St.:Hoboken, NJ 01881,” the method should print
the label shown in the margin.

Sam Penn
14 Bridge St.
Hoboken, NJ 01881

EXERCISE 7.15 Design and implement a Java Swing program that plays Time
Bomb with the user. Here’s how the game works. The computer picks a secret
word and then prints one asterisk for each letter in the word: * * * * *. The user
guesses at the letters in the word. For every correct guess, an asterisk is replaced by
a letter:
* e * * *. For every incorrect guess, the time bomb’s fuse grows shorter. When
the fuse disappears, after say, six incorrect guesses, the bomb explodes. Store the
secret words in a delimited string and invent your own representation for the time
bomb.

EXERCISE 7.16 Challenge: The global replace function is a string-processing
algorithm found in every word processor. Write a method that takes three String
arguments: a document, a target string, and a replacement string. The method
should replace every occurrence of the target string in the document with the re-
placement string. For example, if the document is “To be or not to be, that is the
question,” and the target string is “be,”, and the replacement string is “see,” the
result should be, “To see or not to see, that is the question.”

EXERCISE 7.17 Challenge: Design and implement a Java Swing Program that
plays the following game with the user. Let the user pick a letter between A and
Z. Then let the computer guess, the secret letter. For every guess the player has to
tell the computer whether it’s too high or too low. The computer should be able to
guess the letter within five guesses. Do you see why?

CHAPTER 7 • Exercises 335

EXERCISE 7.18 Challenge: A list is a sequential data structure. Design a List
class that uses a comma-delimited String—such as, “a,b,c,d,12,dog”—to imple-
ment a list. Implement the following methods for this class:� �
void addItem (Object o) ; // U s e O b j e c t . t o S t r i n g ()

S t r i n g getItem (i n t p o s i t i o n) ;
S t r i n g t o S t r i n g () ;
void dele te I tem (i n t p o s i t i o n) ;
void dele te I tem (S t r i n g item) ;
i n t g e t P o s i t i o n (S t r i n g item) ;
S t r i n g getHead () ; // F i r s t e l e m e n t

L i s t g e t T a i l () ; // A l l b u t t h e f i r s t e l e m e n t

i n t length () ; // N u m b e r o f i t e m s
 	
EXERCISE 7.19 Challenge: Use a delimited string to create a PhoneList class
with an instance method to insert names and phone numbers, and a method to
look up a phone number when a user provides a person’s name. Since your class
will take care of looking things up, you don’t have to worry about keeping the list
in alphabetical order. For example, the following string could be used as such a
directory:� �

mom:860−192−9876: : b i l l g :654−0987−1234: :mary l a n c e l o t :123−842−1100
 	
EXERCISE 7.20 Design and implement an application that displays a multi-line
message in various fonts and sizes input by the user. Let the user choose from
among a fixed selection of fonts, sizes, and styles.

336 CHAPTER 7 • Strings and String Processing

OBJECTIVES
After studying this chapter, you will

• Understand the concepts of inheritance and polymorphism.
• Know how Java’s dynamic binding mechanism works.
• Be able to design and use abstract methods and classes.
• Be able to design and use polymorphic methods.
• Gain a better understanding of object-oriented design.

OUTLINE
8.1 Introduction
8.2 Java’s Inheritance Mechanism
8.3 Abstract Classes, Interfaces, and Polymorphism
8.4 Example: A Toggle Button

Special Topic: Historical Cryptography
8.5 Example: The Cipher Class Hierarchy
8.6 Case Study: A Two Player Game Hierarchy
8.7 Principles of Object-Oriented Design

Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 8

Inheritance and
Polymorphism

337

338 CHAPTER 8 • Inheritance and Polymorphism

8.1 Introduction

Among the most important concepts in object oriented programming are
the concepts of inheritance and polymorphism. We first introduced the
idea of inheritance in Chapter 0. There we compared inheritance to the
natural form of inheritance, in which horses and cows share certain inher-
ited characteristics, such as being warm-blooded, by virtue of their being
mammals. We also gave the example of a hierarchy of chess pieces and
showed how different kinds of chess pieces, such as Pawn and Bishop, in-
herited certain shared characteristics from their ChessPiece superclass.

We took a more technical look at inheritance in Chapter 3, where we
talked about the toString() method and how it is inherited from the
Object class. We illustrated there how subclasses of Object could
override the inherited toString() method in order to customize it for
their purposes. We also introduced the idea of polymorphism, in which
a method call, such as obj.toString(), can have different behaviors
depending on the type of object, obj, on which it is called.

In Chapter 4, we continued introducing inheritance and polymor-
phism, when we learned about Java’s Abstract Windowing Toolkit (AWT)
and Swing hierarchies, the class hierarchies that are used to create Graph-
ical User Interfaces (GUIs). We also learned how to extend a class to create
our own subclass, and we made limited use of inheritance in the design
of the SimpleGUI class. We were also introduced to the concept of a Java
interface, and we learned how to use the ActionListener interface to
enable a SimpleGUI to handle action events while the GUI is running.

In this chapter we will take a much closer look at these important
object-oriented concepts. We will learn how Java’s dynamic binding mecha-
nism works and how it makes polymorphism possible. Most importantly,
we will see why inheritance and polymorphism are important elements of
object-oriented design, and we will learn how to use these important tools
to design several different programs. In keeping with our running games
example, we will develop a TwoPlayerGame hierarchy and show how
it can simplify the implementation of OneRowNim and other two-player
games.

8.2 Java’s Inheritance Mechanism

As we described in Chapter 0, class inheritance is the mechanism
whereby a class acquires (inherits) the methods and variables of its super-
classes. To remind you of the basic concept, let’s repeat an earlier example:
Just as horses inherit the attributes and behaviors associated with mam-
mals and vertebrates, a Java subclass inherits the attributes and behaviors
of its superclasses.

Figure 8.1: A class hierarchy for
horses.

Figure 8.1 uses a UML diagram to illustrate the relationships among
horses, mammals, vertebrates, and animals. As the root of the hierarchy,
which is always shown at the top, the Animal class contains the most gen-
eral attributes, such as being alive and being able to move. All animals
share these attributes. The class of vertebrates is a somewhat more spe-
cialized type of animal, in that vertebrates have backbones. Similarly, the
class of mammals is a further specialization over the vertebrates in that

SECTION 8.2 • Java’s Inheritance Mechanism 339

mammals are warm-blooded and nurse their young. Finally, the class of
horses is a further specialization over the class of mammals, in that all
horses have four legs. Some mammals, such as humans and penguins, do
not have four legs. Thus, by virtue of its class’s position in this hierarchy,
we can infer that a horse is a living, moving, four-legged vertebrate, which
is warm blooded and nurses its young.

We have deliberately used an example from the natural world to show
that the concept of inheritance in Java is inspired by its counterpart in the
natural world. But how exactly does the concept of inheritance apply to
Java (and to other object-oriented languages)? And, more importantly,
how do we use the inheritance mechanism in object-oriented design?

8.2.1 Using an Inherited Method

In Java, the public and protected instance methods and instance variables
of a superclass are inherited by all of its subclasses. This means that objects
belonging to the subclasses can use the inherited variables and methods
as their own.

We have already seen some examples of this in earlier chapters. For ex-
ample, recall that by default all Java classes are subclasses of the Object
class, which is the most general class in Java’s class hierarchy. One public
method that is defined in the Object class is the toString() method.
Because every class in the Java hierarchy is a subclass of Object, every
class inherits the toString() method. Therefore, toString() can be
used with any Java object.

To illustrate this, suppose we define a Student class as follows:� �
public c l a s s Student {

protected S t r i n g name ;
public Student (S t r i n g s) {

name = s ;
}
public S t r i n g getName () {

return name ;
}

}
 	
Figure 8.2 shows the relationship between this class and the Object class.

Figure 8.2: The Student class hi-
erarchy.

As a subclass of Object, the Student class inherits the toString()
method. Therefore, for a given Student object, we can call its
toString() as follows:� �

Student stu = new Student (” Stu ”) ;
System . out . p r i n t l n (s tu . t o S t r i n g ()) ;
 	

How does this work? That is, how does Java know where to find the
toString() method, which, after all, is not defined in the Student
class? The answer to this question is crucial to understanding how Java’s
inheritance mechanism works.

Note in this example that the variable stu is declared to be of type
Student and is assigned an instance of the Student class. When
the expression stu.toString() is executed, Java will first look in the

340 CHAPTER 8 • Inheritance and Polymorphism

Student class for a definition of the toString() method. Not finding
one there, it will then search up the Student class hierarchy (Fig. 8.2)
until it finds a public or protected definition of the toString() method.
In this case, it finds a toString() method in the Object class and it ex-
ecutes that implementation of toString(). As you know from Chap-
ter 3, this would result in the expression stu.toString() returning
something like:� �

Student@cde100
 	
The default implementation of toString() returns the name of the ob-
ject’s class and the address (cde100) where the object is stored in mem-
ory. However, this type of result is much too general and not particularly
useful.

8.2.2 Overriding an Inherited Method

In Chapter 3 we pointed out that the toString() method is designed to
be overridden—that is, to be redefined in subclasses of Object. Overriding
toString() in a subclass provides a customized string representation of
the objects in that subclass. We showed that by redefining toString() in
our OneRowNim class, we customized its actions so that it returned useful
information about the current state of a OneRowNim game.

To override toString() for the Student class, let’s add the following
method definition to the Student class:� �

public S t r i n g t o S t r i n g () {
return ”My name i s ” + name + ” and I am a Student . ” ;

}
 	Figure 8.3: The revised Student
class hierarchy.

Given this change, the revised Student class hierarchy is shown in Fig-
ure 8.3. Note that both Object and Student contain implementations of
toString(). Now when the expression stu.toString() is invoked,
the following, more informative, output is generated:� �

My name i s Stu and I am a Student .
 	
In this case, when Java encounters the method call stu.toString(),
it invokes the toString() method that it finds in the Student class
(Fig. 8.3).

SECTION 8.2 • Java’s Inheritance Mechanism 341

These examples illustrate two important object-oriented concepts: in-
heritance and method overriding.

JAVA EFFECTIVE DESIGN Inheritance. The public and protected
instance methods (and variables) in a class can be used by objects that
belong to the class’s subclasses.

JAVA EFFECTIVE DESIGN Overriding a Method. Overriding an
inherited method is an effective way to customize that method for a
particular subclass.

8.2.3 Static Binding, Dynamic Binding
and Polymorphism

The mechanism that Java uses in these examples is known as dynamic
binding, in which the association between a method call and the cor-
rect method implementation is made at run time. In dynamic binding
a method call is bound to the correct implementation of the method at run
time by the Java Virtual Machine (JVM).

Dynamic binding is contrasted with static binding, the mechanism by
which the Java compiler resolves the association between a method call
and the correct method implementation when the program is compiled.
In order for dynamic binding to work, the JVM needs to maintain some
kind of representation of the Java class hierarchy, including classes defined
by the programmer. When the JVM encounters a method call, it uses in-
formation about the class hierarchy to bind the method call to the correct
implementation of that method.

In Java, all method calls use dynamic binding except methods that are
declared final or private. Final methods cannot be overridden, so Dynamic binding
declaring a method as final means that the Java compiler can bind it
to the correct implementation. Similarly, private methods are not inher-
ited and therefore cannot be overridden in a subclass. In effect, private
methods are final methods and the compiler can perform the binding at
compile time.

Java’s dynamic-binding mechanism, which is also called late binding or Polymorphism
run-time binding, leads to what is know as polymorphism. Polymorphism
is a feature of object-oriented languages whereby the same method call
can lead to different behaviors depending on the type of object on which
the method call is made. The term polymorphism means, literally, having
many (poly) shapes (morphs). Here’s a simple example:� �

Object ob j ; // S t a t i c t y p e : O b j e c t

obj = new Student (” Stu ”) ; // A c t u a l t y p e : S t u d e n t

System . out . p r i n t l n (ob j . t o S t r i n g ()) ; // P r i n t s ” My n a m e i s S t u . . . ”

obj = new OneRowNim (1 1) ; // A c t u a l t y p e : OneRowNim

System . out . p r i n t l n (ob j . t o S t r i n g ()) ; // P r i n t s ” n S t i c k s = 1 1 , p l a y e r = 1 ”
 	
The variable obj is declared to be of type Object. This is its static or
declared type. A variable’s static type never changes. However, a variable

342 CHAPTER 8 • Inheritance and Polymorphism

also has an actual or dynamic type. This is the actual type of the object that
has been assigned to the variable. As you know, an Object variable can
be assigned objects from any Object subclass. In the second statement,
obj is assigned a Student object. Thus, at this point in the program,
the actual type of the variable obj is Student. When obj.toString()
is invoked in the third line, Java begins its search for the toString()
method at the Student class, because that is the variable’s actual type.

In the fourth line, we assign a OneRowNim object to obj, thereby chang-
ing its actual type to OneRowNim. Thus, when obj.toString() is in-
voked in the last line, the toString() method is bound to the imple-
mentation found in the OneRowNim class.

Thus, we see that the same expression, obj.toString(), is bound al-
ternatively to two different toString() implementations, based on the
actual type of the object, obj, on which it is invoked. This is polymor-
phism and we will sometimes say that the toString() method is a poly-Polymorphic method
morphic method. A polymorphic method is a method signature that be-
haves differently when it is invoked on different objects. An overridden
method, such as the toString() method, is an example of a polymor-
phic method, because its use can lead to different behaviors depending
upon the object on which it is invoked.

The previous example is admittedly somewhat contrived. In some
object-oriented languages, a code segment such as that above would use
static binding rather than dynamic binding. In other words, the com-
piler would be able to figure out the bindings. So let’s take an example
where static binding, also called early binding, is not possible. Consider
the following method definition:� �

public void polyMethod (Object ob j) {
System . out . p r i n t l n (ob j . t o S t r i n g ()) ; // P o l y m o r p h i c

}
 	
The method call in this method, obj.toString(), can’t be bound to
the correct implementation of toString() until the method is actually
invoked—that is, at run time. For example, suppose we make the follow-
ing method calls in a program:� �

Student stu = new Student (” Stu ”) ;
polyMethod (stu) ;
OneRowNim nim = new OneRowNim () ;
polyMethod (nim) ;
 	

The first time polyMethod() is called, the obj.toString() is invoked
on a Student object. Java will use its dynamic binding mechanism
to associate this method call with the toString() implementation in
Student and output “My name is Stu and I am a Student.” The sec-
ond time polyMethod() is called, the obj.toString() expression is
invoked on a OneRowNim object. In this case, Java will bind the method
call to the implementation in the OneRowNim class. The output generated
in this case will report how many sticks are left in the game.

SECTION 8.2 • Java’s Inheritance Mechanism 343

The important point here is that polymorphism occurs when an over-
ridden method is called on a superclass variable, obj. In such a case, the
actual method implementation that is invoked is determined at run time.
The determination depends on the type of object that was assigned to the
variable. Thus, we say that the method call obj.toString() is poly-
morphic because it is bound to different implementations of toString()
depending on the actual type of the object that is bound to obj.

8.2.4 Polymorphism and Object-Oriented Design

Now that we understand how inheritance and polymorphism work
in Java, it will be useful to consider an example that illustrates
how these mechanisms can be useful in designing classes and meth-
ods. We have been using the various System.out.print() and
System.out.println() methods since Chapter 1. The print()
and println() methods are examples of overloaded methods—that is,
methods that have the same name but different parameter lists. Remem- Overloaded methods
ber that a method’s signature involves its name, plus the type, num-
ber, and order of its parameters. Methods that have the same name but
different parameters are said to be overloaded.

Here are the signatures of some of the different print() and
println() methods:� �

p r i n t (char c) ; p r i n t l n (char c) ;
p r i n t (i n t i) ; p r i n t l n (i n t i) ;
p r i n t (double d) ; p r i n t l n (double d) ;
p r i n t (f l o a t f) ; p r i n t l n (f l o a t f) ;
p r i n t (S t r i n g s) ; p r i n t l n (S t r i n g s) ;
p r i n t (Object o) ; p r i n t l n (Object o) ;
 	

Basically, there is a print() and println() method for every type of
primitive data, plus methods for printing any type of object. When Java
encounters an expression involving print() or println() it chooses
which particular print() or println() method to call. To determine
the correct method, Java relies on the differences in the signatures of the
various print() methods. For example, because its argument is an int,
the expression print(5) is associated with the method whose signature
is print(int i) be cause its parameter is an int.

Note that there is only one set of print() and println() meth-
ods for printing Objects. The reason is that polymorphism is used by
the print(Object o) and println(Object o) methods to print any
type of object. While we do not have access to the source code for these

344 CHAPTER 8 • Inheritance and Polymorphism

methods, we can make an educated guess that their implementations
utilize the polymorphic toString() method, as follows:� �

public void p r i n t (Object o) {
System . out . p r i n t (o . t o S t r i n g ()) ;

}

public void p r i n t l n (Object o) {
System . out . p r i n t l n (o . t o S t r i n g ()) ;

}
 	
Here again we have a case where an expression, o.toString(),
is bound dynamically to the correct implementation of toString()
based on the type of Object that the variable o is bound to. If we
call System.out.print(stu), where stu is a Student, then the
Student.toString() method is invoked. On the other hand, if we
call System.out.print(game), where game is a OneRowNim, then the
OneRowNim.toString() method is invoked.

The beauty of using polymorphism in this way is the flexibility and
extensibility that it allows. The print() and println() methods canExtensibility
print any type of object, even new types of objects that did not exist when
these library methods were written.

SELF-STUDY EXERCISES
EXERCISE 8.1 To confirm that the print() and println() methods

are implemented along the lines that we suggest here, compile and run the
TestPrint program shown here. Describe how it confirms our claim.� �
public c l a s s T e s t P r i n t {

public s t a t i c void main (S t r i n g args []) {
System . out . p r i n t l n (new Double (5 6)) ;
System . out . p r i n t l n (new T e s t P r i n t ()) ;

}
}
 	
EXERCISE 8.2 Override the toString() method in the TestPrint

class and rerun the experiment. Describe how this adds further confirma-
tion to our claim.

8.2.5 Using super to Refer to the Superclass
One question that might occur to you is: Once you override the default
toString() method, is it then impossible to invoke the default method
on a Student object? The default toString() method (and any method
from an object’s superclass) can be invoked using the super keyword. For
example, suppose that within the Student class, you wanted to concate-
nate the result of both the default and the new toString() methods.
The following expression would accomplish that:� �

super . t o S t r i n g () + t o S t r i n g ()
 	

SECTION 8.2 • Java’s Inheritance Mechanism 345

The super keyword specifies that the first toString() is the one imple-
mented in the superclass. The second toString() refers simply to the
version implemented within the Student class. We will see additional Keyword super
examples of using the super keyword in the following sections.

SELF-STUDY EXERCISES

EXERCISE 8.3 Consider the following class definitions and determine
the output that would be generated by the code segment.� �

public c l a s s A {
public void method () { System . out . p r i n t l n (”A”) ; }

}
public c l a s s B extends A {

public void method () { System . out . p r i n t l n (”B”) ; }
}

// D e t e r m i n e t h e o u t p u t f r o m t h i s c o d e s e g m e n t

A a = new A () ;
a . method () ;
a = new B () ;
a . method () ;
B b = new B () ;
b . method () ;
 	

EXERCISE 8.4 For the class B defined in the previous exercise, modify
its method() so that it invokes A’s version of method() before printing
out B.

EXERCISE 8.5 Given the definitions of the classes A and B, which of the
following statements are valid? Explain.� �

A a = new B () ;
a = new A () ;
B b = new A () ;
b = new B () ;
 	

8.2.6 Inheritance and Constructors

Java’s inheritance mechanism applies to a class’s public and protected in-
stance variables and methods. It does not apply to a class’s constructors.

346 CHAPTER 8 • Inheritance and Polymorphism

To illustrate some of the implications of this language feature, let’s define
a subclass of Student called CollegeStudent:� �

public c l a s s CollegeStudent extends Student {
public CollegeStudent () { }
public CollegeStudent (S t r i n g s) {

super (s) ;
}
public S t r i n g t o S t r i n g () {

return ”My name i s ” + name +
” and I am a CollegeStudent . ” ;

}
}
 	

Because CollegeStudent is a subclass of Student, it inherits the pub-
lic and protected instance methods and variables from Student. So, a
CollegeStudent has an instance variable for name and it has a public
getName() method. Recall that a protected element, such as the name

Figure 8.4: The class hierarchy for
CollegeStudent .

variable in the Student class, is accessible only within the class and its
subclasses. Unlike public elements, it is not accessible to other classes.

Note that CollegeStudent overrides the toString() method, giv-
ing it a more customized implementation. The hierarchical relationship
between CollegeStudent and Student is shown in Figure 8.4. A
CollegeStudent is a Student and both are Objects.

Note how we have implemented the CollegeStudent(String s)
constructor. Because the superclass’s constructors are not inherited, we
have to implement this constructor in the subclass if we want to be able
to assign a CollegeStudent’s name during object construction. The
method call, super(s), is used to invoke the superclass constructor and
pass it s, the student’s name. The superclass constructor will then assign s
to the name variable.

As we have noted, a subclass does not inherit constructors from its su-Constructor chaining
perclasses. However, if the subclass constructor does not explicitly invoke
a superclass constructor, Java will automatically invoke the default su-
perclass constructor—in this case, super(). By “default superclass con-
structor” we mean the constructor that has no parameters. For a subclass
that is several layers down in the hierarchy, this automatic invoking of the
super() constructor will be repeated upwards through the entire class
hierarchy. Thus when a CollegeStudent is constructed, Java will auto-
matically call Student() and Object(). Note that if one of the super-
classes does not contain a default constructor, this will result in a syntax
error.

If you think about this, it makes good sense. How else will the in-
herited elements of the object be created? For example, in order for a
CollegeStudent to have a name variable, a Student object, where
name is declared, must be created. The CollegeStudent constructor
then extends the definition of the Student class. Similarly, in order for a
Student object to have the attributes common to all objects, an Object
instance must be created and then extended into a Student.

Thus, unless a constructor explicitly calls a superclass constructor, Java
will automatically invoke the default superclass constructors. It does this

SECTION 8.3 • Abstract Classes, Interfaces, and Polymorphism 347

before executing the code in its own constructor. For example, if you had
two classes, A and B, where B is a subclass of A, then whenever you create
an instance of B, Java will first invoke A’s constructor before executing the
code in B’s constructor. Thus, Java’s default behavior during construction
of B is equivalent to the following implementation of B’s constructor:� �

public B () {
A () ; // C a l l t h e s u p e r c o n s t r u c t o r

// Now c o n t i n u e w i t h t h i s c o n s t r u c t o r ’ s c o d e

}
 	
Calls to the default constructors are made all the way up the class hierar-
chy, and the superclass constructor is always called before the code in the
class’s constructor is executed.

SELF-STUDY EXERCISES
EXERCISE 8.6 Consider the following class definitions and describe

what would be output by the code segment.� �
public c l a s s A {

public A() { System . out . p r i n t l n (”A”) ; }
}
public c l a s s B extends A {

public B () { System . out . p r i n t l n (”B”) ; }
}
public c l a s s C extends B {

public C() { System . out . p r i n t l n (”C”) ; }
}

// D e t e r m i n e t h e o u t p u t .

A a = new A () ;
B b = new B () ;
C c = new C () ;
 	

8.3 Abstract Classes, Interfaces,
and Polymorphism

In Java, there are three kinds of polymorphism:

• Overriding an inherited method.

• Implementing an abstract method.

• Implementing a Java interface.

In the previous section we saw examples of the first type of polymor-
phism. All forms of polymorphism are based on Java’s dynamic binding
mechanism. In this section we will develop an example that illustrates
the other two types of polymorphism and discuss some of the design
implications involved in choosing one or the other approach.

348 CHAPTER 8 • Inheritance and Polymorphism

8.3.1 Implementing an Abstract Method
An important feature of polymorphism is the ability to invoke a polymor-
phic method that has been defined only abstractly in the superclass. To
illustrate this feature, we will develop a hierarchy of simulated animals
that make characteristic animal sounds, an example that is widely used to
illustrate polymorphism.

As we all know from our childhood, animals have distinctive ways of
speaking. A cow goes “moo”; a pig goes “oink”; and so on. Let’s designExtensibility
a hierarchy of animals that simulates this characteristic by printing the
characteristic sounds that these animals make. We want to design our
classes so that any given animal will return something like “I am a cow
and I go moo,” when we invoke the toString() method. Moreover, we
want to design this collection of classes so that it is extensible—that is, so
that we can continue to add new animals to our menagerie without having
to change any of the code in the other classes.

Figure 8.5 provides a summary of the design we will implement. The
Animal class is an abstract class. That’s why its name is italicized in
the UML diagram. The reason that this class is abstract is because its
speak() method is an abstract method, which is a method definition
that does not contain an implementation. That is, the method definition
contains just the method’s signature, not its body. Any class that contains
an abstract method, must itself be declared abstract. Here is the definition

Figure 8.5: The Animal class hier-
archy.

of the Animal class:� �
public a b s t r a c t c l a s s Animal {

protected S t r i n g kind ; // Cow , p i g , c a t , e t c .

public Animal () { }
public S t r i n g t o S t r i n g () {

return ” I am a ” + kind + ” and I go ” + speak () ;
}
public a b s t r a c t S t r i n g speak () ; // A b s t r a c t m e t h o d

}
 	
Note how we declare the abstract method (speak()) and the abstract
class. Because one or more of its methods is not implemented, an abstract
class cannot be instantiated. That is, you cannot say:� �

Animal animal = new Animal () ; // E r r o r : A n i m a l i s a b s t r a c t
 	
Even though it is not necessary, we give the Animal class a constructor. If
we had left this off, Java would have supplied a default constructor that
would be invoked when Animal subclasses are created.

Java has the following rules on using abstract methods and classes.Rules for abstract classes

• Any class containing an abstract method must be declared an
abstract class.

• An abstract class cannot be instantiated. It must be subclassed.

• A subclass of an abstract class may be instantiated only if it im-
plements all of the superclass’s abstract methods. A subclass

SECTION 8.3 • Abstract Classes, Interfaces, and Polymorphism 349

that implements only some of the abstract methods must itself
be declared abstract.

• A class may be declared abstract even it contains no abstract
methods. It could, for example, contain instance variables that are
common to all its subclasses.

Even though an abstract method is not implemented in the superclass,
it can be called in the superclass. Indeed, note how the toString()
method calls the abstract speak() method. The reason that this works
in Java is due to the dynamic binding mechanism. The polymorphic
speak()method will be defined in the various Animal subclasses. When
the Animal.toString()method is called, Java will decide which actual
speak() method to call based on what subclass of Animal is involved.

Definitions for two such subclasses are shown in Figure 8.6. In each

� �
public c l a s s Cat extends Animal {

public Cat () {
kind = ” c a t ” ;

}
public S t r i n g speak () {

return ”meow” ;
}

}

public c l a s s Cow extends Animal {
public Cow() {

kind = ”cow” ;
}
public S t r i n g speak () {

return ”moo” ;
}

}
 	
Figure 8.6: Two Animal subclasses.

case the subclass extends the Animal class and provides its own con-
structor and its own implementation of the speak() method. Note that
in their respective constructors, we can refer to the kind instance vari-
able, which is inherited from the Animal class. By declaring kind as
a protected variable, it is inherited by all Animal subclasses but hid-
den from all other classes. On the other hand, if kind had been declared
public, it would be inherited by Animal subclasses, but it would also
be accessible to every other class, which would violate the information
hiding principle.

350 CHAPTER 8 • Inheritance and Polymorphism

Given these definitions, we can now demonstrate the power and flex-
ibility of inheritance and polymorphism. Consider the following code
segment:� �

Animal animal = new Cow () ;
System . out . p r i n t l n (animal . t o S t r i n g ()) ; // A cow g o e s moo

animal = new Cat () ;
System . out . p r i n t l n (animal . t o S t r i n g ()) ; // A c a t g o e s meow
 	

We first create a Cow object and then invoke its (inherited) toString()
method. It returns, “I am a cow and I go moo.” We then create a Cat
object and invoke its (inherited) toString() method, which returns, “I
am a cat and I go meow.” In other words, Java is able to determine the
appropriate implementation of speak() at run time in each case. The
invocation of the abstract speak() method in the Animal.toString()
method is a second form of polymorphism.

What is the advantage of polymorphism here? The main advantage is
the extensibility that it affords our Animal hierarchy. We can define andAdvantage of polymorphism
use completely new Animal subclasses without redefining or recompiling
the rest of the classes in the hierarchy. Note that the toString() method
in the Animal class does not need to know what type of Animal sub-
class will be executing its speak() method. The toString() method
will work correctly for any subclass of Animal because every non-abstract
subclass of Animal must implement the speak() method.

To get a better appreciation of the flexibility and extensibility of this
design, it might be helpful to consider an alternative design that does
not use polymorphism. One such alternative would be to define each
Animal subclass with its own speaking method. A Cow would have a
moo() method; a Cat would have a meow() method; and so forth. Given
this design, we could use a switch statement to select the appropriate
method call. For example, consider the following method definition:� �

public S t r i n g t a l k (Animal a) {
i f (a instanceof Cow)

return ” I am a ” + kind + ” and I go ” + a . moo () ;
e lse i f (a instanceof Cat)

return ” I am a ” + kind + ” and I go ” + a .meow () ;
e lse

return ” I don ’ t know what I am” ;
}
 	

In this example, we introduce the instanceof operator, which is a built-
in boolean operator. It returns true if the object on its left-hand side is an
instance of the class on its right-hand side.

The talk() method would produce more or less the same result. If
you call talk(new Cow()), it will return “I am a cow and I go moo.”
However, with this design, it is not possible to extend the Animal hierar-
chy without rewriting and recompiling the talk() method.

Thus, one of the chief advantages of using polymorphism is the great
flexibility and extensibility it affords. We can define new Animal sub-Extensibility
classes and define their speak() methods. These will all work with the

SECTION 8.3 • Abstract Classes, Interfaces, and Polymorphism 351

toString()method in the Animal class, without any need to revise that
method.

Another advantage of using abstract methods is the control that it gives
the designer of the Animal hierarchy. By making it an abstract class with
an abstract speak()method, any non-abstract Animal subclass must im-
plement the speak() method. This lends a great degree of predictabil-
ity to the subclasses in the hierarchy, making it easier to use them in
applications.

SELF-STUDY EXERCISES
EXERCISE 8.7 Following the examples in this section, define an
Animal subclass named Pig, which goes “oink.”

EXERCISE 8.8 Show how you would have to modify the talk()
method defined above to incorporate the Pig class.

8.3.2 Implementing a Java Interface
A third form of polymorphism results through the implementation of Java
interfaces, which are like classes but contain only abstract method def-
initions and constants (final) variables. An interface cannot contain Java interface
instance variables. We have already seen interfaces, such as when we
encountered the ActionListener interface in Chapter 4.

The designer of an interface specifies what methods will be imple-
mented by classes that implement the interface. This is similar to what we
did when we implemented the abstract speak() method in the animal
example. The difference between implementing a method from an inter-
face and from an abstract superclass is that a subclass extends an abstract
superclass but it implements an interface.

Java’s interface mechanism gives us another way to design polymor-
phic methods. To see how this works, we will provide an alternative
design for our animal hierarchy. Rather than defining speak() as an
abstract method within the Animal superclass, we will define it as an
abstract method in the Speakable interface (Fig. 8.7).� �
public i n t e r f a c e Speakable {

public S t r i n g speak () ;
}
public c l a s s Animal {

protected S t r i n g kind ; // Cow , p i g , c a t , e t c .

public Animal () { }
public S t r i n g t o S t r i n g () {

return ” I am a ” + kind + ” and I go ” +
((Speakable) t h i s) . speak () ;

}
}
 	

Figure 8.7: Defining and using the Speakable interface.

Note the differences between this definition of Animal and the pre-
vious definition. This version no longer contains the abstract speak()
method. Therefore, the class itself is not an abstract class. However, be-
cause the speak() method is not declared in this class, we cannot call the

352 CHAPTER 8 • Inheritance and Polymorphism

speak() method in the toString() method, unless we cast this object
into a Speakable object.

We encountered the cast operation in Chapter 5, where we used it with
primitive types such as (int) and (char). Here, we use it to specifyCast operation
the actual type of some object. In this toString() example, this ob-
ject is some type of Animal subclass, such as a Cat. The cast operation,
(Speakable), changes the object’s actual type to Speakable, which
syntactically allows its speak() method to be called.

Given these definitions, Animal subclasses will now extend the
Animal class and implement the Speakable interface:� �

public c l a s s Cat extends Animal implements Speakable {
public Cat () { kind = ” c a t ” ; }
public S t r i n g speak () { return ”meow” ; }

}
public c l a s s Cow extends Animal implements Speakable {

public Cow() { kind = ”cow” ; }
public S t r i n g speak () { return ”moo” ; }

}
 	
To implement a Java interface, one must provide a method implementa-
tion for each of the abstract methods in the interface. In this case there is
only one abstract method, the speak() method.

Note, again, the expression from the Animal.toString() class� �
((Speakable) t h i s) . speak () ;
 	

which casts this object into a Speakable object. The reason that this cast
is required is because an Animal does not necessarily have a speak()
method. A speak() method is not defined in the Animal class. How-
ever, the Cat subclass of Animal does implement a sleep() method as
part of its Speakable interface. Therefore, in order to invoke speak()
on an object from one of the Animal subclasses, the object must actually
be a Speakable and we must perform the cast as shown here.

This illustrates, by the way, that a Cat, by virtue of extending theInterface inheritance
Animal class and implementing the Speakable interface, is both an
Animal and a Speakable. In general, a class that implements an in-
terface, has that interface as one of its types. Interface implementation is
itself a form of inheritance. A Java class can be a direct subclass of only
one superclass. But it can implement any number of interfaces.

Given these definitions of the Cow and Cat subclasses, the following
code segment will produce the same results as in the previous section.� �

Animal animal = new Cow () ;
System . out . p r i n t l n (animal . t o S t r i n g ()) ; // A cow g o e s moo

animal = new Cat () ;
System . out . p r i n t l n (animal . t o S t r i n g ()) ; // A c a t g o e s meow
 	

Although the design is different, both approaches produce the same re-
sult. We will put off, for now, the question of how one decides whether

SECTION 8.4 • Example: A Toggle Button 353

to use an abstract method or a Java interface. We will get to this question
when we design the TwoPlayerGame class hierarchy later in this chapter.

8.4 Example: A Toggle Button

The ability to extend an existing class is one of the most powerful fea- Reusing code
tures of object-oriented programming. It allows objects to reuse code
defined in the superclasses without having to redefine or recompile the
code. As we saw in Chapter 4, a programmer-defined JFrame, such as
GreeterGUI, uses the public methods defined for JFrames, Frames,
Windows, Containers, Components, and Objects simply because it
is a subclass of JFrame (Fig. 4.11). By the same token, it can use all of
the public and protected instance variables and constants defined in
these classes by simply referring to them in its own code.

In this section, we present an example of how inheritance can be used to
extend and customize the functionality of a Java library class. As we saw
in Chapter 4, a JButton is a GUI component that can be associated with
a particular action by implementing the ActionListener interface. For
example, we used a JButton in the GreeterGUI to generate a greeting
to the user.

In this section, we will design a more sophisticated button. We will
call it a ToggleButton and define it as a JButton subclass that toggles Problem decomposition
its label whenever it is clicked, in addition to carrying out some kind of
associated action.

A light switch behaves similarly to a ToggleButton in this sense.
Whenever you flick a light switch, it changes its label from “on” to “off,”
but it also turns the lights on or off. Although different switches are asso-
ciated with different lights, every light switch toggles its label each time
it is clicked. So let’s design a ToggleButton that behaves like a light
switch.

The main idea in our design is that a ToggleButton is a JButton
that has two labels. By default, a JButton has just a single label. Thus,
because of the type of behavior we want to elicit, we need to define
ToggleButton as a subclass of JButtonwith two String variables that
will serve as its alternate labels (Fig. 8.8). Note that we give it a construc-
tor method that will allow us to provide the initial value of its two label

+JButton(in str : String)
+setText(in str : String)

JButton

+ToggleButton(in l1 : String, in l2 : String)

+actionPerformed()

-label1 : String

-label2 : String

ToggleButton

+actionPerformed()

«interface»

ActionListener

Figure 8.8: A ToggleButton isa
JButton with two labels.

strings. Another important feature of a ToggleButton is that it should
act as its own ActionListener so that it can toggle its label whenever
it is clicked. Therefore, it must also implement the ActionListener
interface.

The complete definition of ToggleButton is given in Figure 8.9. Note
how we have defined its constructor. Recall that the JButton class has a
constructor method with the signature JButton(String), which allows
us to set a JButton’s label during instantiation. We need to do the same
thing with one of ToggleButton’s two labels. That is, when we create a
ToggleButton, we want to initialize its label to one of its two alternative
labels (here, “On” or “Off”).

Because constructor methods are not inherited by the subclass, we want
to invoke the superclass’s constructor in the ToggleButton() construc-
tor using the super keyword. This must be done as the first statement in

354 CHAPTER 8 • Inheritance and Polymorphism

the ToggleButton() constructor. By passing l1 to the super construc-
tor we are making the first string that the user gives us the default label
for our ToggleButton. This will be the label that appears on the button
when it is first displayed in a Component.

Notice also in the ToggleButton() constructor that the ToggleButton
is designated as its own ActionListener, so whenever it is clicked, its
actionPerformed()method will be invoked. The actionPerformed()Swapping algorithm
method exchanges the button’s current label for its other label. Swapping
two values in memory is a standard programming practice used in lots
of different algorithms. In order to do it properly, you must use a third
variable to temporarily store one of the two values you are swapping. The
comments in actionPerformed() provide a step-by-step trace of the
values of the three variables involved.

JAVA PROGRAMMING TIP Swapping Values. It is necessary to use
a temporary variable whenever you are swapping two values, of any
type, in memory. The temporary variable holds the first value while
you overwrite it with the second value.

The first statement in actionPerformed() creates a temporary StringSwapping values requires a tempo-
rary variable variable named tempS and assigns it the value of label1. Recall that

label1 was the button’s initial label. To make this example easier to fol-
low, let’s suppose that initially label1 is “off” and that label2 is “on.”
After line 1 is executed, both tempS and label1 contain “off” as their
value. Line 2 then assigns label2’s value to label1. Now both label1

� �
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;
import j avax . swing . ∗ ;

public c l a s s ToggleButton extends JButton
implements Act ionLis tener {

private S t r i n g l a b e l 1 ; // T o g g l e b e t w e e n t w o l a b e l s

private S t r i n g l a b e l 2 ;

public ToggleButton (S t r i n g l1 , S t r i n g l 2) {// C o n s t r u c t o r

super (l 1) ; // U s e l 1 a s t h e d e f a u l t l a b e l

l a b e l 1 = l 1 ;
l a b e l 2 = l 2 ;
addActionListener (t h i s) ;

}
public void actionPerformed (ActionEvent e) {

S t r i n g tempS = l a b e l 1 ; // Swa p t h e l a b e l s

l a b e l 1 = l a b e l 2 ;
l a b e l 2 = tempS ;
s e t T e x t (l a b e l 1) ;

} // a c t i o n P e r f o r m e d ()

} // T o g g l e B u t t o n
 	
Figure 8.9: Definition of the ToggleButton class.

SECTION 8.4 • Example: A Toggle Button 355

and label2 store “on” as their values. In line 3 we assign tempS’s value
to label2. Now label2 stores “off” and label1 stores “on,” and we
have effectively swapped their original values.

The next time we invoke actionPerformed(), label1 and label2
will have their opposite values initially. Swapping them a second time
will assign them their initial values again. We can continue toggling their
values in this way indefinitely. To complete the method, the last state-
ment in actionPerformed() assigns label1’s current value as the
new ToggleButton’s label.

Now that we have seen that a ToggleButton toggles its label be-
tween two values, what about performing an associated action? To do Multiple event handlers
this, we need a design involving multiple event handlers, one to han-
dle the toggling of the button’s label and the other to handle its associ-
ated action (Fig 8.10). In this design, lightSwitch has two listeners

: ToggleApplet

1: generateClickEvent()
2: actionPerformed()

2:
 a

ct
io

nPer
fo

rm
ed

()

Listens

Listens

: JavaVirtualMachinelightSwitch : ToggleButton

Figure 8.10: The ToggleButton
has two ActionListeners.
When the button is clicked, the
JVM will call each listener’s
actionPerformed() method,
and each listener will take its own
independent action.

that respond to its events: the lightSwitch itself, as a result of the
actionPerformed() method in its class, and the ToggleFrame, as a
result of actionPerformed() method in this class.

The implementation of this design is given by ToggleFrame, a pro-
gram that uses a ToggleButton (Fig. 8.11). Like the GUI we designed
in Chapter 4, this program extends the JFrame class and implements the
ActionListener interface. In this example we use a ToggleButton
to simulate a light switch. Note that we assign the program itself as an
ActionListener for the lightSwitch, so that

When lightSwitch is clicked, the program displays the message,
“The light is on,” or “The light is off,” in the program’s title bar (Fig. 8.12).
This is a somewhat trivial action but it illustrates that a ToggleButton
both toggles its own label and carries out some associated action.

The ToggleButton design satisfies several key design principles of
object-oriented programming. First and foremost, it uses inheritance to
extend the functionality of the predefined JButton class—the extensibil- Object oriented design principles
ity principle. Secondly, it encapsulates a ToggleButton’s essential be-
havior within the ToggleButton class itself—the modularity principle.

356 CHAPTER 8 • Inheritance and Polymorphism� �
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;
import j avax . swing . ∗ ;

public c l a s s ToggleFrame extends JFrame
implements Act ionLis tener {

private ToggleButton l i g h t S w i t c h ;

public ToggleFrame () {
l i g h t S w i t c h = new ToggleButton (” o f f ” , ”on”) ;
getContentPane () . add (l i g h t S w i t c h) ;
l i g h t S w i t c h . addActionListener (t h i s) ;

} // i n i t ()

public void actionPerformed (ActionEvent e) {
s e t T i t l e (”The l i g h t i s ” + l i g h t S w i t c h . getText ()) ;

} // a c t i o n P e r f o r m e d ()

public s t a t i c void main (S t r i n g args [])
{

JFrame f = new ToggleFrame () ;
f . s e t S i z e (2 0 0 , 2 0 0) ;
f . s e t V i s i b l e (t rue) ;

}
} // T o g g l e F r a m e
 	

Figure 8.11: Definition of the ToggleFrame class.

Figure 8.12: When clicked,
ToggleFrame button causes
“The light is on” or “The light is
off” to appear in the window’s
title bar.

Finally, it hides the mechanism by which a ToggleButton manages its
labels—the information-hiding principle.

JAVA EFFECTIVE DESIGN Inheritance. Inheritance enables you to
specialize an object’s behavior. A ToggleButton does everything
that a JButton does, plus it can toggle its own label.

SELF-STUDY EXERCISES
EXERCISE 8.9 Write a code segment (not a whole method) to swap two

boolean variables, b1 and b2.

EXERCISE 8.10 Suppose you are designing an GUI that plays a card
game, and you want a single button that can be used both to deal the
cards and to collect the cards. Write a code segment that creates this
type of button, adds it to the JFrame, and designates the JFrame as its
ActionListener.

SECTION 8.5 • Example: The Cipher Class Hierarchy 357

Special Topic: Historical Cryptography

Cryptography, the study of secret writing, has had a long and interest-
ing history. Modern-day cryptographic techniques employ sophisticated
mathematics to encrypt and decrypt messages. Today’s most secure encryp-
tion schemes are safe from attack by even the most powerful computers.
Given our widespread dependence on computers and the Internet, secure
encryption has become an important application area within computer
science. While the cryptographic techniques used up through World War
II are too simple to serve as the basis for modern-day encryption schemes,
they can provide an interesting and accessible introduction to this impor-
tant area of computer science.

One of the earliest and simplest ciphers is the Caesar cipher, used by
Julius Caesar during the Gallic wars. According to this scheme, letters of
the alphabet are shifted by three letters, wrapping around at the end of the
alphabet:� �

Pla inText : abcdefghijklmnopqrstuvwxyz
CaesarShi f ted : defghijklmnopqrstuvwxyzabc
 	

When encrypting a message, you take each letter of the message and re-
place it with its corresponding letter from the shifted alphabet. To decrypt
a secret message, you perform the operation in reverse—that is, you take
the letter from the shifted alphabet and replace it with the correspond-
ing letter from the plaintext alphabet. Thus, “hello” would be Caesar en-
crypted as “khoor.”

The Caesar cipher is a substitution cipher, because each letter in the
plaintext message is replaced with a substitute letter from the ciphertext
alphabet. A more general form of a substitution cipher uses a keyword to
create a ciphertext alphabet:� �

Pla inText : abcdefghijklmnopqrstuvwxyz
Cipher text : xylophneabcdfgijkmqrstuvwz
 	

In this example, the keyword “xylophone,” (with the second o removed) is
used to set up a substitution alphabet. According to this cipher, the word
“hello” would be encrypted as “epddi.” Substitution ciphers of this form
are found frequently in cryptogram puzzles in the newspapers.

Another type of cipher is known as a transposition cipher. In this type
of cipher, the letters in the original message are rearranged in some me-
thodical way. A simple example would be if we reversed the letters in
each word so that “hello” became “olleh.”

8.5 Example: The Cipher Class Hierarchy

Suppose we wish to design a collection of cipher classes, including a
Caesar cipher and a transposition cipher. Because the basic operations
used in all forms of encryption are the same, both the Caesar class and Problem decomposition
the Transpose class will have methods to encrypt() and decrypt()

358 CHAPTER 8 • Inheritance and Polymorphism

messages, where each message is assumed to be a string of words sepa-
rated by spaces. These methods will take a String of words and trans-
late each word using the encoding method that is appropriate for that ci-
pher. Therefore, in addition to encrypt() and decrypt(), each cipher
class will need polymorphic encode() and decode() methods, which
take a single word and encode or decode it according to the rules of that
particular cipher.

From a design perspective the encrypt() and decrypt() meth-
ods will be the same for every class: They simply break the message
into words and encode or decode each word. However, the encode()
and decode() methods will be different for each different cipher. The
Caesar.encode() method should replace each letter of a word with its
substitute, whereas the Transpose.encode()method should rearrange
the letters of the word. Given these considerations, how should we design
this set of classes?

Because all of the various ciphers will have the same methods, it will
be helpful to define a common Cipher superclass (Fig. 8.13). Cipher

Object

+encrypt(in s : String) : String

+decrypt(in s : String) : String

+encode(in s : String) : String

+decode(in s : String) : String

Cipher

+encode(in s : String) : String

+decode(in s : String) : String

Caesar

+encode(in s : String) : String

+decode(in s : String) : String

Transpose

Figure 8.13: A hierarchy of ci-
pher classes. The Cipher class
implements operations common
to all ciphers. The Caesar
and Transpose classes imple-
ment functions unique to those
kinds of ciphers.

will encapsulate those features that the individual cipher classes have
in common—the encrypt(), decrypt(), encode(), and decode()
methods.

Some of these methods can be implemented in the Cipher class itself.
For example, the encrypt() method should take a message in a String
parameter, encode each word in the message, and return a String result.
The following method definition will work for any cipher:� �

public S t r i n g encrypt (S t r i n g s) {
S t r i n g B u f f e r r e s u l t = new S t r i n g B u f f e r (””) ;
S t r ingTokenizer words = new Str ingTokenizer (s) ; // T o k e n i z e

while (words . hasMoreTokens ()) {
// E n c o d e e a c h w o r d

r e s u l t . append (encode (words . nextToken ()) + ” ”) ;
}
return r e s u l t . t o S t r i n g () ; // R e t u r n r e s u l t

} // e n c r y p t ()
 	
This method creates a local StringBuffer variable, result, and uses
StringTokenizer to break the original String into its component
words. It uses the encode() method to encode the word, appending
the result into result. The result is converted back into a String and
returned as the encrypted translation of s, the original message.

If we define encrypt() in the superclass, it will be inherited by all ofInheritance
Cipher’s subclasses. Thus, if we define Caesar and Transpose as� �

public c l a s s Caesar extends Cipher { . . . }
public c l a s s Transpose extends Cipher { . . . }
 	

instances of these classes will be able to use the encrypt() method.
On the other hand, the polymorphic encode() method cannot be

implemented within Cipher. This is because unlike the encrypt()
method, which is the same for every Cipher subclass, the encode()
method will be different for every subclass. However, by declaring the

SECTION 8.5 • Example: The Cipher Class Hierarchy 359

encode() method as abstract, we can leave its implementation up to
the Cipher subclasses. Thus, within the Cipher class, we would define
encode() and decode() as follows:� �

// A b s t r a c t m e t h o d s

public a b s t r a c t S t r i n g encode (S t r i n g word) ;
public a b s t r a c t S t r i n g decode (S t r i n g word) ;
 	

These declarations within the Cipher class tell the compiler that these
methods will be implemented in Cipher’s subclasses. By defining it as
abstract, encode() can be used in the Cipher class, as it is within the
encrypt() method.

8.5.1 Class Design: Caesar

Figure 8.14 provides the full definition of the Cipher class. The
encode() and decode() methods are declared abstract. They are in-
tended to be implemented by Cipher’s subclasses.

� �
import j ava . u t i l . ∗ ;

public a b s t r a c t c l a s s Cipher {
public S t r i n g encrypt (S t r i n g s) {

S t r i n g B u f f e r r e s u l t = new S t r i n g B u f f e r (””) ; // U s e a S t r i n g B u f f e r

Str ingTokenizer words = new Str ingTokenizer (s) ; // B r e a k s i n t o i t s w o r d s

while (words . hasMoreTokens ()) { // F o r e a c h w o r d i n s

r e s u l t . append (encode (words . nextToken ()) + ” ”) ; // E n c o d e i t

}
return r e s u l t . t o S t r i n g () ; // R e t u r n t h e r e s u l t

} // e n c r y p t ()

public S t r i n g decrypt (S t r i n g s) {
S t r i n g B u f f e r r e s u l t = new S t r i n g B u f f e r (””) ; // U s e a S t r i n g B u f f e r

Str ingTokenizer words = new Str ingTokenizer (s) ; // B r e a k s i n t o w o r d s

while (words . hasMoreTokens ()) { // F o r e a c h w o r d i n s

r e s u l t . append (decode (words . nextToken ()) + ” ”) ; // D e c o d e i t

}
return r e s u l t . t o S t r i n g () ; // R e t u r n t h e d e c r y p t i o n

} // d e c r y p t ()

public a b s t r a c t S t r i n g encode (S t r i n g word) ; // A b s t r a c t m e t h o d s

public a b s t r a c t S t r i n g decode (S t r i n g word) ;
} // C i p h e r
 	

Figure 8.14: The abstract Cipher class.

Note again that encrypt() and decrypt(), which are implemented
in Cipher, invoke encode() and decode(), respectively, which are de- encode() and decode() are

polymorphicclared in Cipher but implemented in Cipher’s subclasses. Java’s dy-
namic binding mechanism will take care of invoking the appropriate im-
plementation of encode() or decode(), depending on what type of ob-
ject is involved. For example, if caesar and transpose are Caesar and

360 CHAPTER 8 • Inheritance and Polymorphism

Transpose objects, respectively, then the following calls to encrypt()
will cause their respective encode() methods to be invoked:� �

// I n v o k e s c a e s a r . e n c o d e ()

caesar . encrypt (” h e l l o world”) ;
// I n v o k e s t r a n s p o s e . e n c o d e ()

t ranspose . encrypt (” h e l l o world”) ;
 	
When caesar.encrypt() is called, it will in turn invoke caesar.en-
code()—that is, it will call the encode() method implemented in the
Caesar class. When transpose.encrypt() is invoked, it will in turn
invoke transpose.encode(). In this way, each object can perform the
encoding algorithm appropriate for its type of cipher.Method polymorphism

8.5.2 Algorithm Design: Shifting Characters
The Caesar class is defined as an extension of Cipher (Fig. 8.15). The
only methods implemented in Caesar are encode() and decode().
The encode() method takes a String parameter and returns a String
result. It takes each character of its parameter (word.charAt(k)) and
performs a Caesar shift on the character. Note how the shift is done:� �

ch = (char) (’ a ’ + (ch − ’ a ’+ 3) % 2 6) ; // C a e s a r s h i f t
 	
Recall from Chapter 5 that char data in Java are represented as 16-bit
integers. This enables us to manipulate characters as numbers. Thus, to
shift a character by 3, we simply add 3 to its integer representation.� �
public c l a s s Caesar extends Cipher {

public S t r i n g encode (S t r i n g word) {
S t r i n g B u f f e r r e s u l t = new S t r i n g B u f f e r () ; // I n i t i a l i z e a s t r i n g b u f f e r

for (i n t k = 0 ; k < word . length () ; k++) { // F o r e a c h c h a r a c t e r i n w o r d

char ch = word . charAt (k) ; // G e t t h e c h a r a c t e r

ch = (char) (’ a ’ + (ch − ’ a ’+ 3) % 2 6) ; // P e r f o r m c a e s a r s h i f t

r e s u l t . append (ch) ; // A p p e n d i t t o new s t r i n g

}
return r e s u l t . t o S t r i n g () ; // R e t u r n t h e r e s u l t a s a s t r i n g

} // e n c o d e ()

public S t r i n g decode (S t r i n g word) {
S t r i n g B u f f e r r e s u l t = new S t r i n g B u f f e r () ; // I n i t i a l i z e a s t r i n g b u f f e r

for (i n t k = 0 ; k < word . length () ; k++) { // F o r e a c h c h a r a c t e r i n w o r d

char ch = word . charAt (k) ; // G e t t h e c h a r a c t e r

ch = (char) (’ a ’ + (ch − ’ a ’ + 23) % 2 6) ; // P e r f o r m r e v e r s e s h i f t

r e s u l t . append (ch) ; // A p p e n d i t t o new s t r i n g

}
return r e s u l t . t o S t r i n g () ; // R e t u r n t h e r e s u l t a s a s t r i n g

} // d e c o d e ()

} // C a e s a r
 	
Figure 8.15: The Caesar class.

For example, suppose that the character (ch) is h, which has an ASCIICharacter conversions

SECTION 8.5 • Example: The Cipher Class Hierarchy 361

code of 104 (see Table 5.13). We want to shift it by 3, giving k, which has
a code of 107. In this case, we could simply add 3 to 104 to get the de-
sired result. However, suppose that ch was the character y, which has an
ASCII code of 121. If we simply add 3 in this case, we get 124, a code that
corresponds to the symbol “—,” which is not our desired result. Instead,
we want the shift in this case to “wrap around” to the beginning of the
alphabet, so that y gets shifted into b. In order to accomplish this we need
to do some modular arithmetic.

Let’s suppose the 26 characters a to z were numbered 0 through 25, so
that a corresponds to 0, b to 1, and so on up to z as 25. If we take any
number N and divide it (modulo 26), we would get a number between 0
and 25. Suppose, for example, y were numbered 24. Shifting it by 3 would
give us 27, and 27 % 26 would give us 1, which corresponds to b. So, if
the a to z were numbered 0 through 25, then we can shift any character
within that range by using the following formula:� �

(ch + 3) % 26 // S h i f t b y 3 w i t h w r a p a r o u n d
 	
To map a character in the range a to z onto the integers 0 to 25, we can
simply subtract a from it:� �

’ a ’ − ’ a ’ = 0
’ b ’ − ’ a ’ = 1
’ c ’ − ’ a ’ = 2
. . .
’ z ’ − ’ a ’ = 25
 	

Finally, we simply map the numbers 0 through 25 back to the characters a
to z to complete the shift operation:� �

(char) (’ a ’ + 0) = ’ a ’
(char) (’ a ’ + 1) = ’ b ’
(char) (’ a ’ + 2) = ’ c ’
. . .
(char) (’ a ’ + 25) = ’ z ’
 	

Note the use here of the cast operator (char) to covert an integer into a
char.

To summarize, we can shift any character by 3 if we map it into the
range 0 to 25, then add 3 to it mod 26, then map that result back into
the range a to z. Thus, shifting y would go as follows: Modular arithmetic

362 CHAPTER 8 • Inheritance and Polymorphism

� �
(char) (’ a ’ + (ch − ’ a ’+ 3) % 26) //

P e r f o r m C a e s a r s h i f t

(char) (’ a ’ + (’ y ’ − ’ a ’ +3) % 26) // o n ’ y ’

(char) (9 7 + (121 − 97 + 3) % 26) //

Map ’ y ’ t o 0 . . 2 5

(char) (9 7 + (27 % 2 6)) // S h i f t b y 3 , w r a p p i n g a r o u n d

(char) (9 7 + 1) // Map r e s u l t b a c k t o ’ a ’ t o ’ z ’

(char) (9 8) //

C o n v e r t f r o m i n t t o c h a r

’ b ’
 	
Note that in decode() a reverse Caesar shift is done by shifting by 23,
which is 26−3. If the original shift is 3, we can reverse that by shifting an
additional 23. Together this gives a shift of 26, which will give us back our
original string.

8.5.3 Class Design: Transpose

The Transpose class (Fig. 8.16) is structured the same as the Caesar
class. It implements both the encode() and decode() methods. The
key element here is the transpose operation, which in this case is a simple
reversal of the letters in the word. Thus, “hello” becomes “olleh”. This
is very easy to do when using the StringBuffer.reverse() method.
The decode() method is even simpler, because all you need to do in this
case is call encode(). Reversing the reverse of a string gives you back
the original string.

� �
public c l a s s Transpose extends Cipher {

// e n c o d e () r e v e r s e s a n d r e t u r n s a w o r d

public S t r i n g encode (S t r i n g word) {
S t r i n g B u f f e r r e s u l t = new S t r i n g B u f f e r (word) ;
return r e s u l t . reverse () . t o S t r i n g () ;

} // e n c o d e ()

public S t r i n g decode (S t r i n g word) {
return encode (word) ; // J u s t c a l l e n c o d e

} // d e c o d e

} // T r a n s p o s e
 	
Figure 8.16: The Transpose class.

8.5.4 Testing and Debugging

Figure 8.17 provides a simple test program for testing Cipher and its sub-
classes. It creates a Caesar cipher and a Transpose cipher and then en-

SECTION 8.6 • Case Study: A Two Player Game Hierarchy 363� �
public c l a s s TestEncrypt {

public s t a t i c void main (S t r i n g argv []) {
Caesar caesar = new Caesar () ;
S t r i n g pla in = ” t h i s i s the s e c r e t message” ; // H e r e ’ s t h e m e s s a g e

S t r i n g s e c r e t = caesar . encrypt (p la in) ; // E n c r y p t t h e m e s s a g e

System . out . p r i n t l n (” ∗∗∗∗∗∗∗∗∗ Caesar Cipher Encryption ∗∗∗∗∗∗∗∗∗”) ;
System . out . p r i n t l n (” Pla inText : ” + pla in) ; // D i s p l a y t h e r e s u l t s

System . out . p r i n t l n (” Encrypted : ” + s e c r e t) ;
System . out . p r i n t l n (”Decrypted : ” + caesar . decrypt (s e c r e t)) ; // D e c r y p t

Transpose transpose = new Transpose () ;
s e c r e t = transpose . encrypt (p la in) ;
System . out . p r i n t l n (”\n ∗∗∗∗∗∗∗∗∗ Transpose Cipher Encryption ∗∗∗∗∗∗∗∗∗”) ;
System . out . p r i n t l n (” Pla inText : ” + pla in) ; // D i s p l a y t h e r e s u l t s

System . out . p r i n t l n (” Encrypted : ” + s e c r e t) ;
System . out . p r i n t l n (”Decrypted : ” + transpose . decrypt (s e c r e t)) ; // D e c r y p t

} // m a i n ()

} // e n d T e s t E n c r y p t
 	
Figure 8.17: The TestEncrypt class.

crypts and decrypts the same sentence using each cipher. If you run this
program, it will produce the following output:� �

∗∗∗∗∗∗∗∗∗ Caesar Cipher Encryption ∗∗∗∗∗∗∗∗∗
Pla inText : t h i s i s the s e c r e t message
Encrypted : wklv lv wkh vhfuhw phvvdjh
Decrypted : t h i s i s the s e c r e t message

∗∗∗∗∗∗∗∗∗ Transpose Cipher Encryption ∗∗∗∗∗∗∗∗∗
Pla inText : t h i s i s the s e c r e t message
Encrypted : s i h t s i eht t e r c e s egassem
Decrypted : t h i s i s the s e c r e t message
 	

SELF-STUDY EXERCISES
EXERCISE 8.11 Modify the Caesar class so that it will allow various

sized shifts to be used. (Hint: Use an instance variable to represent the
shift.)

EXERCISE 8.12 Modify Transpose.encode() so that it uses a rota-
tion instead of a reversal. That is, a word like “hello” should be encoded
as “ohell” with a rotation of one character.

8.6 Case Study: A Two Player Game Hierarchy

In this section we will redesign our OneRowNim game to fit within a hi-
erarchy of classes of two-player games, which are games that involve two
players. Many games that this characteristic: checkers, chess, tic-tac-toe,
guessing games, and so forth. However, there are also many games that
involve just 1 player: blackjack, solitaire, and others. There are also games

364 CHAPTER 8 • Inheritance and Polymorphism

that involve two or more players, such as many card games. Thus, our
redesign of OneRowNim as part of a two-player game hierarchy will not
be our last effort to design a hierarchy of game-playing classes. We will
certainly re-design things as we learn new Java language constructs and
as we try to extend our game library to other kinds of games.

This case study will illustrate how we can apply inheritance and poly-
morphism, as well as other object-oriented design principles. The justifica-
tion for revising OneRowNim at this point is to make it easier to design and
develop other two-player games. As we have seen, one characteristic of
class hierarchies is that more general attributes and methods are defined
in top-level classes. As one proceeds down the hierarchy, the methods
and attributes become more specialized. Creating a subclass is a matter of
specializing a given class.

8.6.1 Design Goals
One of our design goals is to revise the OneRowNim game so that it fits
into a hierarchy of two-player games. One way to do this is to gener-
alize the OneRowNim game by creating a superclass that contains those
attributes and methods that are common to all two-player games. The su-
perclass will define the most general and generic elements of two-playerGeneric superclass
games. All two-player games, including OneRowNim, will be defined as
subclasses of this top-level superclass and will inherit and possibly over-
ride its public and protected variables and methods. Also, our top-level
class will contain certain abstract methods, whose implementations will
be given in OneRowNim and other subclasses.

A second goal is to design a class hierarchy that makes it possible for
computers to play the game, as well as human users. Thus, for a given
two-player game, it should be possible for two humans to play each other,
or for two computers to play each other, or for a human to play against a
computer. This design goal will require that our design exhibit a certain
amount of flexibility. As we shall see, this is a situation in which Java
interfaces will come in handy.

Another important goal is to design a two-player game hierarchy that
can easily be used with a variety of different user interfaces, including
command-line interfaces and GUIs. To handle this feature, we will de-
velop Java interfaces to serve as interfaces between our two-player games
and various user interfaces.

8.6.2 Designing the TwoPlayerGame Class
To begin revising the design of the OneRowNim game, we first need to
design a top-level class, which we will call the TwoPlayerGame class.
What variables and methods belong in this class? One way to answer
this question is to generalize our current version of OneRowNim by mov-
ing any variables and methods that apply to all two-player games up to
the TwoPlayerGame class. All subclasses of TwoPlayerGame—which
includes the OneRowNim class—would inherit these elements. Figure 8.18
shows the current design of OneRowNim.

Figure 8.18: The current
OneRowNim class.

What variables and methods should we move up to the TwoPlayer-
Game class? Clearly, the class constants, PLAYER ONE and PLAYER TWO,
apply to all two-player games. These should be moved up. On the
other hand, the MAX PICKUP and MAX STICKS constants apply just to the
OneRowNim game. They should remain in the OneRowNim class.

SECTION 8.6 • Case Study: A Two Player Game Hierarchy 365

The nSticks instance variable is a variable that only applies to the
OneRowNim game, but not to other two-player games. It should stay
in the OneRowNim class. On the other hand, the onePlaysNext vari-
able applies to all two-player games, so we will move it up to the
TwoPlayerGame class.

Because constructors are not inherited, all of the constructor meth-
ods will remain in the OneRowNim class. The instance methods, Constructors are not inherited
takeSticks() and getSticks(), are particular to OneRowNim, so
they should remain there. However, the other methods, getPlayer(),
gameOver(), getWinner(), and reportGameState(), are methods
that would be useful to all two-player games. Therefore these methods
should be moved up to the superclass. Of course, while these methods
can be defined in the superclass, some of the methods can only be imple-
mented in subclasses. For example, the reportGameState() method
reports the current state of the game, so it has to be implemented in
OneRowNim. Similarly, the getWinner() method defines how the win-
ner of the game is determined, a definition that can only occur in the sub-
class. Every two-player game needs methods such as these. Therefore,
we will define these methods as abstract methods in the superclass. The
intention is that TwoPlayerGame subclasses will provide game-specific
implementations for these methods.

Given these considerations, we come up with the design shown in Fig-
ure 8.19. The design shown in this figure is much more complex than
designs we have used in earlier chapters. However, the complexity comes
from combining ideas already discussed in previous sections of this chap-
ter, so don’t be put off by it.

To begin with, notice that we have introduced two Java interfaces into
our design in addition to the TwoPlayerGame superclass. As we will
show, these interfaces lead to a more flexible design and one that can eas-
ily be extended to incorporate new two-player games. Let’s take each
element of this design separately.

8.6.3 The TwoPlayerGame Superclass

As we have stated, the purpose of the TwoPlayerGame class is to serve as
the superclass for all two-player games. Therefore, it should define those
variables and methods that are shared by two-player games.

The PLAYER ONE, PLAYER TWO, and onePlaysNext variables and
the getPlayer(), setPlayer(), and changePlayer() methods
have been moved up from the OneRowNim class. Clearly, these
variables and methods apply to all two-player games. Note that
we have also added three new variables: nComputers, computer1,
computer2 and their corresponding methods, getNComputers() and
addComputerPlayer(). We will use these elements to give our games
the ability to be played by computer programs. Because we want all of
our two-player games to have this capability, we define these variables
and methods in the superclass rather than in OneRowNim and subclasses
of TwoPlayerGame.

366 CHAPTER 8 • Inheritance and Polymorphism
Figure 8.19: TwoPlayerGame is
the superclass for OneRowNim
and other two player games.

Note that the computer1 and computer2 variables are declared to
be of type IPlayer. IPlayer is an interface, which contains a single
method declaration, the makeAMove() method:� �

public i n t e r f a c e I P l a y e r {
public S t r i n g makeAMove(S t r i n g prompt) ;

}
 	
Why do we use an interface here rather than some type of game-playing
object? This is a good design question. Using an interface here makes
our design more flexible and extensible because it frees us from having to
know the names of the classes that implement the makeAMove() method.

SECTION 8.6 • Case Study: A Two Player Game Hierarchy 367

The variables computer1 and computer2 will be assigned objects that
implement IPlayer via the addComputerPlayer() method.

The algorithms used in the various implementations of makeAMove() Game-dependent algorithms
are game-dependent—they depend on the particular game being played.
It would be impossible to define a game-playing object that would suf-
fice for all two-player games. Instead, if we want an object that plays
OneRowNim, we would define a OneRowNimPlayer and have it imple-
ment the IPlayer interface. Similarly, if we want an object that plays
checkers, we would define a CheckersPlayer and have it implement
the IPlayer interface. By using an interface here, our TwoPlayerGame
hierarchy can deal with a wide range of differently named objects that The IPlayer interface
play games, as long as they implement the IPlayer interface. So, using
the IPlayer interface adds flexibility to our game hierarchy and makes
it easier to extend it to new, yet undefined, classes. We will discuss the
details of how to design a game player in one of the following sections.

Turning now to the methods defined in TwoPlayerGame, we have
already seen implementations of getPlayer(), setPlayer(), and
changePlayer() in the OneRowNim class. We will just move those im-
plementations up to the superclass. The getNComputers() method is
the accessor method for the nComputers variable, and its implementa-
tion is routine. The addComputerPlayer() method adds a computer
player to the game. Its implementation is as follows:� �

public void addComputerPlayer (I P l a y e r player) {
i f (nComputers == 0)

computer2 = player ;
e lse i f (nComputers == 1)

computer1 = player ;
e lse

return ; // No m o r e t h a n 2 p l a y e r s

++nComputers ;
}
 	

As we noted earlier, the classes that play the various TwoPlayerGames
must implement the IPlayer interface. The parameter for this method
is of type IPlayer. The algorithm we use checks the current value of
nComputers. If it is 0, which means that this is the first IPlayer added
to the game, the player is assigned to computer2. This allows the hu-
man user to be associated with PLAYERONE, if this is a game between a
computer and a human user.

If nComputers equals 1, which means that we are adding a second
IPlayer to the game, we assign that player to computer1. In ei-
ther of these cases, we increment nComputers. Note what happens
if nComputers is neither 1 nor 2. In that case, we simply return
without adding the IPlayer to the game and without incrementing
nComputers. This, in effect, limits the number of IPlayers to two. (A
more sophisticated design would throw an exception to report an error.
but we will leave that for a subsequent chapter.)

The addComputerPlayer() method is used to initialize a game after
it is first created. If this method is not called, the default assumption is

368 CHAPTER 8 • Inheritance and Polymorphism

that nComputers equals zero and that computer1 and computer2 are
both null. Here’s an example of how it could be used:� �

OneRowNim nim = new OneRowNim (1 1) ; // 1 1 s t i c k s

nim . add (new NimPlayer (nim)) ; // 2 c o m p u t e r p l a y e r s

nim . add (new NimPlayerBad (nim)) ;
 	
Note that the NimPlayer() constructor takes a reference to the game
as its argument. Clearly, our design should not assume that the names of
the IPlayer objects would be known to the TwoPlayerGame superclass.
This method allows the objects to be passed in at run time. We will discuss
the details of NimPlayerBad in a subsequent section.

The getRules() method is a new method whose purpose is to return
a string that describes the rules of the particular game. This method isOverriding a method
implemented in the TwoPlayerGame class with the intention that it will
be overridden in the various subclasses. For example, its implementation
in TwoPlayerGame is:� �

public S t r i n g getRules () {
return ”The r u l e s of t h i s game are : ” ;

}
 	
and its redefinition in OneRowNim is:� �

public S t r i n g getRules () {
return ”\n∗∗∗ The Rules of One Row Nim ∗∗∗\n” +
” (1) A number of s t i c k s between 7 and ” + MAX STICKS +

” i s chosen .\n” +
” (2) Two players a l t e r n a t e making moves .\n” +
” (3) A move c o n s i s t s of s u b t r a c t i n g between 1 and\n\ t ” +
MAX PICKUP +
” s t i c k s from the current number of s t i c k s .\n” +
” (4) A player who cannot leave a p o s i t i v e \n\ t ” +
” number of s t i c k s f o r the other player l o s e s .\n” ;

}
 	
The idea is that each TwoPlayerGame subclass will take responsibility for
specifying its own set of rules in a form that can be displayed to the user.

You might recognize that defining getRules() in the superclass and
allowing it to be overridden in the subclasses is a form of polymorphism.Polymorphism
It follows the design of the toString() method, which we discussed
earlier. This design will allow us to use code that takes the following form:� �

TwoPlayerGame game = new OneRowNim () ;
System . out . p r i n t l n (game . getRules ()) ;
 	

In this example the call to getRules() is polymorphic. The dynamic
binding mechanism is used to invoke the getRules() method that is
defined in the OneRowNim class.

The remaining methods in TwoPlayerGame are defined abstractly.
The gameOver() and getWinner() methods are both methods that are

SECTION 8.6 • Case Study: A Two Player Game Hierarchy 369

game dependent. That is, the details of their implementations depend on
the particular TwoPlayerGame subclass in which they are implemented.

This is good example of how abstract methods should be used in de-
signing a class hierarchy. We give abstract definitions in the superclass
and leave the detailed implementations up to the individual subclasses.
This allows the different subclasses to tailor the implementations to their
particular needs, while allowing all subclasses to share a common signa-
ture for these tasks. This allows us to use polymorphism to create flexible,
extensible class hierarchies.

Figure 8.20 shows the complete implementation of the abstract
TwoPlayerGame class. We have already discussed the most important
details of its implementation.

JAVA EFFECTIVE DESIGN Abstract Methods. Abstract methods
allow you to give general definitions in the superclass and to leave the
implementation details to the different subclasses.

8.6.4 The CLUIPlayableGame Interface
Let’s turn now to the two interfaces shown in Figure 8.19. Taken to-
gether, the purpose of these interfaces is to create a connection between
any two-player game and a command-line user interface (CLUI). The
interfaces provide method signatures for the methods that will imple-
ment the details of the interaction between a TwoPlayerGame and a
UserInterface. Because the details of this interaction vary from game
to game, it is best to leave the implementation of these methods to the
games themselves.

Note that CLUIPlayableGame extends the IGame interface. The Extending an interface
IGame interface contains two methods that are used to define a stan-
dard form of communication between the CLUI and the game. The
getGamePrompt() method defines the prompt that is used to signal the
user for some kind of move—for example, “How many sticks do you
take (1, 2, or 3)?” And the reportGameState() method defines how
that particular game will report its current state—for example, “There
are 11 sticks remaining.” CLUIPlayableGame adds the play() method
to these two methods. As we will see shortly, the play() method will
contain the code that will control the playing of the game.
The source code for these interfaces is very simple:� �

public i n t e r f a c e CLUIPlayableGame extends IGame {
public a b s t r a c t void play (U s e r I n t e r f a c e ui) ;

}
public i n t e r f a c e IGame {

public S t r i n g getGamePrompt () ;
public S t r i n g reportGameState () ;

} // I G a m e
 	
Notice that the CLUIPlayableGame interface extends the IGame inter-
face. A CLUIPlayableGame is a game that can be played through a
CLUI. The purpose of its play() method is to contain the game depen-
dent control loop that determines how the game is played via some kind

370 CHAPTER 8 • Inheritance and Polymorphism� �
public a b s t r a c t c l a s s TwoPlayerGame {

public s t a t i c f i n a l i n t PLAYER ONE = 1 ;
public s t a t i c f i n a l i n t PLAYER TWO = 2 ;

protected boolean onePlaysNext = t rue ;
protected i n t nComputers = 0 ; // How many c o m p u t e r s

// C o m p u t e r s a r e I P l a y e r s

protected I P l a y e r computer1 , computer2 ;

public void s e t P l a y e r (i n t s t a r t e r) {
i f (s t a r t e r == PLAYER TWO)

onePlaysNext = f a l s e ;
e lse onePlaysNext = t rue ;

} // s e t P l a y e r ()

public i n t getP layer () {
i f (onePlaysNext)

return PLAYER ONE ;
e lse return PLAYER TWO;

} // g e t P l a y e r ()

public void changePlayer () {
onePlaysNext = ! onePlaysNext ;

} // c h a n g e P l a y e r ()

public i n t getNComputers () {
return nComputers ;

}
public S t r i n g getRules () {

return ”The r u l e s of t h i s game are : ” ;
}
public void addComputerPlayer (I P l a y e r player) {

i f (nComputers == 0)
computer2 = player ;

e lse i f (nComputers == 1)
computer1 = player ;

e lse
return ; // No m o r e t h a n 2 p l a y e r s

++nComputers ;
}

public a b s t r a c t boolean gameOver () ; // A b s t r a c t M e t h o d s

public a b s t r a c t S t r i n g getWinner () ;
} // T w o P l a y e r G a m e
 	

Figure 8.20: The TwoPlayerGame class

of user interface (UI). In pseudocode, a typical control loop for a game
would look something like the following:� �

I n i t i a l i z e the game .
While the game i s not over

Report the current s t a t e of the game via the UI .
Prompt the user (or the computer) to make a move via the UI .
Get the user ’ s move via the UI .
Make the move .
Change to the other player .
 	

SECTION 8.6 • Case Study: A Two Player Game Hierarchy 371

The play loop sets up an interaction between the game and the UI. The
UserInterface parameter allows the game to connect directly to a par-
ticular UI. To allow us to play our games through a variety of UIs, we
define UserInterface as the following Java interface:� �

public i n t e r f a c e U s e r I n t e r f a c e {
public S t r i n g getUserInput () ;
public void repor t (S t r i n g s) ;
public void prompt (S t r i n g s) ;

}
 	
Any object that implements these three methods can serve as a UI for
one of our TwoPlayerGames. This is another example of the flexibility
of using interfaces in object-oriented design.

To illustrate how we use UserInterface, let’s attach it to our
KeyboardReader class, thereby letting a KeyboardReader serve as a
CLUI for TwoPlayerGames. We do this simply by implementing this
interface in the KeyboardReader class, as follows:� �

public c l a s s KeyboardReader implements U s e r I n t e r f a c e
 	
As it turns out, the three methods listed in UserInterface match three
of the methods in the current version of KeyboardReader. This is no
accident. The design of UserInterface was arrived at by identifying
the minimal number of methods in KeyboardReader that were needed
to interact with a TwoPlayerGame.

JAVA EFFECTIVE DESIGN Flexibility of Java Interfaces. A Java
interface provides a means of associating useful methods with a
variety of different types of objects, leading to a more flexible
object-oriented design.

The benefit of defining the parameter more generally as a User- Generality principle
Interface, instead of as a KeyboardReader, is that we will eventu-
ally want to allow our games to be played via other kinds of command-
line interfaces. For example, we might later define an Internet-based
CLUI that could be used to play OneRowNim among users on the Inter-
net. This kind of extensibility—the ability to create new kinds of UIs and
use them with TwoPlayerGames— is another important design feature
of Java interfaces.

JAVA EFFECTIVE DESIGN Extensibility and Java Interfaces. Using
interfaces to define useful method signatures increases the
extensibility of a class hierarchy.

As Figure 8.19 shows, OneRowNim implements the CLUIPlayable-
Game interface, which means it must supply implementations of all three
abstract methods: play(), getGamePrompt(), and reportGame-
State().

372 CHAPTER 8 • Inheritance and Polymorphism

8.6.5 Object Oriented Design: Interfaces or Abstract
Classes

Why are these methods defined in interfaces? Couldn’t we just as easily
define them in the TwoPlayerGame class and use inheritance to extend
them to the various game subclasses? After all, isn’t the net result the
same, namely, that OneRowNim must implement all three methods.

These are very good design questions, exactly the kinds of questions
one should ask when designing a class hierarchy of any sort. As weInterfaces vs. abstract methods
pointed out in the Animal example earlier in the chapter, you can get the
same functionality from a abstract interface and from an abstract super-
class method. When should we put the abstract method in the superclass
and when does it belong in an interface? A very good discussion of these
and related object-oriented design issues is available in Java Design, 2nd
Edition, by Peter Coad and Mark Mayfield (Yourdan Press, 1999). Our dis-
cussion of these issues follows many of the guidelines suggested by Coad
and Mayfield.

We have already seen that using Java interfaces increases the flexibility
and extensibility of a design. Methods defined in an interface exist inde-
pendently of a particular class hierarchy. By their very nature, interfaces
can be attached to any class, which makes them very flexible to use.Flexibility of interfaces

Another useful guideline for answering this question is that the super-
class should contain the basic common attributes and methods that define
a certain type of object. It should not necessarily contain methods that
define certain roles that the object plays. For example, the gameOver()
and getWinner() methods are fundamental parts of the definition of
a TwoPlayerGame. One cannot define a game without defining these
methods. By contrast, methods such as play(), getGamePrompt(), and
reportGameState() are important for playing the game but they do not
contribute in the same way to the game’s definition. Thus these methods
are best put into an interface. So, one important design guideline is:

JAVA EFFECTIVE DESIGN Abstract Methods. Methods defined
abstractly in a superclass should contribute in a fundamental way
toward the basic definition of that type of object, not merely toward
one of its roles or its functionality.

8.6.6 The Revised OneRowNim Class
Figure 8.21 provides a listing of the revised OneRowNim class, one that fits
into the TwoPlayerGame class hierarchy. Our discussion in this section
will focus on just those features of the game that are new or revised.

The gameOver() and getWinner() methods, which are now inher-
ited from the TwoPlayerGame superclass, are virtually the same as in the
previous version. One small change is that getWinner() now returns a
String instead of an int. This makes that method more generally useful
as a way of identifying the winner for all TwoPlayerGames.

Similarly, the getGamePrompt() and reportGameState() meth-
ods merely encapsulate functionality that was present in the earlier ver-
sion of the game. In our earlier version the prompts to the user were
generated directly by the main program. By encapsulating this infor-Inheritance and generality

SECTION 8.6 • Case Study: A Two Player Game Hierarchy 373� �
public c l a s s OneRowNim extends TwoPlayerGame

implements CLUIPlayableGame {
public s t a t i c f i n a l i n t MAX PICKUP = 3 ;
public s t a t i c f i n a l i n t MAX STICKS = 1 1 ;
private i n t n S t i c k s = MAX STICKS ;

public OneRowNim () { } // C o n s t r u c t o r s

public OneRowNim(i n t s t i c k s) {
n S t i c k s = s t i c k s ;

} // OneRowNim ()

public OneRowNim(i n t s t i c k s , i n t s t a r t e r) {
n S t i c k s = s t i c k s ;
s e t P l a y e r (s t a r t e r) ;

} // OneRowNim ()

public boolean t a k e S t i c k s (i n t num) {
i f (num < 1 | | num > MAX PICKUP | | num > n S t i c k s)

return f a l s e ; // E r r o r

e lse // V a l i d move

{ n S t i c k s = n S t i c k s − num;
return true ;

} // e l s e

} // t a k e S t i c k s ()

public i n t g e t S t i c k s () {
return n S t i c k s ;

} // g e t S t i c k s ()

public S t r i n g getRules () {
return ”\n∗∗∗ The Rules of One Row Nim ∗∗∗\n” +
” (1) A number of s t i c k s between 7 and ” + MAX STICKS +

” i s chosen .\n” +
” (2) Two players a l t e r n a t e making moves .\n” +
” (3) A move c o n s i s t s of s u b t r a c t i n g between 1 and\n\ t ” +

MAX PICKUP + ” s t i c k s from the current number of s t i c k s .\n” +
” (4) A player who cannot leave a p o s i t i v e \n\ t ” +
” number of s t i c k s f o r the other player l o s e s .\n” ;

} // g e t R u l e s ()

public boolean gameOver () { /∗ ∗ F r o m T w o P l a y e r G a m e ∗/

return (n S t i c k s <= 0) ;
} // g a m e O v e r ()

public S t r i n g getWinner () { /∗ ∗ F r o m T w o P l a y e r G a m e ∗/

i f (gameOver ()) // {
return ”” + getP layer () + ” Nice game . ” ;

return ”The game i s not over yet . ” ; // Game i s n o t o v e r

} // g e t W i n n e r ()
 	
Figure 8.21: The revised OneRowNim class, Part I.

mation in an inherited method, we make it more generally useful to all
TwoPlayerGames.

The major change to OneRowNim comes in the play() method, which
controls the playing of the OneRowNim (Fig. 8.22). Because this version
of the game incorporates computer players, the play loop is a bit more
complex than in earlier versions of the game. The basic idea is still the
same: The method loops until the game is over. On each iteration of the

374 CHAPTER 8 • Inheritance and Polymorphism� �
/∗ ∗ F r o m C L U I P l a y a b l e G a m e ∗/

public S t r i n g getGamePrompt () {
return ”\nYou can pick up between 1 and ” +

Math . min (MAX PICKUP, n S t i c k s) + ” : ” ;
} // g e t G a m e P r o m p t ()

public S t r i n g reportGameState () {
i f (! gameOver ())

return (”\n S t i c k s l e f t : ” + g e t S t i c k s () +
” Who ’ s turn : Player ” + getP layer ()) ;

e lse
return (”\n S t i c k s l e f t : ” + g e t S t i c k s () +

” Game over ! Winner i s Player ” + getWinner () +”\n”) ;
} // r e p o r t G a m e S t a t e ()

public void play (U s e r I n t e r f a c e ui) {// F r o m C L U I P l a y a b l e G a m e i n t e r f a c e

i n t s t i c k s = 0 ;
ui . repor t (getRules ()) ;
i f (computer1 != null)

ui . repor t (”\nPlayer 1 i s a ” + computer1 . t o S t r i n g ()) ;
i f (computer2 != null)

ui . repor t (”\nPlayer 2 i s a ” + computer2 . t o S t r i n g ()) ;
while (! gameOver ()) {

I P l a y e r computer = null ; // A s s u m e n o c o m p u t e r s

ui . repor t (reportGameState ()) ;
switch (ge tP layer ()) {
case PLAYER ONE : // P l a y e r 1 ’ s t u r n

computer = computer1 ;
break ;

case PLAYER TWO: // P l a y e r 2 ’ s t u r n

computer = computer2 ;
break ;

} // c a s e s

i f (computer != null) { // I f c o m p u t e r ’ s t u r n

s t i c k s = I n t e g e r . p a r s e I n t (computer . makeAMove(””)) ;
ui . repor t (computer . t o S t r i n g () + ” takes ” +

s t i c k s + ” s t i c k s .\n”) ;
} e lse { // o t h e r w i s e , u s e r ’ s t u r n

ui . prompt (getGamePrompt ()) ;
s t i c k s =

I n t e g e r . p a r s e I n t (ui . getUserInput ()) ; // G e t u s e r ’ s move

}
i f (t a k e S t i c k s (s t i c k s)) // I f a l e g a l move

changePlayer () ;
} // w h i l e

ui . repor t (reportGameState ()) ; // T h e g a m e i s now o v e r

} // p l a y ()

} // OneRowNim c l a s s
 	
Figure 8.22: The revised OneRowNim class, continued from previous page.

loop, one or the other of the two players, PLAYER ONE or PLAYER TWO,
takes a turn making a move—that is, deciding how many sticks to pick
up. If the move is a legal move, then it becomes the other player’s turn.

SECTION 8.6 • Case Study: A Two Player Game Hierarchy 375

Let’s look now at how the code distinguishes between whether it is
a computer’s turn to move or a human player’s turn. Note that at the
beginning of the while loop, it sets the computer variable to null. It
then assigns computer a value of either computer1 or computer2, de-
pending on whose turn it is. But recall that one or both of these vari-
ables may be null, depending on how many computers are playing the
game. If there are no computers playing the game, then both variables
will be null. If only one computer is playing, then computer1 will
be null. This is determined during initialization of the game, when the
addComputerPlayer() is called. (See above.)

In the code following the switch statement, if computer is not null,
then we call computer.makeAMove(). As we know, the makeAMove()
method is part of the IPlayer interface. The makeAMove() method
takes a String parameter that is meant to serve as a prompt, and returns
a String that is meant to represent the IPlayer’s move:� �

public i n t e r f a c e I P l a y e r {
public S t r i n g makeAMove(S t r i n g prompt) ;

}
 	
In OneRowNim the “move” is an integer, representing the number of sticks
the player picks. Therefore, in play() OneRowNim has to convert the
String into an int, which represents the number of sticks the IPlayer
picks up.

On the other hand, if computer is null, this means that it is a human
user’s turn to play. In this case, play() calls ui.getUserInput(), em-
ploying the user interface to input a value from the keyboard. The user’s
input must also be converted from String to int. Once the value of
sticks is set, either from the user or from the IPlayer, the play()
method calls takeSticks(). If the move is legal, then it changes whose
turn it is, and the loop repeats.

There are a couple of important points to notice about the design of
the play() method. First, the play() method has to know what to do Encapsulation of game-dependent

knowledgewith the input it receives from the user or the IPlayer. This is game-
dependent knowledge. The user is inputting the number of sticks to
take in OneRowNim. For a tic-tac-toe game, the “move” might repre-
sent a square on the tic-tac-toe board. This suggests that play() is a
method that should be implemented in OneRowNim, as it is here, because
OneRowNim encapsulates the knowledge of how to play the One Row
Nim game.

A second point is to notice that the method call computer.make-
AMove() is another example of polymorphism at work. The play() Polymorphism
method does not know what type of object the computer is, other than
that it is an IPlayer—that is, an object that implements the IPlayer
interface. As we will show in the next section, the OneRowNim game can
be played by two different IPlayers: one named NimPlayer and an-
other named NimPlayerBad. Each has its own game-playing strategy, as
implemented by their own versions of the makeAMove() method. Java
uses dynamic binding to decide which version of makeAMove() to in-
voke depending on the type of IPlayer whose turn it is. Thus, by defin-
ing different IPlayers with different makeAMove() methods, this use of

376 CHAPTER 8 • Inheritance and Polymorphism

polymorphism makes it possible to test different game-playing strategies
against each other.

8.6.7 The IPlayer Interface

The last element of our design is the IPlayer interface, which, as we
just saw, consists of the makeAMove() method. To see how we use this
interface, let’s design a class to play the game of OneRowNim. We will call
the class NimPlayerBad and give it a very weak playing strategy. For
each move it will pick a random number between 1 and 3, or between 1
and the total number of sticks left, if there are fewer than 3 sticks. (We will
leave the task of defining NimPlayer, a good player, as an exercise.)

Figure 8.23: Design of the
NimPlayerBad class.

As an implementer of the IPlayer interface, NimPlayerBad will
implement the makeAMove() method. This method will contain
NimPlayerBad’s strategy (algorithm) for playing the game. The result
of this strategy will be the number of sticks that the player will pick up.

What other elements (variables and methods) will a NimPlayerBad
need? Clearly, in order to play OneRowNim, the player must know the
rules and the current state of the game. The best way to achieve this is to
give the Nim player a reference to the OneRowNim game. Then it can call
getSticks() to determine how many sticks are left, and it can use other
public elements of the OneRowNim game. Thus, we will have a variable of
type OneRowNim, and we will assign it a value in a constructor method.

Figure 8.23 shows the design of NimPlayerBad. Note that we have
added an implementation of the toString() method. This will be used
to give a string representation of the NimPlayerBad. Also, note that we
have added a private helper method named randomMove(), which will
simply generate an appropriate random number of sticks as the player’s
move.

� �
public c l a s s NimPlayerBad implements I P l a y e r {

private OneRowNim game ;
public NimPlayerBad (OneRowNim game) {

t h i s . game = game ;
} // N i m P l a y e r B a d ()

public S t r i n g makeAMove(S t r i n g prompt) {
return ”” + randomMove () ;

} // makeAMove ()

private i n t randomMove () {
i n t s t i c k s L e f t = game . g e t S t i c k s () ;
return 1 + (i n t) (Math . random () ∗

Math . min (s t i c k s L e f t , game . MAX PICKUP)) ;
} // r a n d o m M o v e ()

public S t r i n g t o S t r i n g () {
S t r i n g className =

t h i s . ge tClass () . t o S t r i n g () ; // G e t s ’ c l a s s N i m P l a y e r B a d ’

return className . subs t r ing (5) ; // C u t o f f t h e w o r d ’ c l a s s ’

} // t o S t r i n g ()

} // N i m P l a y e r B a d
 	
Figure 8.24: The NimPlayerBad class.

SECTION 8.6 • Case Study: A Two Player Game Hierarchy 377

The implementation of NimPlayerBad is shown in Figure 8.24. The
makeAMove() method converts the randomMove() to a String and
returns it, leaving it up to OneRowNim, the calling object, to convert
that move back into an int. Recall the statement in OneRowNim where
makeAMove() is invoked:� �

s t i c k s = I n t e g e r . p a r s e I n t (computer . makeAMove(””)) ;
 	
In this context, the computer variable, which is of type IPlayer, is
bound to a NimPlayerBad object. In order for this interaction between
the game and a player to work, the OneRowNim object must know what
type of data is being returned by NimPlayerBad. This is a perfect use for
a Java interface, which specifies the signature of makeAMove() without
committing to any particular implementation of the method. Thus, the
association between OneRowNim and IPlayer provides a flexible and
effective model for this type of interaction.

JAVA EFFECTIVE DESIGN Interface Associations. Java interfaces
provide a flexible way to set up associations between two different
types of objects.

Finally, note the details of the randomMove() and toString() meth-
ods. The only new thing here is the use of the getClass() method in
toString(). This is a method that is defined in the Object class and
inherited by all Java objects. It returns a String of the form “class X”
where X is the name of that object’s class. Note here that we are removing
the word “class” from this string before returning the class name. This
allows our IPlayer objects to report what type of players they are, as in
the following statement from OneRowNim:� �

ui . repor t (”\nPlayer 1 i s a ” + computer1 . t o S t r i n g ()) ;
 	
If computer1 is a NimPlayerBad, it would report “Player1 is a Nim-
PlayerBad.”

378 CHAPTER 8 • Inheritance and Polymorphism

SELF-STUDY EXERCISES

EXERCISE 8.13 Define a class NimPlayer that plays the optimal strat-
egy for OneRowNim. This strategy was described in Chapter 5.

8.6.8 Playing OneRowNim

Let’s now write a main() method to play OneRowNim:� �
public s t a t i c void main (S t r i n g args []) {

KeyboardReader kb = new KeyboardReader () ;
OneRowNim game = new OneRowNim () ;
kb . prompt (”How many computers are playing , 0 , 1 , or 2? ”) ;
i n t m = kb . getKeyboardInteger () ;
for (i n t k = 0 ; k < m; k++) {

kb . prompt (”What type of player , ” +
”NimPlayerBad = 1 , or NimPlayer = 2 ? ”) ;

i n t choice = kb . getKeyboardInteger () ;
i f (choice == 1) {

I P l a y e r computer = new NimPlayerBad (game) ;
game . addComputerPlayer (computer) ;

} e lse {
I P l a y e r computer = new NimPlayer (game) ;
game . addComputerPlayer (computer) ;

}
}
game . play (kb) ;
} // m a i n ()
 	

After creating a KeyboardReader and then creating an instance of
OneRowNim, we prompt the user to determine how many computers are
playing. We then repeatedly prompt the user to identify the names of the
IPlayer and use the addComputerPlayer() method to initialize the
game. Finally, we get the game started by invoking the play() method,
passing it a reference to the KeyboardReader, our UserInterface.

Note that in this example we have declared a OneRowNim variable to
represent the game. This is not the only way to do things. For example,
suppose we wanted to write a main() method that could be used to play
a variety of different TwoPlayerGames. Can we make this code moreGenerality
general? That is, can we rewrite it to work with any TwoPlayerGame?

A OneRowNim object is also a TwoPlayerGame, by virtue of inheri-
tance, and it is also a CLUIPlayableGame, by virtue of implementing
that interface. Therefore, we can use either of these types to represent the
game. Thus, one alternative way of coding this is as follows:� �

TwoPlayerGame game = new OneRowNim () ;
. . .
I P l a y e r computer = new NimPlayer ((OneRowNim) game) ;
. . .
((CLUIPlayableGame) game) . play (kb) ;
 	

Here we use a TwoPlayerGame variable to represent the game. However,
note that we now have to use a cast expression, (CLUIPlayableGame),

SECTION 8.6 • Case Study: A Two Player Game Hierarchy 379

in order to call the play() method. If we don’t cast game in this way,
Java will generate the following syntax error:� �

OneRowNim. java : 1 2 6 : cannot r e s o l v e symbol
symbol : method play (KeyboardReader)
l o c a t i o n : c l a s s TwoPlayerGame

game . play (kb) ;
ˆ
 	

The reason for this error is that play() is not a method in the
TwoPlayerGame class, so the compiler cannot find the play() method.
By using the cast expression, we are telling the compiler to consider
game to be a CLUIPlayableGame. That way it will find the play()
method. Of course, the object assigned to nim must actually implement
the CLUIPlayableGame interface in order for this to work at run time.
We also need a cast operation in the NimPlayer() constructor in or-
der to make the argument (computer) compatible with that method’s
parameter.

Another alternative for the main() method would be the following:� �
CLUIPlayableGame game = new OneRowNim () ;
. . .
I P l a y e r computer = new NimPlayer ((OneRowNim) game) ;
((TwoPlayerGame) game) . addComputerPlayer (computer) ;
. . .

game . play (kb) ;
nim . play (kb) ;
 	

By representing the game as a CLUIPlayableGame variable, we don’t
need the cast expression to call play(), but we do need a different cast
expression, (TwoPlayerGame), to invoke addComputerPlayer().
Again, the reason is that the compiler cannot find the addComputer-
Player() method in the CLUIPlayableGame interface, so we must tell
it to consider game as a TwoPlayerGame, which of course it is. We still
need the cast operation for the call to the NimPlayer() constructor.

All three of the code options that we have considered will generate
something like the interactive session shown in Figure 8.25 for a game
in which two IPlayers play each other.

Given our object-oriented design for the TwoPlayerGame hierarchy,
we can now write generalized code that can play any TwoPlayerGame
that implements the CLUIPlayableGame interface. We will give a spe-
cific example of this in the next section.

8.6.9 Extending the TwoPlayerGame Hierarchy

Now that we have described the design and the details of the
TwoPlayerGame class hierarchy, let’s use it to develop a new game. If
we’ve gotten the design right, developing new two-player games and
adding them to the hierarchy should be much simpler than developing
them from scratch.

The new game is a guessing game in which the two players take turns
guessing a secret word. The secret word will be generated randomly from

380 CHAPTER 8 • Inheritance and Polymorphism� �
How many computers are playing , 0 , 1 , or 2? {\ c o l o r {cyan}2}

∗∗∗ The Rules of One Row Nim ∗∗∗
(1) A number of s t i c k s between 7 and 11 i s chosen .
(2) Two players a l t e r n a t e making moves .
(3) A move c o n s i s t s of s u b t r a c t i n g between 1 and

3 s t i c k s from the current number of s t i c k s .
(4) A player who cannot leave a p o s i t i v e

number of s t i c k s for the other player l o s e s .

Player 1 i s a NimPlayerBad
Player 2 i s a NimPlayer
S t i c k s l e f t : 11 Who ’ s turn : Player 1 NimPlayerBad takes 2 s t i c k s .
S t i c k s l e f t : 9 Who ’ s turn : Player 2 NimPlayer takes 1 s t i c k s .
S t i c k s l e f t : 8 Who ’ s turn : Player 1 NimPlayerBad takes 2 s t i c k s .
S t i c k s l e f t : 6 Who ’ s turn : Player 2 NimPlayer takes 1 s t i c k s .
S t i c k s l e f t : 5 Who ’ s turn : Player 1 NimPlayerBad takes 3 s t i c k s .
S t i c k s l e f t : 2 Who ’ s turn : Player 2 NimPlayer takes 1 s t i c k s .
S t i c k s l e f t : 1 Who ’ s turn : Player 1 NimPlayerBad takes 1 s t i c k s .
S t i c k s l e f t : 0 Game over ! Winner i s Player 2 Nice game .
 	

Figure 8.25: A typical run of the OneRowNim using a command-line user
interface.

a collection of words maintained by the game object. The letters of the
word will be hidden with question marks, as in “????????.” On each turn
a player guesses a letter. If the letter is in the secret word, it replaces one
or more question marks, as in “??????E?.” A player continues to guess
until an incorrect guess is made and then it becomes the other player’s
turn. Of course, we want to develop a version of this game that can be
played either by two humans, or by one human against a computer—that
is, against an IPlayer—or by two different IPlayers.

Let’s call the game class WordGuess. Following the design
of OneRowNim, we get the design shown in Figure 8.26. The
WordGuess class extends the TwoPlayerGame class and implements the
CLUIPlayableGame interface. We don’t show the details of the inter-
faces and the TwoPlayerGame class, as these have not changed. Also,
following the design of NimPlayerBad, the WordGuesser class imple-
ments the IPlayer interface. Note how we show the association between
WordGuess and zero or more IPlayers. A WordGuess uses between
zero and two instances of IPlayers, which in this game are implemented
as WordGuessers.

Let’s turn now to the details of the WordGuess class, whose source
code is shown in Figures 8.27 and 8.28. The game needs to have a supply
of words from which it can choose a secret word to present to the players.
The getSecretWord() method will take care of this task. It calculates
a random number and then uses that number, together with a switch
statement, to select from among several words that are coded right into
the switch statement. The secret word is stored in the secretWord vari-
able. The currentWord variable stores the partially guessed word. Ini-
tially, currentWord consists entirely of question marks. As the players

SECTION 8.6 • Case Study: A Two Player Game Hierarchy 381
Figure 8.26: Design of the
WordGuess class as part of
TwoPlayerGame hierarchy.

make correct guesses, currentWord is updated to show the locations of
the guessed letters. Because currentWord will change as the game pro-
gresses, it is stored in a StringBuffer, rather than in a String. Recall
that Strings are immutable in Java, whereas a StringBuffer contains
methods to insert letters and remove letters.

The unguessedLetters variable stores the number of letters remain-
ing to be guessed. When unguessedLetters equals 0, the game is over.
This condition defines the gameOver() method, which is inherited from
TwoPlayerGame. The winner of the game is the player who guessed the
last letter in the secret word. This condition defines the getWinner()
method, which is also inherited from TwoPlayerGame. The other meth-
ods that are inherited from TwoPlayerGame or implemented from the
CLUIPlayableGame are also implemented in a straightforward manner.

A move in the WordGuess game consists of trying to guess a let-
ter that occurs in the secret word. The move() method processes the
player’s guesses. It passes the guessed letter to the guessLetter()
method, which checks whether the letter is a new, secret letter. If so,
guessLetter() takes care of the various housekeeping tasks. It adds the
letter to previousGuesses, which keeps track of all the players’ guesses.
It decrements the number of unguessedLetters, which will become 0
when all the letters have been guessed. And it updates currentWord
to show where all occurrences of the secret letter are located. Note how

382 CHAPTER 8 • Inheritance and Polymorphism� �
public c l a s s WordGuess extends TwoPlayerGame implements CLUIPlayableGame {

private S t r i n g secretWord ;
private S t r i n g B u f f e r currentWord ;
private S t r i n g B u f f e r previousGuesses ;
private i n t unguessedLetters ;

public WordGuess () {
secretWord = getSecretWord () ;
currentWord = new S t r i n g B u f f e r (secretWord) ;
previousGuesses = new S t r i n g B u f f e r () ;
for (i n t k = 0 ; k < secretWord . length () ; k++)

currentWord . setCharAt (k , ’ ? ’) ;
unguessedLetters = secretWord . length () ;

} // WordGuess ()
public S t r i n g getPreviousGuesses () {

return previousGuesses . t o S t r i n g () ;
} // getPreviousGuesses ()
public S t r i n g getCurrentWord () {

return currentWord . t o S t r i n g () ;
} // getCurrentWord ()
private S t r i n g getSecretWord () {

i n t num = (i n t) (Math . random ()∗ 1 0) ;
switch (num)
{ case 0 : return ”SOFTWARE” ;

case 1 : return ”SOLUTION” ;
case 2 : return ”CONSTANT” ;
case 3 : return ”COMPILER” ;
case 4 : return ”ABSTRACT” ;
case 5 : return ”ABNORMAL” ;
case 6 : return ”ARGUMENT” ;
case 7 : return ”QUESTION” ;
case 8 : return ”UTILIZES” ;
case 9 : return ”VARIABLE” ;
default : return ”MISTAKES” ;

} //switch
} // getSecretWord ()
private boolean guessLe t te r (char l e t t e r) {

previousGuesses . append (l e t t e r) ;
i f (secretWord . indexOf (l e t t e r) == −1)

return f a l s e ; // l e t t e r i s not in secretWord
e lse // f ind p o s i t i o n s of l e t t e r in secretWord
{ for (i n t k = 0 ; k < secretWord . length () ; k++)

{ i f (secretWord . charAt (k) == l e t t e r)
{ i f (currentWord . charAt (k) == l e t t e r)

return f a l s e ; ////already guessed
currentWord . setCharAt (k , l e t t e r) ;
unguessedLetters−−; //one l e s s to f ind

} // i f
} // f o r
return true ;

} // e l s e
} //guessLe t te r ()

public S t r i n g getRules () { // Overridden from TwoPlayerGame
return ”\n∗∗∗ The Rules of Word Guess ∗∗∗\n” +
” (1) The game generates a s e c r e t word .\n” +
” (2) Two players a l t e r n a t e taking moves .\n” +
” (3) A move c o n s i s t s of guessing a l e t t e r in the word .\n” +
” (4) A player cont inues guessing u n t i l a l e t t e r i s wrong .\n” +
” (5) The game i s over when a l l l e t t e r s of the word are guessed\n” +
” (6) The player guessing the l a s t l e t t e r of the word wins .\n” ;

} //getRules ()
 	
Figure 8.27: The WordGuess class, Part I.

guessLetter() uses a for-loop to cycle through the letters in the secret
word. As it does so, it replaces the question marks in currentWord with
the correctly guessed secret letter. The guessLetter() method returns
false if the guess is incorrect. In that case, the move() method changes the

SECTION 8.6 • Case Study: A Two Player Game Hierarchy 383� �
public boolean gameOver () { // From TwoPlayerGame

return (unguessedLetters <= 0) ;
} // gameOver ()
public S t r i n g getWinner () { // From TwoPlayerGame

i f (gameOver ())
return ” Player ” + getP layer () ;

e lse return ”The game i s not over . ” ;
} // getWinner ()
public S t r i n g reportGameState () {

i f (! gameOver ())
return ”\nCurrent word ” + currentWord . t o S t r i n g () + ” Previous guesses ”

+ previousGuesses + ”\nPlayer ” + getP layer () + ” guesses next . ” ;
e lse

return ”\nThe game i s now over ! The s e c r e t word i s ” + secretWord
+ ”\n” + getWinner () + ” has won!\n” ;

} // reportGameState ()
public S t r i n g getGamePrompt () { // From CLUIPlayableGame

return ”\nGuess a l e t t e r t h a t you think i s in the s e c r e t word : ” ;
} // getGamePrompt ()
public S t r i n g move(S t r i n g s) {

char l e t t e r = s . toUpperCase () . charAt (0) ;
i f (guessLe t te r (l e t t e r)) { // i f c o r r e c t

return ”Yes , the l e t t e r ” + l e t t e r +
” IS in the s e c r e t word\n” ;

} e lse {
changePlayer () ;
return ” Sorry , ” + l e t t e r + ” i s NOT a ” +

”new l e t t e r in the s e c r e t word\n” ;
}

} // move ()
public void play (U s e r I n t e r f a c e ui) { // From CLUIPlayableGame

ui . repor t (getRules ()) ;
i f (computer1 != null)

ui . repor t (”\nPlayer 1 i s a ” + computer1 . t o S t r i n g ()) ;
i f (computer2 != null)

ui . repor t (”\nPlayer 2 i s a ” + computer2 . t o S t r i n g ()) ;

while (! gameOver ()) {
I P l a y e r computer = null ; // Assume no computers playing
ui . repor t (reportGameState ()) ;
switch (ge tP layer ()) {
case PLAYER ONE : // Player 1 ’ s turn

computer = computer1 ;
break ;

case PLAYER TWO: // Player 2 ’ s turn
computer = computer2 ;
break ;

} // cases

i f (computer != null) { // I f computer ’ s turn
ui . repor t (move(computer . makeAMove(””))) ;

} e lse { // otherwise , user ’ s turn
ui . prompt (getGamePrompt ()) ;
ui . repor t (move(ui . getUserInput ())) ;

}
} // while
ui . repor t (reportGameState ()) ; // The game i s now over

} //play ()
} //WordGuess c l a s s
 	

Figure 8.28: The WordGuess class, continued.

player’s turn. When correct guesses are made, the current player keeps
the turn.

The WordGuess game is a good example of a string-processing prob- Reusing code
lem. It makes use of several of the String and StringBuffer meth-
ods that we learned in Chapter 7. The implementation of WordGuess, as
an extension of TwoPlayerGame, is quite straight forward. One advan-

384 CHAPTER 8 • Inheritance and Polymorphism� �
public c l a s s WordGuesser implements I P l a y e r {

private WordGuess game ;
public WordGuesser (WordGuess game) {

t h i s . game = game ;
}
public S t r i n g makeAMove(S t r i n g prompt) {

S t r i n g usedLet ters = game . getPreviousGuesses () ;
char l e t t e r ;
do { // P i c k o n e o f 2 6 l e t t e r s

l e t t e r = (char) (’A ’ + (i n t) (Math . random () ∗ 2 6)) ;
} while (usedLet ters . indexOf (l e t t e r) != −1);
return ”” + l e t t e r ;

}
public S t r i n g t o S t r i n g () { // r e t u r n s ’ N i m P l a y e r B a d ’

S t r i n g className = t h i s . ge tClass () . t o S t r i n g () ;
return className . subs t r ing (5) ;

}
} // W o r d G u e s s e r
 	

Figure 8.29: The WordGuesser class.

tage of the TwoPlayerGame class hierarchy is that it decides many of the
important design issues in advance. Developing a new game is largely
a matter of implementing methods whose definitions have already been
determined in the superclass or in the interfaces. This greatly simplifies
the development process.

Let’s now discuss the details of WordGuesser class (Fig. 8.29).
Note that the constructor takes a WordGuess parameter. This allows
WordGuesser to be passed a reference to the game, which accesses
the game’s public methods, such as getPreviousGuesses(). The
toString() method is identical to the toString() method in the
NimPlayerBad example. The makeAMove() method, which is part of
the IPlayer interface, is responsible for specifying the algorithm that the
player uses to make a move. The strategy in this case is to repeatedly pick
a random letter from A to Z until a letter is found that is not contained in
previousGuesses. That way, the player will not guess letters that have
already been guessed.

8.7 Principles Of Object-Oriented Design

To conclude this chapter, it will be helpful to focus briefly on how the
examples we’ve seen address the various object-oriented design (OOD)
principles we set out at the beginning of the book.

• Divide-and-Conquer Principle. Notice how all of the problems
tackled in this chapter have been solved by dividing them into sev-
eral classes, with each of the classes divided into separate methods.
The very idea of a class hierarchy is an application of this principle.

• Encapsulation Principle. The superclasses in our designs, Cipher
and TwoPlayerGame, encapsulate those features of the class hier-

SECTION 8.7 • Principles Of Object-Oriented Design 385

archy that are shared by all objects in the hierarchy. The subclasses,
CaesarCipher and OneRowNim, encapsulate features that make
them distinctive with the class hierarchy.

• Interface Principle. The several Java interfaces we’ve designed,
IPlayer, CLUIPlayableGame and UserInterface, specify
clearly how various types of related objects will interact with each
other through the methods contained in the interfaces. Clean inter-
faces make for clear communication among objects.

• Information Hiding Principle. We have continued to make con-
sistent use of the private and public qualifiers, and have now
introduced the protected qualifier to extend this concept. The in-
heritance mechanism gives subclasses access to protected and public
elements of their superclasses.

• Generality Principle. As you move down a well-designed class hi-
erarchy, you go from the more general to the more specific features of
the objects involved. The abstract encode() method specifies the gen-
eral form that encoding will take while the various implementations
of this method in the subclasses provide the specializations neces-
sary to distinguish, say, Caesar encoding from Transpose encoding.
Similarly, the abstract makeAMove() method in the IPlayer inter-
face provides a general format for a move in a two-player game,
while its various implementations provide the specializations that
distinguish one game from another.

• Extensibility Principle. Overriding inherited methods and imple-
menting abstract methods from either an abstract superclass or a
Java interface provide several well-designed ways to extend the
functionality in an existing class hierarchy. Extending a class is a
form of specialization of the features inherited from the superclass.

• Abstraction Principle. Designing a class hierarchy is an exercise in
abstraction, as the more general features of the objects involved are
moved into the superclasses. Similarly, designing a Java interface or
an abstract superclass method is a form of abstraction, whereby the
signature of the method is distinguished from its various implemen-
tations.

These, then, are some of the ways that the several examples we have
considered and this chapter’s discussion have contributed to a deepening
of our understanding of object-oriented design.

386 CHAPTER 8 • Inheritance and Polymorphism

CHAPTER SUMMARY Technical Terms
abstract method
actual type (dynamic

type)
ciphertext
class inheritance
cryptography

dynamic binding
(late binding)

interface
overloaded method
plaintext
polymorphic method
polymorphism

static binding (early
binding)

static type (declared
type)

substitution cipher
transposition cipher

Summary of Important Points
• Inheritance is an object-oriented mechanism whereby subclasses in-

herit the public and protected instance variables and methods from
their superclasses.
• Dynamic binding (or late binding) is the mechanism by which a

method call is bound to (associated with) the correct implementation
of the method at run time. In Java, all method calls, except for final
or private methods, are resolved using dynamic binding.
• Static binding (or early binding) is the association of a method call with

its corresponding implementation at compile time.
• Polymorphism is an object-oriented language feature in which a

method call can lead to different actions depending on the object on
which it is invoked. A polymorphic method is a method signature
that is given different implementation by different classes in a class
hierarchy.
• A static type is a variable’s declared type. A dynamic type, or actual

type, is the type of object assigned to that variable at a given point in a
running program.
• An abstract method is a method definition that lacks an implemen-

tation. An abstract class is one that contains one or more abstract
methods. An abstract class can be subclassed but not instantiated.
• A Java interface is a class that contains only method signatures and

(possibly) constant declarations, but no variables. An interface can
be implemented by a class by providing implementations for all of its
abstract methods.

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 8.1 Running the TestPrint program will produce the output
shown here. It is clear that the inherited toString() method is used by
println() when printing a TestPrint object.� �

5 6 . 0
TestPrint@be2d65
 	

SOLUTION 8.2 If you override the toString() method in TestPrint, you
should get something like the output shown here, depending on how you code

CHAPTER 8 • Solutions to Self-Study Exercises 387

toString(). It is clear that the toString() method is used polymorphously
by println().� �

5 6 . 0
Hello from T e s t P r i n t
 	

SOLUTION 8.3 The output produced when constructing objects of type A and B
in the order shown in the exercise would be as follows, with each letter occurring
on a separate line:� �

A B B
 	
SOLUTION 8.4 The new implementation of B’s method() will invoke A’s ver-
sion of the method before printing B. This will print “A A B A B”.� �

void method () {
super . method () ;
System . out . p r i n t l n (”B”) ;

}
 	
SOLUTION 8.5 Give the definitions of classes A and B in the exercise, the
marked statements would be invalid:� �
A a = new B () ; // V a l i d a B i s a n A

a = new A () ; // Ok

B b = new A () ; // I n v a l i d . An A i s n o t n e c e s s a r i l y a B

b = new B () ; // OK
 	
SOLUTION 8.6 Given the class definitions and code segment in this exercise, the
output would be, A A B A B C, with each letter printing on a separate line.

SOLUTION 8.7 Definition of an Pig subclass of Animal:� �
public c l a s s Pig extends Animal {

public Pig () {
kind = ” pig ” ;

}
public S t r i n g speak () {

return ” oink ” ;
}

}
 	

388 CHAPTER 8 • Inheritance and Polymorphism

SOLUTION 8.8 If polymorphism was not used in our design, the talk()
method would have to be modified to the following in order to accommodate a
Pig subclass:� �
public S t r i n g t a l k (Animal a) {

i f (a instanceof Cow)
return ” I am a ” + kind + ” and I go ” + a . moo () ;

e lse i f (a instanceof Cat)
return ” I am a ” + kind + ” and I go ” + a .meow () ;

e lse i f (a instanceof Pig)
return ” I am a ” + kind + ” and I go ” + a . oink () ;

e lse
return ” I don ’ t know what I am” ;

}
 	
SOLUTION 8.9 Code to swap two boolean variables:� �

boolean temp = b1 ; // S a v e b 1 ’ s v a l u e

b1 = b2 ; // C h a n g e b 1 t o b 2

b2 = temp ; // C h a n g e b 2 t o b 1 ’ s o r i g i n a l v a l u e
 	
SOLUTION 8.10 Creating a ToggleButton that can be used to deal or collect
cards:� �

private ToggleButton dealer =
new ToggleButton (” deal ” , ” c o l l e c t ”) ;

add (dea ler) ;
dea ler . addActionListener (t h i s) ;
 	

SOLUTION 8.11 Modify the Caesar class so that it will allow various-sized
shifts to be used.� �
private i n t s h i f t ;
public void s e t S h i f t (i n t n) { s h i f t = n ; }
public i n t g e t S h i f t () { return s h i f t ; }
// M o d i f i c a t i o n t o e n c o d e () :

ch = (char) (’ a ’ + (ch − ’ a ’+ s h i f t) % 2 6) ; // S h i f t

// M o d i f i c a t i o n t o d e c o d e () :

ch = (char) (’ a ’ + (ch − ’ a ’+ (26− s h i f t)) % 2 6) ; // S h i f t
 	
SOLUTION 8.12 Modify Transpose.encode() so that it uses a rotation in-
stead of a reversal. The operation here is very similar to the shift operation in
the Caesar cipher. It uses modular arithmetic to rearrange the letters in the word.
For example, suppose the word is “hello”. Its letters are indexed from 0 to 4. The

CHAPTER 8 • Exercises 389

following table shows how the expression ((k+2) % 5)will rearrange the letters
as k varies from 0 to 4:� �

k charAt (k) (k+2) % 5 charAt ((k+2) % 5)
−−−
0 ’h ’ 2 ’ l ’
1 ’ e ’ 3 ’ l ’
2 ’ l ’ 4 ’ o ’
3 ’ l ’ 0 ’h ’
4 ’ o ’ 1 ’ e ’

// M o d i f i c a t i o n t o e n c o d e () :

public S t r i n g encode (S t r i n g word) {
S t r i n g B u f f e r r e s u l t = new S t r i n g B u f f e r () ;
for (i n t k =0; k < word . length () ; k++)

r e s u l t . append (word . charAt ((k+2) % word . length ())) ;
return r e s u l t . t o S t r i n g () ;

}
 	
SOLUTION 8.13 A NimPlayer class that plays the optimal OneRowNim game
would be identical to the NimPlayerBad class except the move():int method
would be replaced with the following implementation:� �

public i n t move () {
i n t s t i c k s L e f t = game . g e t S t i c k s () ;
i f (s t i c k s L e f t % (game . MAX PICKUP + 1) != 1)

return (s t i c k s L e f t − 1) % (game . MAX PICKUP + 1) ;
e lse {

i n t maxPickup = Math . min (game . MAX PICKUP, s t i c k s L e f t) ;
return 1 + (i n t) (Math . random () ∗ maxPickup) ;

}
}
 	

EXERCISES
Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

EXERCISE 8.1 Fill in the blanks in each of the following sentences:

a. A method that lacks a body is an method.
b. An is like a class except that it contains only instance methods, no

instance variables.
c. Two ways for a class to inherit something in Java is to a class and

an interface.
d. Instance variables and instance methods that are declared or

are inherited by the subclasses.
e. An object can refer to itself by using the keyword.
f. If a GUI class intends to handle ActionEvents, it must implement the

interface.
g. A method is one that does different things depending upon the

object that invokes it.

EXERCISE 8.2 Explain the difference between the following pairs of concepts:

390 CHAPTER 8 • Inheritance and Polymorphism

a. Class and interface.
b. Stub method and abstract method.
c. Extending a class and instantiating an object.
d. Defining a method and implementing a method.
e. A protected method and a public method.
f. A protected method and a private method.

EXERCISE 8.3 Draw a hierarchy to represent the following situation. There are
lots of languages in the world. English, French, Chinese, and Korean are exam-
ples of natural languages. Java, C, and C++ are examples of formal languages.
French and Italian are considered romance languages, while Greek and Latin are
considered classical languages.

EXERCISE 8.4 Look up the documentation for the JButton class on Sun’s Web
site:� �
http : //java . sun . com/ j 2 s e /1 .5 .0/ docs/api/
 	
List the names of all the methods that would be inherited by the ToggleButton
subclass that we defined in this chapter.

EXERCISE 8.5 Design and write a toString()method for the ToggleButton
class defined in this chapter. The toString() method should return the
ToggleButton’s current label.

EXERCISE 8.6 Design a class hierarchy rooted in the class Employee that in-
cludes subclasses for HourlyEmployee and SalaryEmployee. The attributes
shared in common by these classes include the name, and job title of the employee,
plus the accessor and mutator methods needed by those attributes. The salaried
employees need an attribute for weekly salary, and the corresponding methods for
accessing and changing this variable. The hourly employees should have a pay
rate and an hours worked variable. There should be an abstract method called
calculateWeeklyPay(), defined abstractly in the superclass and implemented
in the subclasses. The salaried worker’s pay is just the weekly salary. Pay for an
hourly employee is simply hours worked times pay rate.

EXERCISE 8.7 Design and write a subclass of JTextField called Integer-
Field that is used for inputting integers but behaves in all other respects like a
JTextField. Give the subclass a public method called getInteger().

EXERCISE 8.8 Implement a method that uses the following variation of the Cae-
sar cipher. The method should take two parameters, a String and an int N. The
result should be a String in which the first letter is shifted by N, the second by
N +1, the third by N +2, and so on. For example, given the string “Hello,” and an
initial shift of 1, your method should return “Igopt.”
Write a method that converts its String parameter so that letters are written in
blocks five characters long.

EXERCISE 8.9 Design and implement an GUI that lets the user type a document
into a TextArea and then provides the following analysis of the document: the
number of words in the document, the number of characters in the document, and
the percentage of words that have more than six letters.

EXERCISE 8.10 Design and implement a Cipher subclass to implement the fol-
lowing substitution cipher: Each letter in the alphabet is replaced with a letter from
the opposite end of the alphabet: a is replaced with z, b with y, and so forth.

CHAPTER 8 • Exercises 391

EXERCISE 8.11 One way to design a substitution alphabet for a cipher is to use a
keyword to construct the alphabet. For example, suppose the keyword is “zebra.”
You place the keyword at the beginning of the alphabet, and then fill out the other
21 slots with remaining letters, giving the following alphabet:� �
Cipher alphabet : zebracdfghijklmnopqstuvwxy
Pla in alphabet : abcdefghijklmnopqrstuvwxyz
 	
Design and implement an Alphabet class for constructing these kinds of sub-
stitution alphabets. It should have a single public method that takes a keyword
String as an argument and returns an alphabet string. Note that an alphabet
cannot contain duplicate letters, so repeated letters in a keyword like “xylophone”
would have to be removed.

EXERCISE 8.12 Design and write a Cipher subclass for a substitution cipher
that uses an alphabet from the Alphabet class created in the previous exercise.

EXERCISE 8.13 Challenge: Find a partner and concoct your own encryption
scheme. Then work separately with one partner writing encode() and the other
writing decode(). Test to see that a message can be encoded and then decoded
to yield the original message.

EXERCISE 8.14 Design a TwoPlayerGame subclass called Multiplication-
Game. The rules of this game are that the game generates a random multiplication
problem using numbers between 1 and 10, and the players, taking turns, try to
provide the answer to the problem. The game ends when a wrong answer is given.
The winner is the player who did not give a wrong answer.

EXERCISE 8.15 Design a class called MultiplicationPlayer that plays the
multiplication game described in the previous exercise. This class should imple-
ment the IPlayer interface.

EXERCISE 8.16 Design a TwoPlayerGame subclass called RockPaperScis-
sors. The rules of this game are that each player, at the same time, picks either a
rock, a paper, or a scissors. For each round, the rock beats the scissors, the scissors
beats the paper, and the paper beats the rock. Ties are allowed. The game is won
in a best out of three fashion when one of the players wins two rounds.

EXERCISE 8.17 Design a class called RockPaperScissorsPlayer that plays
the the game described in the previous exercise. This class should implement the
IPlayer interface.

392 CHAPTER 8 • Inheritance and Polymorphism

OBJECTIVES
After studying this chapter, you will

• Know how to use array data structures.
• Be able to solve problems that require collections of data.
• Know how to sort an array of data.
• Be familiar with sequential and binary search algorithms.
• Gain a better understanding of inheritance and polymorphism.

OUTLINE
9.1 Introduction
9.2 One-Dimensional Arrays
9.3 Simple Array Examples
9.4 Example: Counting Frequencies of Letters
9.5 Array Algorithms: Sorting
9.6 Array Algorithms: Searching
9.7 Two-Dimensional Arrays
9.8 Multidimensional Arrays (Optional)
9.9 Object-Oriented Design: Polymorphic Sorting (Optional)
9.10 From the Java Library: java.util.Vector
9.11 Case Study: An N-Player Computer Game
9.12 A GUI-Based Game (Optional Graphics)

Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 9

Arrays and Array Processing

393

394 CHAPTER 9 • Arrays and Array Processing

9.1 Introduction

In this chapter we will learn about arrays. An array is a named collection
of contiguous storage locations—storage locations that are next to each
other—that contain data items of the same type.

Arrays offer a more streamlined way to store data than using individual
data items for each variable. Arrays also allow you to work with their data
more efficiently than with data stored in individual variables.

Let’s see why. Suppose you want to create a GUI that has 26 buttons
on it, one for each letter of the alphabet. Given our present knowledge
of Java, our only alternative would be to declare a separate JButton
variable for each letter of the alphabet:� �

JButton button1 ;
JButton button2 ;
. . .
JButton button26 ;
 	

Obviously, requiring 26 separate variables for this problem is tedious and
inconvenient. Similarly, to instantiate and assign a label to each button
would require 26 statements:� �

button1 = new JButton (”A”) ;
button2 = new JButton (”B”) ;
. . .
button26 = new JButton (”Z”) ;
 	

This approach is also tedious. What we need is some way to use a loop
to process each button, using a loop counter, k, to refer to the kth button
on each iteration of the loop. An array lets us do that. For example, the
following code will declare an array for storing 26 JButtons and then
instantiate and label each button:� �

JButton l e t t e r [] = new JButton [2 6] ;
for (i n t k = 0 ; k < 2 6 ; k++)

l e t t e r [k] = new JButton (”A” + k) ;
 	
You don’t yet understand the code in this segment, but you can see how
economical it is. It uses just three lines of code to do what would have
required 50 or 60 lines of code without arrays.

Our discussion of arrays will show how to store and retrieve data from
one-, two-, and three-dimensional arrays. We also study sorting and
searching algorithms to process arrays. Finally, we illustrate how arrays
can be used in a variety of applications, including an animation problem,
a sorting class, and a card-playing program.

9.2 One-Dimensional Arrays

An array is considered a data structure. A data structure is an organized
collection of data. In an array, data are arranged in a linear or sequen-The array data structure

SECTION 9.2 • One-Dimensional Arrays 395

tial structure, with one element following another. When referencing ele-
ments in an array, we refer to the position of the particular element within
the array. For example, if the array is named arr, then the elements are
named arr[0], arr[1], arr[2], ... arr[n-1], where n gives
the number of elements in the array. This naming also reflects the fact that
the array’s data are contained in storage locations that are next to each
other. In Java, as in C, C++, and some other programming languages, the
first element of an array has index 0. (This is the same convention we used Zero indexing
for Strings.)

-2arr 8 -1 -3 16 20 25 16 16 8 18 19 45 21 -2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Array name
Subscripts

Contents

Figure 9.1: An array of 15 integers
named arr.

Figure 9.1 shows an array named arr that contains 15 int elements.
The syntax for referring to elements of an array is

arrayname [subscript]

where arrayname is the name of the array—any valid identifier will do—
and subscript is the position of the element within the array. As Fig-
ure 9.1 shows, the first element in the array has subscript 0, the second
has subscript 1, and so on.

A subscript is an integer quantity contained in square brackets that is
used to identify an array element. An subscript must be either an integer
value or an integer expression. Using Figure 9.1 to illustrate an example, Subscript expressions
suppose that j and k are integer variables equaling 5 and 7, respectively.
Each of the following then would be valid references to elements of the
array arr:� �

a r r [4] // R e f e r s t o 1 6

a r r [j] // I s a r r [5] w h i c h r e f e r s t o 2 0

a r r [j + k] // I s a r r [5 + 7] w h i c h i s a r r [1 2] w h i c h r e f e r s t o 4 5

a r r [k % j] // I s a r r [7 % 5] w h i c h i s a r r [2] w h i c h r e f e r s t o −1
 	
These examples show that when an expression, such as j + k, is used as
a subscript, it is evaluated (to 12 in this case) before the reference is made.

It is a syntax error to use a noninteger type as an array subscript. Each
of the following expressions would be invalid:� �

a r r [5 . 0] // 5 . 0 i s a f l o a t a n d c a n ’ t b e a n a r r a y s u b s c r i p t

a r r [”5”] // ” 5 ” i s a s t r i n g n o t a n i n t e g e r
 	
For a given array, a valid array subscript must be in the range 0 ... N-1,
where N is the number of elements in the array or it is considered out-of-
bounds. An out-of-bounds subscript creates a run-time error—that is, an
error that occurs when the program is running—rather than a syntax error,

396 CHAPTER 9 • Arrays and Array Processing

which can be detected when the program is compiled. For the array arr,
each of the following expressions contain out-of-bounds subscripts:� �

a r r [−1] // A r r a y s c a n n o t h a v e n e g a t i v e s u b s c r i p t s

a r r [’ 5 ’] // C h a r ’ 5 ’ p r o m o t e d t o i t s U n i c o d e v a l u e , 5 3

a r r [1 5] // T h e l a s t e l e m e n t o f a r r h a s s u b s c r i p t 1 4

a r r [j ∗k] // S i n c e j ∗ k e q u a l s 3 5
 	
Each of these references would lead to an IndexOutOfBoundsException.
(Exceptions are covered in detail in Chapter 10.)

JAVA LANGUAGE RULE Array Subscripts. Array subscripts must
be integer values in the range 0...(N-1), where N is the number of
elements in the array.

JAVA DEBUGGING TIP Array Subscripts. In developing array
algorithms, it’s important to design test data that show that array
subscripts do not cause run-time errors.

9.2.1 Declaring and Creating Arrays
For the most part, arrays in Java are treated as objects. Like objects, they
are instantiated with the new operator and they have instance variablesAre arrays objects?
(for example, length). Like variables for objects, array variables are con-
sidered reference variables. When arrays are used as parameters, a refer-
ence to the array is passed rather than a copy of the entire array. The
primary difference between arrays and full-fledged objects is that arrays
aren’t defined in terms of an Array class. Thus, arrays don’t fit into Java’s
Object hierarchy. They don’t inherit any properties from Object and
they cannot be subclassed.

You can think of an array as a container that contains a number of vari-
ables. As we’ve seen, the variables contained in an array object are not
referenced by name but by their relative position in the array. The vari-
ables are called components. If an array object has N components, then we
say that the array length is N. Each of the components of the array has the
same type, which is called the array’s component type. An empty array is
one that contains zero variables.

A one-dimensional array has components that are called the array’sComponents and elements
elements. Their type is the array’s element type. An array’s elements
may be of any type, including primitive and reference types. This means
you can have arrays of int, char, boolean, String, Object,
Image, TextField, TwoPlayerGame, and so on.

When declaring a one-dimensional array, you have to indicate both the
array’s element type and its length. Just as in declaring and creating other
kinds of objects, creating an array object requires that we create both a

SECTION 9.2 • One-Dimensional Arrays 397

name for the array and then the array itself. The following statements
create the array shown in Figure 9.1:� �

i n t a r r [] ; // D e c l a r e a n a m e f o r t h e a r r a y

a r r = new i n t [1 5] ; // C r e a t e t h e a r r a y i t s e l f
 	
These two steps can be combined into a single statement as follows:� �

i n t a r r [] = new i n t [1 5] ;
 	
In this example, the array’s element type is int and its length is 15,
which is fixed and cannot be changed. This means that the array contains
15 variables of type int, which will be referred to as arr[0], arr[1],
...arr[14].

9.2.2 Array Allocation
Creating the array in Figure 9.1 means allocating 15 storage locations that Allocating memory
can store integers. Note that one difference between declaring an array
and declaring some other kind of object is that square brackets ([]) are
used to declare an array type. The brackets can be attached either to the
array’s name or to its type, as in the following examples:� �

i n t a r r [] ; // T h e b r a c k e t s may f o l l o w t h e a r r a y ’ s n a m e

i n t [] a r r ; // T h e b r a c k e t s may f o l l o w t h e a r r a y ’ s t y p e
 	
The following example creates an array of five Strings and then uses
a for loop to assign the strings "hello1", "hello2", "hello3",
"hello4", and "hello5" to the five array locations:� �

S t r i n g s t r a r r [] ; // D e c l a r e a n a m e f o r t h e a r r a y

s t r a r r = new S t r i n g [5] ; // C r e a t e t h e a r r a y i t s e l f

// A s s i g n s t r i n g s t o t h e a r r a y

for (i n t k = 0 ; k < s t r a r r . length ; k++)
// F o r e a c h e l e m e n t

s t r a r r [k] = new S t r i n g (” h e l l o ” + (k + 1)) ; // A s s i g n a s t r i n g
 	
Note that the expression k < strarr.length specifies the loop bound.
Every array has a length instance variable, which refers to the number of
elements contained in the array. As we mentioned, arrays, like Strings,
are zero indexed, so the last element of the array is always given by its length vs. length()
length-1. However, length is an instance variable for arrays, whereas
length() is an instance method for Strings. Therefore, it would be a
syntax error in this example to refer to strarr.length().

JAVA DEBUGGING TIP Array Length. A common syntax error
involves forgetting that for arrays length is an instance variable, not
an instance method, as it is for Strings.

In the example, we first use the new operator to create strarr, an array
of type String of length five. We then use a String constructor to create

398 CHAPTER 9 • Arrays and Array Processing
Figure 9.2: Creating an array of
five Strings involves six objects,
because the array itself is a sepa-
rate object. In (a), the array vari-
able is declared. In (b), the ar-
ray is instantiated, creating an ar-
ray of five null references. In (c),
the five Strings are created and
assigned to the array.

strarr
(a)

(b)

(c)

valu

leng

valu

leng

valu

leng

valu

leng

value=""

length : int=0

: String

strarr

strarr

String strarr[]; // Null array variable

// Creates an array of null String

// references.

strarr=new String [5];

// Creates 5 Strings and

/ assigns them to the array

for (int k=0; k 6 strarr.length; k++)

	 strarr[k]=new String();

the five Strings that are stored in the array. It is important to realize that
creating an array to store five Objects (as opposed to five primitive data
elements) does not also create the Objects themselves that will be stored
in the array.

When an array of objects is created, the array’s elements are referencesArrays of objects
to those objects (Fig. 9.2). Their initial values, like all reference variables,
are null. So to create and initialize the array strarr, we need to create
six objects—the array itself, which will contain five Strings, and then the
five Strings that are stored in strarr.

One more example will help underscore this point. The following state-
ments create four new Objects, an array to store three Students plus the
three Students themselves:� �

Student school [] = new Student [3] ; // A 3 S t u d e n t a r r a y

school [0] = new Student (” S o c r a t e s ”) ; // T h e f i r s t S t u d e n t

school [1] = new Student (” Pla to ”) ;
// T h e s e c o n d S t u d e n t

school [2] = new Student (” A r i s t o t l e ”) ; // T h e t h i r d S t u d e n t
 	
The first statement creates an array named school to store three
Students, and the next three statements create the individual Students
and assign them to the array (Fig. 9.3). Thus, creating the array and
initializing its elements require four new statements.

name : String="Aristotle"

: Student

name : String="Plato"

: Student

name : String="Socrates"

: Student

school

Figure 9.3: An array of Students.

The following sequence of statements would lead to a null pointer
exception because the array’s elements have not been instantiated:� �

Student s tudents [] = new Student [3] ; // A 3 S t u d e n t a r r a y

System . out . p r i n t l n (s tudents [0] . getName ()) ;
 	

SECTION 9.2 • One-Dimensional Arrays 399

In this case, students[0] is a null reference, thus causing the exception.

JAVA DEBUGGING TIP Array Instantiation. Creating a new array
does not also create the objects that are stored in the array. They must
be instantiated separately. It is a semantic error to refer to an
uninstantiated (null) array element.

Now that we’ve assigned the three Students to the array, we can refer
to them by means of subscripted references. A reference to the Student
named “Socrates” is now school[0], and a reference to the Student
named “Plato” is school[1]. In other words, to refer to the three indi-
vidual students we must refer to their locations within school. Of course,
we can also use variables, such as loop counters, to refer to a Student’s
location within school. The following for loop invokes each Student’s
getState() method to print out its current state:� �

for (i n t k = 0 ; k < school . length ; k++)
System . out . p r i n t l n (school [k] . g e t S t a t e ()) ;
 	

What if the three Students already existed before the array was cre-
ated? In that case, we could just assign their references to the array
elements, as in the following example:� �

Student student1 = new Student (” S o c r a t e s ”) ;
Student student2 = new Student (” Pla to ”) ;
Student student3 = new Student (” A r i s t o t l e ”) ;
Student school = new Student [3] ; // A 3 S t u d e n t a r r a y

school [0] = student1 ;
school [1] = student2 ;
school [2] = student3 ;
 	

name : String="Aristotle"

: Student

name : String="Plato"

: Student

name : String="Socrates"

: Student

school

studen

student3

stude

Figure 9.4: Arrays of objects store
references to the objects, not the
objects themselves.

In this case, each of the three Student objects can be referenced by two
different references—its variable identifier (such as student1) and its ar-
ray location (such as school[0]). For arrays of objects, Java stores just
the reference to the object in the array itself, rather than the entire object.
This conserves memory, since references require only 4 bytes each whereas
each object may require hundreds of bytes (Fig. 9.4).

When an array of N elements is created, the compiler allocates storage
for N variables of the element’s type. In the case of arr that we discussed
earlier, the compiler would allocate storage for 15 ints—60 contiguous
bytes of storage, because each int requires 4 bytes (32 bits) of storage. If
we declare an array of 20 doubles,� �

double a r r [] = new double [2 0] ;
 	
the compiler will allocate 160 bytes of storage—20 variables of 8 bytes
(64 bits) each. In the case of the Student examples and String exam- How much memory?
ples, because these are objects (not primitive types), the compiler will al-
locate space for N addresses, where N is the length of the array and where
each address requires 4 bytes.

400 CHAPTER 9 • Arrays and Array Processing

SELF-STUDY EXERCISE

EXERCISE 9.1 How much space (in bytes) would be allocated for each
of the following?

a. int a[] = new int[5];
b. double b[] = new double[10];
c. char c[] = new char[30];
d. String s[] = new String[10];
e. Student p[] = new Student[5];

9.2.3 Initializing Arrays

Array elements are automatically initialized to default values that depend
on the element type: Boolean elements are initialized to false, and inte-
ger and real types are initialized to 0. Reference types—that is, arrays of
objects—are initialized to null.Default initialization

Arrays can also be assigned initial values when they are created, al-
though this is feasible only for relatively small arrays. An array initializer
is written as a list of expressions separated by commas and enclosed by
braces. For example, we can declare and initialize the array shown inArray initializer
Figure 9.1 with the following statement:� �

i n t a r r [] = {−2 ,8 ,−1 ,−3 ,16 ,20 ,25 ,16 ,16 ,8 ,18 ,19 ,45 ,21 ,−2} ;
 	
Similarly, to create and initialize an array of Strings, we can use the
following statement:� �

S t r i n g s t r i n g s [] = {” h e l l o ” , ”world” , ”goodbye” , ” love ” } ;
 	
This example creates and stores four Strings in the array. Subsequently,
to refer to “hello”, we would use the reference strings[0], and to refer
to “love”, we would use the reference strings[3]. Note in these exam-
ples that when an array declaration contains an initializer, it is not neces-
sary to use new and it is not necessary to specify the number of elements
in the array. The number of elements is determined from the number of
values in the initializer list.

9.2.4 Assigning and Using Array Values

Array elements can be used in the same way as other variables. The onlyArray assignment
difference, of course, is that references to the elements are subscripted.
For example, the following assignment statements assign values to the
elements of two arrays, named arr and strings:� �

a r r [0] = 5 ;
a r r [5] = 1 0 ;
a r r [2] = 3 ;
s t r i n g s [0] = ”who” ;
s t r i n g s [1] = ”what” ;
s t r i n g s [2] = s t r i n g s [3] = ”where” ;
 	

SECTION 9.3 • Simple Array Examples 401

The following loop assigns the first 15 squares—1, 4, 9 ...—to the
array arr:� �

for (i n t k = 0 ; k < a r r . length ; k++)
a r r [k] = (k+1) ∗ (k + 1) ;
 	

The following loop prints the values of the array arr:� �
for (i n t k = 0 ; k < a r r . length ; k++)

System . out . p r i n t l n (a r r [k]) ;
 	
SELF-STUDY EXERCISES
EXERCISE 9.2 Declare an array named farr that contains ten floats

initialized to the values 1.0, 2.0, ..., 10.0.

EXERCISE 9.3 Write an expression that prints the first element of farr.

EXERCISE 9.4 Write an assignment statement that assigns 100.0 to the
last element in farr.

EXERCISE 9.5 Write a loop to print all of the elements of farr.

9.3 Simple Array Examples

The program in Figure 9.5 creates two arrays of ten elements each and
displays their values on the Java console. In this example, the elements� �
public c l a s s PrintArrays {

s t a t i c f i n a l i n t ARRSIZE = 1 0 ;
// T h e a r r a y ’ s s i z e

s t a t i c i n t in tArr [] = new i n t [ARRSIZE] ; // C r e a t e i n t a r r a y

s t a t i c double rea lArr [] = { 1 . 1 , 2 . 2 , 3 . 3 , 4 . 4 ,
5 . 5 , 6 . 6 , 7 . 7 , 8 . 8 , 9 . 9 , 10 .10 } ; // And a d o u b l e a r r a y

public s t a t i c void main (S t r i n g args []) {
System . out . p r i n t l n (” I n t s \ t Reals ”) ;

// P r i n t a h e a d i n g

// F o r e a c h i n t a n d d o u b l e e l e m e n t

for (i n t k = 0 ; k < in tArr . length ; k++)
System . out . p r i n t l n (in tArr [k] + ” \ t ” +

rea lArr [k]) ;
// P r i n t t h e m

} // m a i n ()

} // P r i n t A r r a y s
 	
Figure 9.5: A program that displays two arrays. Its output is shown in
Figure 9.6

of intArr have not been given initial values whereas the elements of
realArr have been initialized. Note the use of the integer constant

402 CHAPTER 9 • Arrays and Array Processing

ARRSIZE to store the arrays’ size. By using the constant in this way, we
do not have to use the literal value 10 anywhere in the program, thereby
making it easier to read and to modify the program. If we want to change
the size of the array that the program handles, we can just change the
value of ARRSIZE. This is an example of the maintainability principle.Maintainability principle

JAVA EFFECTIVE DESIGN Symbolic Constants. Using symbolic
constants (final variables) instead of literal values makes the program
easier to read and to maintain.

Note the use of the static qualifier throughout the PrintArrays
class. This enables us to refer to the array and the other variables from
within the main() method. If intArr were not declared static,
we would get the compiler error attempt to make static use of
a non-static variable. This use of static is justified mainly as
a coding convenience rather than a principle of object-oriented design.
The only examples we’ve seen so far in which static elements were a
necessary design element were the use of static elements in the Math
class—Math.PI and Math.sqrt()—and the use of static final variables
in TwoPlayerGame—TwoPlayerGame.PLAYER ONE.

Ints Reals

0 1.1
0 2.2
0 3.3
0 4.4
0 5.5
0 6.6
0 7.7
0 8.8
0 9.9
0 10.1

FIGURE 9.6 Output of the
PrintArrays program.

For large arrays, it is not always feasible to initialize them in an ini-
tializer statement. Consider the problem of initializing an array with the
squares of the first 100 integers. Not only would it be tedious to set these
values in an initializer statement, it would also be error prone, since it is
relatively easy to type in the wrong value for one or more of the squares.

JAVA DEBUGGING TIP Array Initialization. Initializer statements
should be used only for relatively small arrays.

The example in Figure 9.7 creates an array of 50 integers and then fills the
elements with the values 1, 4, 9, 16, and so on. It then prints the entire
array.

This example illustrates some important points about the use of array
variables. The array’s elements are individual storage locations. In this
example, intArr has 50 storage locations. Storing a value in one of these
variables is done by an assignment statement:� �

in tArr [k] = (k+1) ∗ (k + 1) ;
 	
The use of the variable k in this assignment statement allows us to vary
the location that is assigned on each iteration of the for loop. Note that
in this example, k occurs as the array index on the left-hand side of this
expression, while k+1 occurs on the right-hand side as the value to be
squared. The reason for this is that arrays are indexed starting at 0 but we

1 4 9 16 25
36 49 64 81 100
121 144 169 196 225
256 289 324 361 400
441 484 529 576 625
676 729 784 841 900
961 1024 1089 1156 1225
1296 1369 1444 1521 1600
1681 1764 1849 1936 2025
2116 2209 2304 2401 2500

FIGURE 9.8 Output of the
Squares program.

want our table of squares to begin with the square of 1. So the square of
some number n+1 will always be stored in the array whose index is one
less than the number itself—that is, n.Zero vs. unit indexing

SECTION 9.4 • Example: Counting Frequencies of Letters 403� �
public c l a s s Squares {

s t a t i c f i n a l i n t ARRSIZE = 5 0 ; // T h e a r r a y ’ s s i z e

s t a t i c i n t in tArr [] = new i n t [ARRSIZE] ; // I n s t a n t i a t e

public s t a t i c void main (S t r i n g args []) {
for (i n t k = 0 ; k < in tArr . length ; k++) // I n i t i a l i z e

in tArr [k] = (k+1) ∗ (k + 1) ;
System . out . p r i n t (”The f i r s t 50 squares are ”) ;
for (i n t k = 0 ; k < in tArr . length ; k++) { // P r i n t

i f (k % 5 == 0) // F o r e a c h 5 t h s q u a r e

System . out . p r i n t l n (” ”) ; // p r i n t a new l i n e

System . out . p r i n t (in tArr [k] + ” ”) ;
} // f o r

} // m a i n ()

} // S q u a r e s
 	
Figure 9.7: A program with an array that stores the squares of the first 50
integers. Its output is shown in Figure 9.8.

An array’s length variable can always be used as a loop bound when
iterating through all elements of the array:� �

for (i n t k = 0 ; k < in tArr . length ; k++)
intArr [k] = (k+1) ∗ (k + 1) ;
 	

However, it is important to note that the last element in the array is always
at location length-1. Attempting to refer to intArr[length] would Off-by-one error
cause an IndexOutOfBoundsException because no such element ex-
ists.

JAVA DEBUGGING TIP Off-by-One Error. Because of zero
indexing, the last element in an array is always length−1. Forgetting
this fact can cause an off-by-one error.

SELF-STUDY EXERCISE
EXERCISE 9.6 Declare an array of 100 doubles and write a loop to as-

sign the first 100 square roots to its elements. [Use Math.sqrt(double).]

9.4 Example: Counting Frequencies of Letters

Suppose you wish to write a program to help break a text message that has
been encrypted with one of the historical ciphers that we have discussed
in the two previous chapters. It is well known that historical ciphers of-
ten can be broken, that is, the plaintext can be found from the ciphertext,
by examining the frequencies of letters and comparing them to the aver-
age frequencies of typical samples of plaintext. For example, E and T are
the two most frequently used letters in the English language. So, in a ci-
phertext encrypted with a Caesar cipher, E and T are good guesses as the

404 CHAPTER 9 • Arrays and Array Processing

plaintext letter corresponding to the most frequent letter in a ciphertext
message.

Let’s write a program that will count how many times each of the 26
letters of the English language appears in a given string. There are a num-
ber of ways to design such a program depending on how flexible you wish
the program to be. Let us keep this example simple by assuming that we
will only be interested in counting occurrences of the letters A through Z
and not of occurrences of spaces or punctuation marks. Assume further
that we will change lowercase letters in our string sample to uppercase
before counting letters and that we will want to print out the frequencies
of letters to the console window. Finally, assume that, later in the chapter
after we discuss sorting arrays, we will want to enhance our program so
that it can print out the letter frequencies in order of increasing frequency.

9.4.1 A Class to Store the Frequency of One Letter
It is clear that an array should be used for storing the frequencies, but a
decision must also be made as to what to store as the array elements. If
we store letter frequencies as int values, with the frequency of A stored
at index 0, and the frequency of B at index 1, and so forth, we will not
be able to rearrange the frequencies into increasing order without losing
track of which letter corresponds to which frequency. One way of solving
this problem is to create an array of objects, where each object stores both
a letter and its frequency.

So let us design a LetterFreq class that stores a letter in an instance
variable of type char and its frequency in an instance variable of type
int. These instance variables can be declared as:� �

private char l e t t e r ; //A c h a r a c t e r b e i n g c o u n t e d

private i n t f r e q ; // T h e f r e q u e n c y o f l e t t e r
 	
We will want a constructor that can initialize these two values and two
accessor methods to return these values. We are familiar enough with
these kinds of methods that it will not be necessary to discuss them any
further. We need one additional method to increment freq whenever we
encounter the letter while processing the string:� �

public void incrFreq () {
f r e q ++;

} // s e t F r e q ()
 	
A UML diagram for the LetterFreq class is given in Figure 9.9 and

the class definition is given in Figure 9.10. Note that we will have to make

Figure 9.9: UML for
LetterFreq.

a minor modification to this class later in this chapter to enable us to sort
an array of objects from this class.

9.4.2 A Class to Count Letter Frequencies
Now let us turn to designing a class named AnalyzeFreq that will use
an array of objects of type LetterFreq to count the frequencies of the
letters A through Z in a given string. The array, let’s call it freqArr, will
be the only instance variable of the class. The class needs a constructor
to instantiate the array and to create the 26 array elements, each with a

SECTION 9.4 • Example: Counting Frequencies of Letters 405� �
public c l a s s L e t t e r F r e q {

private char l e t t e r ; //A c h a r a c t e r b e i n g c o u n t e d

private i n t f r e q ; // T h e f r e q u e n c y o f l e t t e r

public L e t t e r F r e q (char ch , i n t f r e) {
l e t t e r = ch ;
f r e q = f r e ;

}
public char g e t L e t t e r () {

return l e t t e r ;
}
public i n t getFreq () {

return f r e q ;
}
public void incrFreq () {

f r e q ++;
}

} // L e t t e r F r e q
 	
Figure 9.10: The LetterFreq class definition.

different letter and an initial frequency of 0. This class should also have
two methods: a method to count the frequencies of the 26 letters in a given
string and a method that prints out the frequency of each letter to the

Figure 9.11: UML for
AnalyzeFreq.

console window. The UML diagram for the class is given in Figure 9.11.
The array instance variable can be declared by:� �

private L e t t e r F r e q [] freqArr ; // An a r r a y o f f r e q u e n c i e s
 	
The constructor creates an array of 26 elements to store references to
LetterFreq objects with the statement� �

freqArr = new L e t t e r F r e q [2 6] ;
 	
The indices of the array range from 0 to 25 and the elements at these
locations should store the letters A to Z. Recall that in Java, char data
are a form of int data and can be used in arithmetic. If we let k be an
integer that ranges between 0 and 25, then the expression (char)(’A’
+ k) will correspond to the letters A to Z. . Thus, the following loop will
initialize the array correctly.� �

for (i n t k = 0 ; k < 2 6 ; k++) {
freqArr [k] = new L e t t e r F r e q ((char) (’A ’ + k) , 0) ;

} // f o r
 	
The countLetters() method must identify the array index for
LetterFreq object that stores a letter between A and Z. If let is a char
variable that stores such a letter, then the expression (let - ’A’) will
give the index of the array element corresponding to let. Thus the fol-

406 CHAPTER 9 • Arrays and Array Processing

lowing code will calculate the frequencies the letters in the string param-
eter, str:� �

public void c o u n t L e t t e r s (S t r i n g s t r) {
char l e t ; // F o r u s e i n t h e l o o p .

s t r = s t r . toUpperCase () ;
for (i n t k = 0 ; k < s t r . length () ; k++) {

l e t = s t r . charAt (k) ;
i f ((l e t >= ’A’) && (l e t <= ’Z ’)) {

freqArr [l e t − ’A ’] . incrFreq () ;
} // i f

} // f o r

} // c o u n t L e t t e r s ()
 	
The definition of the printArray() method is completely straight for-
ward:� �

public void printArray () {
for (i n t k = 0 ; k < 2 6 ; k++) {

System . out . p r i n t (” l e t t e r : ” + freqArr [k] . g e t L e t t e r ()) ;
System . out . p r i n t l n (” f r e q : ” + freqArr [k] . getFreq ()) ;

} // f o r

} // p r i n t A r r a y ()
 	
The entire definition of AnalyzeFreq is given in Figure 9.12. We will
modify this class later in the chapter to be able to sort the array after count-
ing. The following main() method, either in this class or in its own class
will demonstrate how the class methods are used.� �

public s t a t i c void main (S t r i n g [] argv) {
AnalyzeFreq af = new AnalyzeFreq () ;
a f . c o u n t L e t t e r s (”Now i s the time f o r a l l good students ” +

” to study computer r e l a t e d t o p i c s . ”) ;
a f . pr intArray () ;

} // m a i n ()
 	
SELF-STUDY EXERCISES
EXERCISE 9.7 Rewrite the main() of the AnalyzeFreq class so that

it opens a file named freqtest.txt and counts the frequencies of the
letters of the text stored in the file. You will need to use the Scanner
class to read from the file as was done in Chapter 4. Create a file named
freqtest.txt that contains several hundred characters of typical En-
glish text to test the new main() method

9.5 Array Algorithms: Sorting

Sorting an array is the process of arranging its elements in ascending or
descending order. Sorting algorithms are among the most widely used
algorithms. Any time large amounts of data are maintained, there is some

SECTION 9.5 • Array Algorithms: Sorting 407� �
public c l a s s AnalyzeFreq {

private L e t t e r F r e q [] freqArr ; // An a r r a y o f f r e q u e n c i e s

public AnalyzeFreq () {
freqArr = new L e t t e r F r e q [2 6] ;
for (i n t k = 0 ; k < 2 6 ; k++) {

freqArr [k] = new L e t t e r F r e q ((char) (’A ’ + k) , 0) ;
} // f o r

}
public void c o u n t L e t t e r s (S t r i n g s t r) {

char l e t ; // F o r u s e i n t h e l o o p .

s t r = s t r . toUpperCase () ;
for (i n t k = 0 ; k < s t r . length () ; k++) {

l e t = s t r . charAt (k) ;
i f ((l e t >= ’A’) && (l e t <= ’Z ’)) {

freqArr [l e t − ’A ’] . incrFreq () ;
} // i f

} // f o r

}
public void printArray () {

for (i n t k = 0 ; k < 2 6 ; k++) {
System . out . p r i n t (” l e t t e r : ” + freqArr [k] . g e t L e t t e r ()) ;
System . out . p r i n t l n (” f r e q : ” + freqArr [k] . getFreq ()) ;

} // f o r

}
} // A n a l y z e F r e q
 	

Figure 9.12: The AnalyzeFreq class definition.

need to arrange them in a particular order. For example, the telephone
company needs to arrange its accounts by the last name of the account
holder as well as by phone number.

9.5.1 Insertion Sort

The first sorting algorithm we’ll look at is known as insertion sort, so
named because as it traverses through the array from the first to the last
element, it inserts each element into its correct position in the partially
sorted array.

For an array of N elements, let’s think of the array as divided into two
parts. The sorted part will be the left hand side of the array. And the
unsorted part will be the right hand side of the array. Initially, the sorted
part consists of the first element in the array—the element at index 0.

Insertion sort moves through the unsorted portion of the array—that is
its loop variable, k, ranges from 1 through N-1. On each iteration it inserts
the kth element into its correct position in the sorted part of the array. To
insert an element into the sorted part of the array, it may be necessary to
move elements greater than the one being inserted out of the way.

408 CHAPTER 9 • Arrays and Array Processing

In pseudocode, insertion sort can be represented as follows:� �
I n s e r t i o n Sor t of an array , arr , of N elements i n t o ascending order
1 . For k assigned 1 through N−1
2 . Remove the element a r r [k] and s t o r e i t in x .
3 . For i s t a r t i n g a t k−1 and for a l l preceding elements g r e a t e r than x
4 . Move a r r [i] one p o s i t i o n to the r i g h t in the array .
5 . I n s e r t x a t i t s c o r r e c t l o c a t i o n .
 	

As is apparent from the pseudocode, we have a nested for loops. The outer
(k) loop, iterates through the array from 1 to N-1. The inner loop iterates
as many times as necessary, starting with the element just to the left of the
kth element in order to insert the kth element into its correct position in
the sorted portion. Note that the kth element is always removed from the
array (and stored in the variable x), to make room for elements that have
to be moved to the right.

To see how this works, consider an integer array containing the ages of
five friends:� �

21 | 20 27 24 19 x = 20
k
 	

For this five-element array, insertion sort initially will assume that the el-
ement at index 0 is in the correct position. The vertical line marks the
boundary between the sorted and unsorted portions of the array. The
outer loop will look at each of the remaining elements, one at a time, in-
serting it into its proper position in the sorted portion of the array. To
insert 20, the number at index 1, the inner loop will move 21 to the right
by one position. To do this, the algorithm will remove 20 from its location
and store it in x. It will then move 21 one space to the right. Finally, it
will insert 20, which is stored in x, at index 0, where it belongs relative to
the other elements in the sorted part of the array. At this point, the sorted
portion of the array consists of the first two elements, which are in the
correct order, relative to each other.� �

20 21 | 27 24 19 x = 27
k
 	

For the next element, 27, none of elements in the sorted portion need to be
moved, so the inner for loop will iterate zero times. This gives us:� �

20 21 27 | 24 19 x = 24
k
 	

For the fourth element, 24, only the previous element, 27, needs to be
moved to the right, giving:� �

20 21 24 27 | 19 x = 19
k
 	

SECTION 9.5 • Array Algorithms: Sorting 409

At this point, the sorted part of the array consists of the first four elements,
which are in the correct order relative to each other. Finally, for the last
element, 19, all of the elements in the sorted part of the array need to be
moved one space to the right. This will require four iterations of the inner
loop. We show the state of the array after each iteration of the inner for
loop:� �

k
20 21 24 27 | 19 Remove 19 and s t o r e i t x = 19
20 21 24 27 | 27 Move 27 to the r i g h t
20 21 24 24 | 27 Move 24 to the r i g h t
20 21 21 24 | 27 Move 21 to the r i g h t
20 20 21 24 | 27 Move 20 to the r i g h t
19 20 21 24 27 | I n s e r t x=19 at index 0
 	

Clearly, the fact that so many elements may have to moved on each it-
eration of the outer loop shows that insertion sort is not a very efficient
algorithm.

The Sort class (Fig 9.13) provides an implementation of the
insertionSort() method. There are several points worth noting about
this code. First, because it takes an int array as a parameter, the
insertionSort() method will sort any array of integers, regardless of
the array’s length.

� �
public c l a s s Sor t {

public void i n s e r t i o n S o r t (i n t a r r []) {
i n t temp ; // T e m p o r a r y v a r i a b l e f o r i n s e r t i o n

for (i n t k = 1 ; k < a r r . length ; k++) {
temp = a r r [k] ; // R e m o v e e l e m e n t f r o m a r r a y

i n t i ; // F o r l a r g e r p r e c e d i n g e l e m e n t s

for (i = k−1; i >= 0 && a r r [i] > temp ; i−−)
a r r [i +1] = a r r [i] ; // Move i t r i g h t b y o n e

a r r [i +1] = temp ; // I n s e r t t h e e l e m e n t

}
} // i n s e r t i o n S o r t ()

public void p r i n t (i n t a r r []) {
for (i n t k = 0 ; k < a r r . length ; k++) // F o r e a c h i n t e g e r

System . out . p r i n t (a r r [k] + ” \ t ”) ; // P r i n t i t

System . out . p r i n t l n () ;
} // p r i n t ()

public s t a t i c void main (S t r i n g args []) {
i n t in tArr [] = { 21 , 20 , 27 , 24 , 19 } ;
Sor t s o r t e r = new Sor t () ;
s o r t e r . p r i n t (in tArr) ;
s o r t e r . i n s e r t i o n S o r t (in tArr) ; // P a s s i n g a n a r r a y

s o r t e r . p r i n t (in tArr) ;
} // m a i n ()

} // S o r t
 	
Figure 9.13: Source code for the insertionSort() method. Note in
main() how an integer array is passed to the method.

410 CHAPTER 9 • Arrays and Array Processing

Second, note how empty brackets ([]) are used to declare an array pa-Array parameters
rameter. If the brackets were omitted, then arr would be indistinguish-
able from an ordinary int parameter. Using the brackets indicates that
this method takes an array of integers as its parameter.

JAVA DEBUGGING TIP Array Parameter. When declaring an array
parameter, empty brackets must be used either after the array name or
after the type name to distinguish it from a non-array parameter.

Third, note how an array of integers is passed to the insertionSort()
method in the main() method:� �

s o r t e r . i n s e r t i o n S o r t (in tArr) ; // P a s s i n t A r r t o t h e m e t h o d
 	
That is, when passing an array to a method, you use just the name of the
array, without brackets. Both of the following statements would cause
syntax errors:� �

s o r t e r . i n s e r t i o n S o r t (in tArr []) ; // E r r : C a n ’ t h a v e b r a c k e t s

s o r t e r . i n s e r t i o n S o r t (in tArr [5]) ; // E r r : p a s s i n g a n i n t e g e r
 	
In the first case, empty brackets are only used when you declare an array
variable, not when you are passing the array to a method. In the second
case, intArr[5] is an int, not an array, and cannot legally be passed to
insertionSort().

JAVA DEBUGGING TIP Passing an Array Argument. It is a syntax
error to use empty brackets when passing an array argument to a
method, where the only the array’s name should be used. Empty
rackets are only used when declaring an array variable.

Finally, within the insertionSort()method itself, note that we declare
the index for the inner for loop outside of the for statement. This is so
it can be used outside the scope of the for loop to insert temp at location
arr[i+1], its correct location. Note also that the index of its correct loca-
tion is i+1, rather than just i. This is because the inner loop might iterate
past location 0, which would give i a value of -1 at that point.

9.5.2 Selection Sort
There are a large variety of array sorting algorithms. Selection sort is dif-
ferent from, but comparable to, insertion sort in its overall performance.
To illustrate the selection sort algorithm, suppose you want to sort a deck
of 25 index cards, numbered from 1 to 25. Lay the 25 cards out on a table,
one card next to the other. Starting with the first card, look through theSelection sort algorithm
deck and find the smallest card, the number 1 card, and exchange it with
the card in the first location. Then, go through the deck again starting
at the second card, find the next smallest card, the number 2 card, and
exchange it with the card in the second location. Repeat this process 24
times.

SECTION 9.5 • Array Algorithms: Sorting 411

Translating this strategy into pseudocode gives the following algorithm:� �
S e l e c t i o n s o r t of a 25−card deck from small to l a r g e
1 . For count assigned 1 to 24 // O u t e r l o o p

2 . smallestCard = count
3 . For currentCard assigned count+1 to 25 // I n n e r l o o p

4 . I f deck [currentCard] < deck [smallestCard]
5 . smallestCard = currentCard
6 . I f smallestCard != count // You n e e d t o s w a p

7 Swap deck [count] and deck [smallestCard]
 	
For a deck of 25 cards, you need to repeat the outer loop 24 times. In other
words, you must select the smallest card and insert it in its proper location
24 times. The inner loop takes care of finding the smallest remaining card.

On each iteration of this outer loop, the algorithm assumes that the card
specified by the outer loop variable, count, is the smallest card (line 2). It
usually won’t be, of course, but we have to start somewhere.

The inner loop then iterates through the remaining cards (from
count+1 to 25) and compares each one with the card that is currently
the smallest (lines 4 and 5). Whenever it finds a card that is smaller than
the smallest card, it designates it as the smallest card (line 5). At the end of
the loop, the smallestCard variable will remember where the smallest
card is in the deck.

Finally, when the inner loop is finished, the algorithm swaps the small-
est card with the card in the location designated by count.

9.5.3 Algorithm: Swapping Memory Elements

An important feature of the selection sort algorithm is its need to swap
two array elements, or cards, to continue our example. Swapping two
memory elements, whether they are array elements or not, requires the
use of a temporary variable. For example, to swap the jth and kth elements
in an int array named arr, you would use the following algorithm: Swapping algorithm� �

i n t temp = a r r [j] ; // S t o r e t h e j t h e l e m e n t i n t e m p

a r r [j] = a r r [k] ; // Move t h e k t h e l e m e n t i n t o j

a r r [k] = temp ; // Move t h e j t h e l e m e n t i n t o k
 	
The temp variable temporarily stores the jth element so its value is not
lost when its location is overwritten by the kth element. The need for
this variable is a subtlety that beginning programmers frequently over-
look. But consider what would happen if we used the following erroneous
algorithm: Swapping blunder� �

a r r [j] = a r r [k] ; // E r r o n e o u s s w a p c o d e

a r r [k] = a r r [j] ;
 	

412 CHAPTER 9 • Arrays and Array Processing

If arr[j] refers to 4 and arr[k] refers to 2 in the array 1 4 2 8, then
the erroneous algorithm would produce 1 2 2 8, the wrong result.

JAVA PROGRAMMING TIP Swapping Variables. When swapping
two memory elements, a temporary variable must be used to store one
of the elements while its memory location is being overwritten.

The following method implements the swap algorithm for two elements,
el1 and el2 of an int array:� �

void swap (i n t a r r [] , i n t el1 , i n t e l 2) {
i n t temp = a r r [e l 1] ; // A s s i g n f i r s t e l e m e n t t o t e m p

a r r [e l 1] = a r r [e l 2] ; // O v e r w r i t e f i r s t w i t h s e c o n d

a r r [e l 2] = temp ; // O v e r w r i t e s e c o n d w i t h f i r s t

} // s w a p ()
 	

SELF-STUDY EXERCISES

EXERCISE 9.8 Sort the array, 24 18 90 1 0 85 34 18, using the insertion
sort algorithm. Show the order of the elements after each iteration of the
outer loop.

EXERCISE 9.9 Sort the array, 24 18 90 1 0 85 34 18, using the selection
sort algorithm. Show the order of the elements after each iteration of the
outer loop.

EXERCISE 9.10 Write a Java code segment to swap two Student ob-
jects, student1 and student2.

EXERCISE 9.11 Write a Java implementation of the selectionSort()
method to sort an array of int.

9.5.4 Passing a Value and Passing a Reference

Recall from Chapter 3 that when an Object is passed to a method, a copy
of the reference to the Object is passed. Because an array is an object,
a reference to the array is passed to insertionSort(), rather than the
whole array itself. This is in contrast to how a value of a primitive type is
passed. In that case, a copy of the actual value is passed.

SECTION 9.5 • Array Algorithms: Sorting 413

JAVA LANGUAGE RULE Primitive vs. Object Parameters. When a
value of a primitive data type—int, double, char, boolean—
is passed as an argument to a method, a copy of the value is passed;
when a reference to an Object is passed, a copy of the reference is
passed.

One implication of this distinction is that for arguments of primitive type,
the original argument cannot be changed from within the method be-
cause the method has only a copy of its value. For example, the follow-
ing method takes an int parameter n, which is incremented within the
method:� �

public void add1 (i n t n) {
System . out . p r i n t (”n = ” + n) ;
n = n + 1 ;
System . out . p r i n t l n (” , n = ” + n) ;

}
 	
But because n is a parameter of primitive type, incrementing it within the
method has no effect on its associated argument. Thus, in the following
segment, the value of Num—n’s associated argument—will not be affected
by what goes on inside the add() method. The output produced by the Passing a primitive value
code segment is shown in the comments:� �

i n t Num = 5 ;
System . out . p r i n t l n (”Num = ” + Num) ; // P r i n t s Num = 5

add1 (Num) ; // P r i n t s n = 5 , n = 6

System . out . p r i n t l n (”Num = ” + Num) ; // P r i n t s Num = 5
 	
Note that while n’s value has changed inside the method, Num’s value
remains unaffected.

The case is much different when we pass a reference to an object. In
that case, the object itself can be manipulated from within the method.
The insertionSort() method is a good illustration. In the following
code segment, the array anArr is printed, then sorted, and then printed Passing an object
again:� �

Sor t s o r t e r = new S o r t e r () ;
i n t anArr [] = { 5 , 10 , 16 , −2, 4 , 6 , 1 } ;
s o r t e r . p r i n t (anArr) ; // P r i n t s 5 1 0 1 6 −2 4 6 1

s o r t e r . i n s e r t i o n S o r t (anArr) ; // S o r t s a n A r r

s o r t e r . p r i n t (anArr) ; // P r i n t s −2 1 4 5 6 1 0 1 6
 	
As you can see, the object itself (the array) has been changed from within
the method. This shows that changes within insertionSort to the ar-
ray referenced by arr are actually being made to anArr itself. If fact,
because insertionSort() is passed a copy of the reference variable
anArr, both arr and anArr are references to the very same object—that
is, to the same array (Fig. 9.14).

The justification for passing a reference to an object rather than the en- Method call overhead

414 CHAPTER 9 • Arrays and Array Processing
Figure 9.14: When an array is
passed to a method, both the pa-
rameter and the corresponding ar-
gument refer to the same object. public void insertionSort (int arr [])

{

...

}

insertionSort (anArr)

5 10 16 -2 4 6 1

Method Definition (parameter) Method Call (argument)

tire object itself is a matter of efficiency. A reference uses just 4 bytes of
data, whereas an object may use thousands of bytes. It would just be too
inefficient to copy hundreds of bytes each time an object is passed to a
method. Instead, the method is passed a reference to the object, thereby
giving it access to the object without incurring the expense of copying
large amounts of data. Indeed, Java provides no way to pass a copy of an
object to a method.

SELF-STUDY EXERCISE
EXERCISE 9.12 Give the values that will be stored in myArr and k after

you invoke mystery(myArr, k), where myArr, k and mystery() are
declared as follows:� �
i n t myArr [] = {1 , 2 , 3 , 4 , 5} ; i n t k = 3 ;
void mystery (i n t a [] , i n t m) {

++a [m] ;
−−m;

}
 	
9.6 Array Algorithms: Searching

Suppose we have a large array and we need to find one of its elements. We
need an algorithm to search the array for a particular value, usually called
the key. If the elements of the array are not arranged in any particular
order, the only way we can be sure to find the key, assuming it is in the
array, is to search every element, beginning at the first element, until we
find it.

9.6.1 Sequential Search
This approach is known as a sequential search, because each element of
the array will be examined in sequence until the key is found (or the end
of the array is reached). A pseudocode description of this algorithm is as
follows:� �

1 . For each element of the array
2 . I f the element equals the key
3 . Return i t s index
4 . I f the key i s not found in the array
5 . Return −1 (to i n d i c a t e f a i l u r e)
 	

SECTION 9.6 • Array Algorithms: Searching 415

This algorithm can easily be implemented in a method that searches
an integer array, which is passed as the method’s parameter. If the key is
found in the array, its location is returned. If it is not found, then −1 is
returned to indicate failure.

+sequentialSearch(in arr : int[], in key : int)

+binarySearch(in arr : int[], in key : int)

Search

Figure 9.15: The Search class.

The Search class (Figs. 9.15 and 9.16) provides the Java implementa-
tion of the sequentialSearch() method. The method takes two pa-
rameters: the array to be searched and the key to be searched for. It uses
a for statement to examine each element of the array, checking whether
it equals the key or not. If an element that equals the key is found, the
method immediately returns that element’s index. Note that the last state-
ment in the method will only be reached if no element matching the key
is found.� �
public c l a s s Search {

public i n t s e q u en t i a l S e a rc h (i n t a r r [] , i n t key) {
for (i n t k = 0 ; k < a r r . length ; k++)

i f (a r r [k] == key)
return k ;

return −1; // F a i l u r e i f t h i s i s r e a c h e d

} // s e q u e n t i a l S e a r c h ()

public i n t binarySearch (i n t a r r [] , i n t key) {
i n t low = 0 ; // I n i t i a l i z e b o u n d s

i n t high = a r r . length − 1 ;
while (low <= high) { // W h i l e n o t d o n e

i n t mid = (low + high) / 2 ;
i f (a r r [mid] == key)

return mid ; // S u c c e s s

e lse i f (a r r [mid] < key)
low = mid + 1 ; // S e a r c h t o p h a l f

e lse
high = mid − 1 ; // S e a r c h b o t t o m h a l f

} // w h i l e

return −1; // P o s t : i f l o w > h i g h s e a r c h f a i l e d

} // b i n a r y S e a r c h ()

}// S e a r c h
 	
Figure 9.16: The Search class contains both a sequentialSearch()
and a binarySearch().

JAVA EFFECTIVE DESIGN Sentinel Return Value. Like Java’s
indexOf() method, the sequentialSearch() returns a sentinel
value (−1) to indicate that the key was not found. This is a common
design for search methods.

9.6.2 Binary Search
If the elements of an array have been sorted into ascending or descending
order, it is not necessary to search sequentially through each element of
the array in order to find the key. Instead, the search algorithm can make

416 CHAPTER 9 • Arrays and Array Processing

use of the knowledge that the array is ordered and perform what’s known
as a binary search, which is a divide-and-conquer algorithm that divides
the array in half on each iteration and limits its search to just that half that
could contain the key.

To illustrate the binary search, recall the familiar guessing game in
which you try to guess a secret number between 1 and 100, being told
“too high” or “too low” or “just right” on each guess. A good first guess
should be 50. If this is too high, the next guess should be 25, because if
50 is too high the number must be between 1 and 49. If 50 was too low,
the next guess should be 75, and so on. After each wrong guess, a good
guesser should pick the midpoint of the sublist that would contain the
secret number.

Proceeding in this way, the correct number can be guessed in at most
log2N guesses, because the base-2 logarithm of N is the number of timesHow many guesses?
you can divide N in half. For a list of 100 items, the search should take
no more than seven guesses (27 = 128 > 100). For a list of 1,000 items, a
binary search would take at most ten guesses (210 = 1,024 > 1,000).

So a binary search is a much more efficient way to search, provided the
array’s elements are in order. Note that “order” here needn’t be numeric
order. We could use binary search to look up a word in a dictionary or a
name in a phone book.
A pseudocode representation of the binary search is given as follows:� �

TO SEARCH AN ARRAY OF N ELEMENTS IN ASCENDING ORDER

1 . Assign 0 low and ass ign N−1 to high i n i t i a l l y
2 . As long as low i s not g r e a t e r than high
3 . Assign (low + high) / 2 to mid
4 . I f the element a t mid equals the key
5 . then return i t s index
6 . E lse i f the element a t mid i s l e s s than the key
7 . then ass ign mid + 1 to low
8 . Else ass ign mid − 1 to high
9 . I f t h i s i s reached return −1 to i n d i c a t e f a i l u r e
 	

Just as with the sequential search algorithm, this algorithm can easily be
implemented in a method that searches an integer array that is passed
as the method’s parameter (Fig. 9.16). If the key is found in the array,
its location is returned. If it is not found, then −1 is returned to indicate
failure. The binarySearch()method takes the same type of parameters
as sequentialSearch(). Its local variables, low and high, are used
as pointers, or references, to the current low and high ends of the array,
respectively. Note the loop-entry condition: low <= high. If low ever
becomes greater than high, this indicates that key is not contained in the
array. In that case, the algorithm returns −1.

As a binary search progresses, the array is repeatedly cut in half and
low and high will be used to point to the low and high index values in
that portion of the array that is still being searched. The local variable mid
is used to point to the approximate midpoint of the unsearched portion
of the array. If the key is determined to be past the midpoint, then low
is adjusted to mid+1; if the key occurs before the midpoint, then high is

SECTION 9.7 • Two-Dimensional Arrays 417

set to mid-1. The updated values of low and high limit the search to the
unsearched portion of the original array.

Unlike sequential search, binary search does not have to examine ev-
ery location in the array to determine that the key is not in the array.
It searches only that part of the array that could contain the key. For
example, suppose we are searching for −5 in the following array:� �

i n t sor tArr [] =
{ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 , 2 0} ;
 	

The −5 is smaller than the smallest array element. Therefore, the algo-
rithm will repeatedly divide the low end of the array in half until the con-
dition low > high becomes true. We can see this by tracing the values
that low, mid, and high will take during the search:� �

Key I t e r a t i o n Low High Mid
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−5 0 0 19 9
−5 1 0 8 4
−5 2 0 3 1
−5 3 0 0 0
−5 4 0 −1 F a i l u r e
 	

As this trace shows, the algorithm examines only four locations to
determine that −5 is not in the array. After checking location 0,
the new value for high will become −1, which makes the condition
low <= high false. So the search will terminate.

+getInput() : int

+main()

TestSearch

Figure 9.17: The TestSearch
class.

The TestSearch class (Figs. 9.17 and 9.18) provides a program that
can be used to test two search methods. It creates an integer array,
whose values are in ascending order. It then uses the getInput()
method to input an integer from the keyboard and then performs both
a sequentialSearch() and a binarySearch() for the number.

SELF-STUDY EXERCISE
EXERCISE 9.13 For the array containing the elements 2, 4, 6, and so on

up to 28 in that order, draw a trace showing which elements are examined
if you search for 21 using a binary search.

9.7 Two-Dimensional Arrays

A two-dimensional array, an array whose components are themselves ar-
rays, is necessary or useful for certain kinds of problems. For example,
you would use this type of array if you are doing a scientific study in
which you have to track the amount of precipitation for every day of the
year.

One way to organize these data would be to create a one-dimensional
array, consisting of 365 elements:� �

double r a i n f a l l [] = new double [3 6 5] ;
 	

418 CHAPTER 9 • Arrays and Array Processing� �
import j ava . io . ∗ ;
public c l a s s TestSearch {

public s t a t i c i n t getInput () {
KeyboardReader kb = new KeyboardReader () ;
kb . prompt (” This program searches f o r values in an array . ”) ;
kb . prompt (
” Input any p o s i t i v e i n t e g e r (or any negat ive to qui t) : ”) ;
return kb . getKeyboardInteger () ;

} // g e t I n p u t ()

public s t a t i c void main (S t r i n g args []) throws IOException {
i n t in tArr [] = { 2 , 4 , 6 , 8 , 1 0 , 1 2 , 1 4 , 1 6 , 1 8 , 2 0 , 2 2 , 2 4 , 2 6 , 2 8} ;
Search searcher = new Search () ;
i n t key = 0 , keyAt = 0 ;
key = getInput () ;
while (key >= 0) {

keyAt = searcher . s e q u e nt i a l S e a r ch (intArr , key) ;
i f (keyAt != −1)

System . out . p r i n t l n (” Sequent ia l : ” + key +
” i s a t in tArr [” + keyAt + ”] ”) ;

e lse
System . out . p r i n t l n (” Sequent ia l : ” + key

+ ” i s not contained in intArr [] ”) ;
keyAt = searcher . binarySearch (intArr , key) ;
i f (keyAt != −1)

System . out . p r i n t l n (” Binary : ” + key +
” i s a t in tArr [” + keyAt + ”] ”) ;

e lse
System . out . p r i n t l n (” Binary : ” + key +

” i s not contained in intArr [] ”) ;
key = getInput () ;

} // w h i l e

} // m a i n ()

} // T e s t S e a r c h
 	
Figure 9.18: The TestSearch class.

However, with this representation, it would make it very difficult to cal-
culate the average rainfall within a given month, which might be an im-
portant part of your study.

A better representation for this problem would be to use a two-What data do we need?
dimensional array, one dimension for the months and one for the days.
The following statement declares the array variable rainfall and cre-
ates a 12 by 31 array object as its reference:� �

double r a i n f a l l [] [] = new double [1 2] [3 1] ;
 	
Thus, rainfall is an array of arrays. You can think of the first array as
the 12 months required for the problem. And you can think of each month
as an array of 31 days. The months will be indexed from 0 to 11, and the
days will be indexed from 0 to 30.

SECTION 9.7 • Two-Dimensional Arrays 419

The problem with this representation is that when we want to refer to
the rainfall for January 5, we would have to use rainfall[0][4]. This Choosing an appropriate

representationis awkward and misleading. The problem is that dates—1/5/1999—are
unit indexed, while arrays are zero indexed. Because it will be difficult to
remember this fact, our representation of the rainfall data may cause us to
make errors when we start writing our algorithms.

We can easily remedy this problem by just defining our array to have
an extra month and an extra day each month:� �

double r a i n f a l l [] [] = new double [1 3] [3 2] ;
 	
This representation creates an array with 13 months, indexed from 0 to 12,
with 32 days per month, indexed from 0 to 31. However, we can simply
ignore the 0 month and 0 day by using unit indexing in all of the algo-
rithms that process the array. In other words, if we view this array as
a two-dimensional table, consisting of 13 rows and 32 columns, we can
leave row 0 and column 0 unused (Fig. 9.19).

0,0

Ignore this

column

Use the elements

within this rectangle

Ignore

this row

0,1 0,2 0,3 0,29 0,30 0,31. . .

1,0 1,1 1,2 1,3 1,29 1,30 1,31. . . January
2,0
.
.
.

2,1 2,2 2,3 2,29 2,30 2,31. . . February

11,0 11,1 11,2 11,3 11,29 11,30 11,31. . . November
12,0 12,1 12,2 12,3 12,29 12,30 12,31. . . December

Figure 9.19: A two-dimensional
array with 13 rows and 32
columns. To represent 12 months
of the year, we can simply ignore
row 0 and column 0.

As Figure 9.19 shows, the very first element of this 416-element array
has subscripts (0,0) while the last location has subscripts (12,31). The main
advantages of this representation is that the program as a whole will be
much easier to read and understand and much less prone to error.

JAVA EFFECTIVE DESIGN Readability. To improve a program’s
robustness and readability, it may be preferable to use unit array
indexing by declaring extra array elements and ignoring those with
index 0.

In order to refer to an element in a two-dimensional array, you need to
use two subscripts. For the rainfall array, the first subscript will specify
the month and the second will specify the day within the month. Thus, the
following statements assign 1.15 to the rainfall element representing
January 5, and then print its value: Referencing two-dimensional arrays� �

r a i n f a l l [1] [5] = 1 . 1 5 ; // R a i n f a l l f o r J a n u a r y 5

System . out . p r i n t l n (r a i n f a l l [1] [5]) ;
 	

420 CHAPTER 9 • Arrays and Array Processing

Just as in the case of one-dimensional arrays, it is an error to attempt
to reference an element that is not in the array. Each of the following
examples would cause Java to raise an IndexOutOfBoundsException:� �

r a i n f a l l [1 3] [3 2] = 0 . 1 5 ; // No s u c h e l e m e n t

r a i n f a l l [1 1] [3 3] = 1 . 3 ; // No s u c h c o l u m n

r a i n f a l l [1 4] [3 0] = 0 . 7 4 ; // No s u c h r o w
 	
If the initial values of an array’s elements are supposed to be zero,

there is no need to initialize the elements. Java will do it automatically
when you create the array with new. However, for many array problemsInitializing two-dimensional arrays
it is necessary to initialize the array elements to some other value. For
a two-dimensional array, this would require a nested loop. To illustrate
this algorithm, let’s use a nested for loop to initialize each element of the
rainfall array to 0:� �

// N o t e t h a t b o t h l o o p s a r e u n i t i n d e x e d .

for (i n t month = 1 ; month < r a i n f a l l . length ; month++)
for (i n t day = 1 ; day < r a i n f a l l [month] . length ; day++)

r a i n f a l l [month] [day] = 0 . 0 ;
 	
Note that both for loops use unit indexing. This is in keeping with our
decision to leave month 0 and day 0 unused.

Remember that when you have a nested for loop, the inner loop iterates
faster than the outer loop. Thus, for each month, the inner loop will iterateNested for loops
over 31 days. This is equivalent to processing the array as if you were
going across each row and then down to the next row in the representation
shown in Figure 9.19.

Note that for a two-dimensional array, both dimensions have an asso-
ciated length variable, which is used in this example to specify the up-
per bound of each for loop. For the rainfall array, the first dimension
(months) has a length of 13 and the second dimension (days) has a length
of 32.

Another way to view the rainfall array is to remember that it is an
array of arrays. The length of the first array, which corresponds to theArray of arrays
number (13) of months, is given by rainfall.length. The length of
each month’s array, which corresponds to the number of days (32) in a
month, is given by rainfall[month].length.

The outer loop of the nested for loop iterates through months 1 through
12, and the inner for loop iterates through days 1 through 31. In this way,
372 = 12 × 31 elements of the array are set to 0.0. In Table 9.1, the boldface
numbers along the top represent the day subscripts, while the boldface
numbers along the left represent the month subscripts.

SELF-STUDY EXERCISES
EXERCISE 9.14 Declare a two-dimensional array of int, named
int2d, that contains five rows, each of which contains ten integers.

EXERCISE 9.15 Write a statement that prints the last integer in the third
row of the array that you created in the previous exercise. Then write an

SECTION 9.7 • Two-Dimensional Arrays 421

TABLE 9.1 The initialized rainfall array. The unused array
elements are shown as dashes.

0 1 2 3 · · · 30 31

0 – – – – · · · – –
1 – 0.0 0.0 0.0 · · · 0.0 0.0
2 – 0.0 0.0 0.0 · · · 0.0 0.0
...

...
...

...
...

...
...

...

10 – 0.0 0.0 0.0 · · · 0.0 0.0
11 – 0.0 0.0 0.0 · · · 0.0 0.0
12 – 0.0 0.0 0.0 · · · 0.0 0.0

assignment statement that assigns 100 to the last element in the int2d
array.

EXERCISE 9.16 Write a loop to print all of the elements of int2d,
which you declared in the previous exercise. Print one row per line with
a space between each element on a line.

9.7.1 Two-Dimensional Array Methods
Now that we have figured out how to represent the data for our scien-
tific experiment, let’s develop methods to calculate some results. First, we
want a method to initialize the array. This method will simply incorporate
the nested loop algorithm we developed previously:� �

public void i n i t R a i n (double r a i n [] []) {
for (i n t month = 1 ; month < r a i n . length ; month++)

for (i n t day = 1 ; day < r a i n [month] . length ; day++)
r a i n [month] [day] = 0 . 0 ;

} // i n i t R a i n ()
 	
Note how we declare the parameter for a multidimensional array. In addi-
tion to the element type (double), and the name of the parameter (rain), Array parameters
we must also include a set of brackets for each dimension of the array.

Note also that we use the parameter name within the method to refer
to the array. As with one-dimensional arrays, the parameter is a refer-
ence to the array, which means that any changes made to the array within
the method will persist when the method is exited.

The avgDailyRain() Method

One result that we need from our experiment is the average daily rainfall. Algorithm design
To calculate this result, we would add up all of the rainfalls stored in the
12 × 31 array and divide by 365. Of course, the array itself contains more
than 365 elements. It contains 416 elements, but we’re not using the first
month of the array, and within some months—those with fewer than 31
days—we’re not using some of the day elements. For example, there’s
no such day as rainfall[2][30], which would represent February 30.
However, because we initialized all of the array’s elements to 0, the rain-

422 CHAPTER 9 • Arrays and Array Processing

fall recorded for the non-days will be 0, which won’t affect our overall
average.

The method for calculating average daily rainfall should take our two-Method design
dimensional array of double as a parameter, and it should return a
double. Its algorithm will use a nested for loop to iterate through the
elements of the array, adding each element to a running total. When the
loops exits, the total will be divided by 365 and returned:� �

public double avgDailyRain (double r a i n [] []) {
double t o t a l = 0 ;
for (i n t month = 1 ; month < r a i n . length ; month++)

for (i n t day = 1 ; day < r a i n [month] . length ; day++)
t o t a l += r a i n [month] [day] ;

return t o t a l /365;
} // a v g D a i l y R a i n ()
 	

The avgRainForMonth() Method

One reason we used a two-dimensional array for this problem is so we
could calculate the average daily rainfall for a given month. Let’s write
a method to solve this problem. The algorithm for this method will notAlgorithm design
require a nested for loop. We will just iterate through the 31 elements of a
given month, so the month subscript will not vary. For example, suppose
we are calculating the average for January, which is represented in our
array as month 1:� �

double t o t a l = 0 ;
for (i n t day = 1 ; day < r a i n f a l l [1] . length ; day++)

t o t a l = t o t a l + r a i n f a l l [1] [day] ;
 	
Thus, the month subscript is held constant (at 1) while the day subscript
iterates from 1 to 31. Of course, in our method we would use a parameter
to represent the month, thereby allowing us to calculate the average dailyMethod design
rainfall for any given month.

Another problem that our method has to deal with is that months don’t
all have 31 days, so we can’t always divide by 31 to compute the monthly
average. There are various ways to solve this problem, but perhaps theMethod design: What data do we

need? easiest is to let the number of days for that month be specified as a third
parameter. That way, the month itself and the number of days for the
month are supplied by the user of the method:� �

public double avgRainForMonth (double r a i n [] [] ,
i n t month , i n t nDays) {

double t o t a l = 0 ;
for (i n t day = 1 ; day < r a i n [month] . length ; day++)

t o t a l = t o t a l + r a i n [month] [day] ;
return t o t a l /nDays ;

} // a v g R a i n F o r M o n t h ()
 	

SECTION 9.7 • Two-Dimensional Arrays 423

Given this definition, we can call this method to calculate and print the
average daily rainfall for March as in the following statement:� �

System . out . p r i n t l n (”March : ” +
avgRainForMonth (r a i n f a l l , 3 , 3 1)) ;
 	

Note that when passing the entire two-dimensional array to the method,
we just use the name of the array. We do not have to follow the name with
subscripts.

9.7.2 Passing Part of an Array to a Method

Instead of passing the entire rainfall array to the avgRainForMonth()
method, we could redesign this method so that it is only passed the par-
ticular month that’s being averaged. Remember that a two-dimensional
array is an array of arrays, so if we pass the month of January, we are
passing an array of 32 days. If we use this approach, we need only two Method design: What data?
parameters: the month, which is array of days, and the number of days in
that month:� �

public double avgRainForMonth (double monthRain [] ,
i n t nDays) {

double t o t a l = 0 ;
for (i n t day = 1 ; day < monthRain . length ; day++)

t o t a l = t o t a l + monthRain [day] ;
return t o t a l /nDays ;

} // a v g R a i n F o r M o n t h ()
 	
Given this definition, we can call it to calculate and print the average daily
rainfall for March as in the following statement:� �

System . out . p r i n t l n (”March : ” +
avgRainForMonth (r a i n f a l l [3] , 3 1)) ;
 	

In this case, we’re passing an array of double to the method, but in
order to reference it, we have to pull it out of the two-dimensional ar-
ray by giving its row subscript as well. Thus, rainfall[3] refers to
one month of data in the two-dimensional array, the month of March.
But rainfall[3] is itself a one-dimensional array. Figure 9.20 helps to
clarify this point.

It’s important to note that deciding whether to use brackets when pass- Specifying an argument
ing data to a method is not just a matter of whether you are passing an ar-
ray. It is a matter of what type of data the method parameter specifies. So,
whenever you call a method that involves a parameter, you have to look
at the method definition to see what kind of data that parameter specifies.
Then you must supply an argument that refers to that type of data.

For our two-dimensional rainfall array, we can refer to the entire
array as rainfall. We can refer to one of its months as rainfall[j],
where j is any integer between 1 and 12. And we can refer to any of its

424 CHAPTER 9 • Arrays and Array Processing

2 F

A

0 1 2 . . .

rainfall –– refers to the whole 2–d array

rainfall[3] –– refers to the 1–d array

that represents March's data

rainfall[1][14] refers to the double value

that represents rainfall amt on Jan 14

.

.

.

11
12
13

1.1

31

J

M
J
J
A
S
O
N
D

M

0
1

Figure 9.20: Referencing individ-
ual elements and array elements
in a two-dimensional array.

elements as rainfall[j][k], where j is any integer between 1 and 12,
and k is any integer between 1 and 31.

JAVA LANGUAGE RULE Arguments and Parameters. The
argument in a method call must match the data type in the method
definition. This applies to all parameters, including array parameters.

The Rainfall class (Figs. 9.21 and 9.22) shows how we can test our

+initRain(in rain : double[][])

+avgDailyRain(in rain : double[][]) : double

+avgDailyRainForMonth(in monthRain : double[], in nDays : int) : double

+main()

Rainfall

Figure 9.21: The Rainfall class.

array algorithms. It creates the rainfall array in the main() method. It
then initializes the array and prints out average daily rainfall and average
daily rainfall for the month of March. However, note that we have made a
slight modification to the initRain() method. Instead of just assigning
0 to each element, we assign a random value between 0 and 2.0:� �

r a i n [month] [day] = Math . random () ∗ 2 . 0 ;
 	
Using the Math.random() method in this way enables us to generate
some realistic test data. In this case, we have scaled the data so that theGenerating test data
daily rainfall is between 0 and 2 inches. (Rainfall like this would probably
be appropriate for an Amazonian rain forest!) Testing our algorithms with

SECTION 9.7 • Two-Dimensional Arrays 425� �
public c l a s s R a i n f a l l {

/∗ ∗
∗ I n i t i a l i z e s t h e r a i n f a l l a r r a y

∗ @ p a r a m r a i n i s a 2 D− a r r a y o f r a i n f a l l s

∗ P r e : r a i n i s n o n n u l l

∗ P o s t : r a i n [x] [y] == 0 f o r a l l x , y i n t h e a r r a y

∗ N o t e t h a t t h e l o o p s u s e u n i t i n d e x i n g .

∗/

public void i n i t R a i n (double r a i n [] []) {
for (i n t month = 1 ; month < r a i n . length ; month++)

for (i n t day = 1 ; day < r a i n [month] . length ; day++)
r a i n [month] [day] = Math . random () ∗ 2 . 0 ; // Random r a i n f a l l

} // i n i t R a i n ()

/∗ ∗
∗ C o m p u t e s a v e r a g e d a i l y r a i n f a l l f o r a y e a r o f r a i n f a l l d a t a

∗ @ p a r a m r a i n i s a 2 D− a r r a y o f r a i n f a l l s

∗ @ r e t u r n T h e sum o f r a i n [x] [y] / 3 5 6

∗ P r e : r a i n i s n o n n u l l

∗ P o s t : T h e sum o f r a i n / 3 6 5 i s c a l c u l a t e d

∗ N o t e t h a t t h e l o o p s a r e u n i t i n d e x e d

∗/

public double avgDailyRain (double r a i n [] []) {
double t o t a l = 0 ;
for (i n t month = 1 ; month < r a i n . length ; month++)

for (i n t day = 1 ; day < r a i n [month] . length ; day++)
t o t a l += r a i n [month] [day] ;

return t o t a l /365;
} // a v g D a i l y R a i n ()

/∗ ∗
∗ C o m p u t e s a v e r a g e d a i l y r a i n f a l l f o r a g i v e n m o n t h c o n t a i n i n g n D a y s

∗ @ p a r a m m o n t h R a i n i s a 1 D− a r r a y o f r a i n f a l l s

∗ @ p a r a m n D a y s i s t h e n u m b e r o f d a y s i n m o n t h R a i n

∗ @ r e t u r n T h e sum o f m o n t h R a i n / n D a y s

∗ P r e : 1 <= n D a y s <= 3 1

∗ P o s t : T h e sum o f m o n t h R a i n / n D a y s i s c a l c u l a t e d

∗/

public double avgRainForMonth (double monthRain [] , i n t nDays) {
double t o t a l = 0 ;
for (i n t day = 1 ; day < monthRain . length ; day++)

t o t a l = t o t a l + monthRain [day] ;
return t o t a l /nDays ;

} // a v g R a i n F o r M o n t h ()

public s t a t i c void main (S t r i n g args []) {
double r a i n f a l l [] [] = new double [1 3] [3 2] ;
R a i n f a l l data = new R a i n f a l l () ;
data . i n i t R a i n (r a i n f a l l) ;
System . out . p r i n t l n (”The average da i ly r a i n f a l l = ”

+ data . avgDailyRain (r a i n f a l l)) ;
System . out . p r i n t l n (”The average da i ly r a i n f a l l f o r March = ”

+ data . avgRainForMonth (r a i n f a l l [3] , 3 1)) ;
} // m a i n ()

}// R a i n f a l l
 	
Figure 9.22: Definition of the Rainfall class.

426 CHAPTER 9 • Arrays and Array Processing

these data provides some indication that our methods are in fact working
properly.

JAVA EFFECTIVE DESIGN Generating Test Data. The
Math.random() method can be used to generate numeric test data,
when large amounts of data are required. The data can be scaled to fit
within the range that the actual data are expected to have.

SELF-STUDY EXERCISES
EXERCISE 9.17 Suppose you’re going to keep track of the daily news-

paper sales at the local kiosk. Declare a 52 × 7 two-dimensional array of
int and initialize each of its elements to 0.

EXERCISE 9.18 Write a method to calculate the average number of
newspapers sold per week, using the array you declared in the previous
exercise.

EXERCISE 9.19 Write a method to calculate the average number of
newspapers sold on Sundays, using the array you declared in the previous
exercise. Assume that Sunday is the last day of the week.

9.8 Multidimensional Arrays (Optional)

Java doesn’t limit arrays to just two dimensions. For example, suppose
we decide to extend our rainfall survey to cover a ten-year period. For
each year we now need a two-dimensional array. This results in a three-
dimensional array consisting of an array of years, each of which contains
an array of months, each of which contains an array of days:� �

f i n a l i n t NYEARS = 1 0 ;
f i n a l i n t NMONTHS = 1 3 ;
f i n a l i n t NDAYS = 3 2 ;
double r a i n f a l l [] [] = new double [NYEARS] [NMONTHS] [NDAYS] ;
 	

Following the design convention of not using the 0 month and 0 days, we
end up with a 10 × 13 × 32 array. Note the use of final variables to
represent the size of each dimension of the array. This helps to make the
program more readable.

In Figure 9.23, each year of the rainfall data is represented as a separate
page. On each page, there is a two-dimensional table that consists of 12
rows (1 per month) and 31 columns (1 per day).

You might imagine that our study could be extended to cover rain-
fall data from a number of different cities. That would result in a four-
dimensional array, with the first dimension now being the city. Of course,
for this to work, cities would have to be represented by integers, because
array subscripts must be integers.

As you might expect, algorithms for processing each element in a three-
dimensional table would require a three-level nested loop. For example,

SECTION 8 • Multidimensional Arrays 427

0

1

2

.

.

.

11

12

13

0 1 2 year 0. . . 31

0
0 1 2 year 2. . . 31

1 J

2 F
.

. A

. M

J

J

A

S
11 O
12 N
13 D

M

0
0 1 2 year 1. . . 31

1

2

.

.

.

11

12

13

Figure 9.23: Three-dimensional
data might be viewed as a collec-
tion of pages, each of which con-
tains a two-dimensional table.

the following algorithm would be used to initialize all elements of our
three-dimensional rainfall array:� �

for (i n t year = 0 ; year < r a i n f a l l . length ; year ++)
for (i n t month = 0 ; month < r a i n f a l l [year] . length ; month++)

for (i n t day = 0 ; day < r a i n f a l l [year] [month] . length ; day++)
r a i n f a l l [year] [month] [day] = 0 . 0 ;
 	

Note again the proper use of the length attribute for each of the
three dimensions of the array. In the outer loop, rainfall.length,
we’re referring to the number of years. In the middle loop,
rainfall[year].length, we’re referring to number of months within
a given year. In the inner loop, rainfall[year][month].length,
we’re referring to the number of days within a month.

If we added a fourth dimension to our array and wanted to extend
this algorithm to initialize it, we would simply embed the three-level loop
within another for loop that would iterate over each city.

9.8.1 Array Initializers
It is possible to use an initializer with a multidimensional array. For in-
stance, the following examples create several small arrays and initialize
their elements:� �

i n t a [] [] = {{1 ,2 ,3} , {4 , 5 , 6}} ;
char c [] [] = {{ ’ a ’ , ’ b ’ } , { ’ c ’ , ’d ’ }} ;
double d [] [] [] =

{ { 1 . 0 , 2 . 0 , 3 . 0 } , { 4 . 0 , 5 . 0} , { 6 . 0 , 7 . 0 , 8 . 0 , 9 . 0 } } ;
 	
The first of these declarations creates a 2 × 3 array of integers. The second
example creates a 2 × 2 array of characters, and the third example creates
an array of double consisting of three rows, each of which has a different
number of elements. The first row contains three elements, the second
contains two elements, and the last row contains four elements. As this
last example shows, the rows in a multidimensional array don’t all have
to have the same length.

428 CHAPTER 9 • Arrays and Array Processing

Using initializers, as in these examples, is feasible only for relatively
small arrays. To see why, just imagine what the initializer expression
would be for our three-dimensional rainfall array. It would require
4,160 = 10 × 13 × 32 zeroes, separated by commas!

JAVA PROGRAMMING TIP Array Initializers. Initializer
(assignment) expressions can be used to assign initial values to
relatively small arrays. For larger arrays, an initializer method should
be designed.

9.9 OBJECT-ORIENTED DESIGN:
Polymorphic Sorting (Optional)

One limitation of the sort routines developed so far is that they only
work on one particular type of data. If you’ve written an insertion
sort to sort ints, you can’t use it to sort doubles. What would be
far more desirable is a polymorphic sort method—that is, one method
that could sort any kind of data. This is easily done by making use of
Java wrapper classes, such as Integer and Double, together with the
java.lang.Comparable interface, which is specially designed for this
purpose.

The java.lang.Comparable interface consists of the compareTo()
method:� �

public a b s t r a c t i n t e r f a c e Comparable {
public i n t compareTo (Object o) ; // A b s t r a c t m e t h o d

}
 	
By implementing compareTo(), a class can impose an order on its ob-

+toString() : String

Object

«interface»

Comparable

+Integer(in i : int)

+parseInt(in s : String) : int

+toString() : String

+compareTo(in o : Object) : int

Integer

+Float(in f : Float)

+parseFloat(in s : String) : float

+toString() : String

+compareTo(in o : Object) : int

Float

+compareTo(in o : Object) : int

Figure 9.24: Java wrapper classes,
such as Integer and Double,
implement the Comparable in-
terface.

jects. The Comparable interface is implemented by all of Java’s wrapper
classes—that is, by Integer, Double, Float, Long, and so on (Fig. 9.24).

As we saw in Chapter 8, Java interfaces allow us to create a form of mul-
tiple inheritance. For example, as Figure 9.24 shows, an Integer is both an
Object and a Comparable. One implication of this is that an Integer
can be used in any method that takes either an Object parameter or a
Comparable parameter.

The compareTo() method takes an Object parameter and returns an
int. It is meant to be invoked as o1.compareTo(o2), where o1 and o2
are objects of the same type. Classes that implement compareTo() must
abide by the following rules for its return value:� �

i f (o1 < o2) then o1 . compareTo (o2) < 0
i f (o1 . equals (o2)) then o1 . compareTo (o2) == 0
i f (o1 > o2) then o1 . compareTo (o2) > 0
 	

In other words, if o1 < o2, then o1.compareTo(o2) will return a neg-
ative integer. If o1 > o2, then o1.compareTo(o2) will return a posi-

SECTION 9 • OOD: Polymorphic Sorting 429

tive integer. And if o1 and o2 are equal, then o1.compareTo(o2) will
return 0.

For a class that implements Comparable, we can use the compareTo()
method to help sort its elements. For example, the following revised
version of insertionSort() method can be used to sort any array of
Comparable objects—that is, any array of objects whose class imple-
ments Comparable:� �
public void s o r t (Comparable [] a r r) {

Comparable temp ; // T e m p o r a r y v a r i a b l e f o r i n s e r t i o n

for (i n t k = 1 ; k < a r r . length ; k++) {
temp = a r r [k] ; // R e m o v e i t f r o m a r r a y

i n t i ;
for (i = k−1; i >= 0 && a r r [i] . compareTo (temp) > 0 ; i−−)

a r r [i +1] = a r r [i] ; // Move i t r i g h t b y o n e

a r r [i +1] = temp ; // I n s e r t t h e e l e m e n t

}
} // s o r t ()
 	
In this version, the parameter is an array of Comparable. Thus, we can
pass it any array whose elements implement Comparable, including an
array of Integer or Float, and so on. Then, to compare elements of a
Comparable array, we use the compareTo() method:� �

for (i = k−1; i >= 0 && a r r [i] . compareTo (temp) > 0 ; i−−)
 	
Note that our algorithm no longer refers to ints, as in the original in-
sertion sort. Indeed, it doesn’t mention the specific type—Integer,
Float, or whatever—of the objects that it is sorting. It refers only to
Comparables. Therefore, we can use this method to sort any type
of object, as long as the object’s class implements the Comparable
interface. Thus, by using Comparable, we have a more general
insertionSort() method, one that can sort any one-dimensional array
of Comparables.

The TestSort class (Figs. 9.25 and 9.26) provides an example of how
to use the polymorphic sort() method.

+sort(in arr : Comparable[])

+print(in arr : Comparable[])

+main()

TestSort

+MAXSIZE : int

Figure 9.25: The TestSort()
class.

It contains three methods: The sort() method that we just described;
a polymorphic print() method, which can be used to print the val-
ues of any array of Comparable; and a main() method. The main()
method creates arrays of Integer and Float and then uses the poly-
morphic sort() method to sort them. Note how the print() method
uses the polymorphic toString() method to print the elements of a
Comparable array.

This example of polymorphic sorting illustrates once again the great
power of inheritance and polymorphism in object-oriented programming.
The Integer and Float classes use class inheritance to inherit features
from the Object class, and they use interface implementation to inherit
the compareTo() method from the Comparable class. By implement-
ing versions of the toString() and compareTo() methods that are ap-
propriate for these wrapper classes, Java makes it easier to use Integer
and Float objects in a variety of contexts. Taken together, inheritance

430 CHAPTER 9 • Arrays and Array Processing

and polymorphism enable us to design very general and extensible algo-
rithms. In this example, we defined a sort() method that can sort an
array containing any kind of object as long as the object implements the
Comparable interface.

9.9.1 The java.util.Arrays.sort() Method
While sorting algorithms provide a good way to introduce the concepts
of array processing, real-world programmers never write their own sort
algorithms. Instead they use library methods, which have been writ-
ten and optimized by programming experts. Moreover, library sort rou-
tines use sort algorithms that are much more efficient than the ones we’ve
discussed.

The java.util.Arrays class contains a polymorphic sort method
that is very simple to use. For example, here’s how we would use it to sort
the two arrays declared in the TestSort program:� �

j ava . u t i l . Arrays . s o r t (iArr) ;
j ava . u t i l . Arrays . s o r t (fArr) ;
 	

That’s all there is to it! Obviously, learning how to use Java’s class and
method library, saves real-word programmers lots of effort.

+Vector()

+Vector(in size : int)

+addElement(in o : Object)

+elementAt(in index : int) : Object

+insertElementAt(in o : Object, in x : int)

+indexOf(in o : Object) : int

+lastIndexOf(in o : Object) : int

+removeElementAt(in index : int)

+size() : int

Vector

Figure 9.27: The
java.util.Vector class.

SELF-STUDY EXERCISES
EXERCISE 9.20 Add a definition of a compareTo() method to the
LetterFreq class so that it implements the Comparable interface. The
method should define one object to be less than another object if its freq
instance variable is less.

EXERCISE 9.21 Add a definition of a sort() method that can be
added to the definition of the AnalyzeFreq class. Make it so the
array in the class can be sorted into ascending order using the or-
dering of LetterFreq defined in the previous exercise. Use the
java.util.Arrays.sort() method.

EXERCISE 9.22 Rewrite the main() of the AnalyzeFreq class to
make use of the sort() method of the previous exercise.

9.10 From the Java Library: java.util.Vector

java.sun.com/j2se/1.5.0/docs/api/
The java.util.Vector class implements an array of objects that can
grow in size as needed. One limitation of regular arrays is that their
lengths remain fixed. Once the array is full—once every element is used—
you can’t allocate additional elements.

The Vector class contains methods for storing and retrieving ob-
jects, and for accessing objects by their index position within the Vector
(Fig. 9.27).

One use for a Vector would be when a program needs to store input
from the user or a file without knowing in advance how many items there
are. Using a Vector is less efficient than an array in terms of processing
speed, but it gives you the flexibility of growing the data structure to meet
the storage requirements.

SECTION 9.11 • Case Study: An N-Player Computer Game 431

As an illustration of this idea, the program in Figure 9.28 creates a ran-
dom number of integers and then stores them in a Vector. The Vector,
which is declared and instantiated in main(), is initially empty. Integers
from 0 to the random bound are then inserted into the Vector. In this
case, insertions are done with the addElement() method, which causes
the Vector object to insert the element at the next available location,
increasing its size, if necessary.

Once all the integers have been inserted, the printVector() method
is called. Note that it uses the size() method to determine how many
elements the Vector contains. This is similar to using the length()
method to determine the number of characters in a String.

Finally, note that a Vector stores objects. It cannot be used to store
primitive data values. You cannot store an int in a Vector. Therefore,
we need to use the Integerwrapper class to convert ints into Integers
before they can be inserted into the Vector. Because you can’t just print
an Integer, or any other Object, the toString() method is used to
print the string representation of the object.

By defining Vector to store Objects, Java’s designers have made it as Vectors store objects
general as possible and, therefore, as widely useful as possible.

JAVA EFFECTIVE DESIGN Generality. Defining a data collection,
such as an array or a Vector, in terms of the Object class makes it
capable of storing and processing any type of value, including values
of primitive data types. This is because the Object class is the root
of the Java class hierarchy.

9.11 Case Study: An N-Player Computer Game

In this section we will make use of arrays to extend our game-playing
library by developing a design that can support games that involve more
than two players. We will use an array to store a variable number of play-
ers. Following the object-oriented design principles described in Chap-
ter 8, we will make use of inheritance and polymorphism to develop a
design that is flexible and extensible, one that can be used to implement
a wide variety of computer games. As in our TwoPlayer game example
from Chapter 8, our design will allow both humans and computers to play
the games. To help simplify the example, we will modify the WordGuess
game that we developed in the Chapter 8. As you will see, it requires rela-
tively few modifications to convert it from a subclass of TwoPlayerGame
to a subclass of ComputerGame, the superclass for our N-Player game
hierarchy.

9.11.1 The ComputerGame Hierarchy
Figure 9.29 provides a summary overview of the ComputerGame hierar-
chy. This figure shows the relationships among the many classes and in-
terfaces involved. The two classes whose symbols are bold, WordGuess
and WordGuesser, are the classes that define the specific game we will
be playing. The rest of the classes and interfaces are designed to be used
with any N-player game.

432 CHAPTER 9 • Arrays and Array Processing

At the root of this hierarchy is the abstract ComputerGame class. Note
that it uses from 1 to N Players. These objects will be stored in a one-
dimensional array in ComputerGame. Recall from Chapter 8 that an
IPlayer was any class that implements the makeAMove() method. In this
design, we have put the abstract makeAMove() method into the Player
class, a class that defines a generic player of computer games. For the
WordGuess game, the WordGuesser class extends Player. In order to
play Word Guess, we will create a WordGuess instance, plus one or more
instances of WordGuessers. This is similar to the OneRowNim example
from the previous chapter,

Note where the TwoPlayerGame and OneRowNim classes occur in the
hierarchy. TwoPlayerGame will now be an extension of ComputerGame.
This is in keeping with the fact that a two-player game is a special kind
of N-player computer game. As we will see when we look at the de-
tails of these classes, TwoPlayerGame will override some of the methods
inherited from ComputerGame.

Because it contains the abstract makeAMove() method, the Player
class is an abstract class. Its purpose is to define and store certain data
and methods that can be used by any computer games. For example, one
important piece of information defined in Player is whether the player
is a computer or a person. Player’s data and methods will be inherited
by WordGuesser and by other classes that extend Player. Given its
position in the hierarchy, we will be able to define polymorphic methods
for WordGuessers that treat them as Players. As we will see, this will
give our design great flexibility and extensibility.

9.11.2 The ComputerGame Class

Figure 9.30 shows the design details of the ComputerGame class. One
of the key tasks of the ComputerGame class is to manage the one or
more computer game players. Because this is a task that is common to
all computer games, it makes sense to manage it here in the superclass.
Toward this end, ComputerGame declares four instance variables and
several methods. Three int variables define the total number of play-
ers (nPlayers), the number of players that have been added to the game
(addedPlayers), and the player whose turn it is (whoseTurn). An ar-
ray named player stores the Players. In keeping with the zero indexing
convention of arrays, we number the players from 0 to nPlayers-1. These
variables are all declared protected, so that they can be referenced di-
rectly by ComputerGame subclasses, but as protected variables, they
remain hidden from all other classes.

Figure 9.30: The ComputerGame
class.

The ComputerGame(int) constructor allows the number of players
to be set when the game is constructed. The default constructor sets the
number of players to one. The constructors create an array of length
nPlayers:� �

public ComputerGame (i n t n) {
nPlayers = n ;
player = new Player [n] ; // C r e a t e t h e a r r a y

}
 	

SECTION 9.11 • Case Study: An N-Player Computer Game 433

The setPlayer() and getPlayer() methods are the mutator and ac-
cessor methods for the whoseTurn variable. This variable allows a user
to determine and set whose turn it is, a useful feature for initializing a
game. The changePlayer() method uses the default expression,� �

whoseTurn = (whoseTurn + 1) % nPlayers
 	
for changing whose turn it is. Assuming that players are numbered from 0
to nPlayers-1, this code gives the turn to the next player, wrapping around
to player 0, if necessary. Of course, a subclass of ComputerGame can
override this method if the game requires some other order of play.

The addPlayer(Player) method is used to add a new Player to
the game, including any subclass of Player. The method assumes that
addedPlayers is initialized to 0. It increments this variable by 1 each
time a new player is added to the array. For the game WordGuess, we
would be adding Players of type WordGuesser to the game.

The complete source code for ComputerGame is shown in Figure 9.31.
There are several points worth noting about this implementation. First,
note that just as in the case of the abstract TwoPlayerGame class from
Chapter 8, the methods gameOver() and getWinner() are defined as
abstract and the getRules() method is given a generic implementa-
tion. The intent here is that the subclass will override getRules() and
will provide game-specific implementations for the abstract methods.

Second, note how the addPlayer() method is coded. It uses the
addedPlayers variable as the index into the player array, which al-
ways has length nPlayers. An attempt to call this method when the
array is already full will lead to the following exception being thrown by
Java:� �

Exception in thread ‘ ‘ main ’ ’
j ava . lang . ArrayIndexOutOfBoundsException : 2
a t ComputerGame . addPlayer (ComputerGame . java : 2 2)
a t TwentyOne . main (TwentyOne . java : 1 2 1)
 	

In other words, it is an error to try to add more players than will fit in
the player array. In Chapter 11, we will learn how to design our code to
guard against such problems.

Finally, note the implementation of the listPlayers() method
(Fig. 9.31). Here is a good example of polymorphism at work.
The elements of the player array have a declared type of Player.
Their dynamic type is WordGuesser. So when the expression
player[k].toString() is invoked, dynamic binding is used to bind
this method call to the implementation of toString() defined in the
WordGuesser class. Thus, by allowing toString() to be bound at run
time, we are able to define a method here that doesn’t know the exact
types of the objects it will be listing.

The power of polymorphism is the flexibility and extensibility it lends polymorphism
to our class hierarchy. Without this feature, we would not be able to define

434 CHAPTER 9 • Arrays and Array Processing

listPlayers() here in the superclass, and would instead have to define
it in each subclass.

JAVA EFFECTIVE DESIGN Extensibility. Polymorphic methods
allow us to implement methods that can be applied to
yet-to-be-defined subclasses.

Figure 9.32: The WordGuess
class.

9.11.3 The WordGuess and WordGuesser Classes

We will assume here that you are familiar with the WordGuess example
from Chapter 8. If not, you will need to review that section before proceed-
ing. Word Guess is a game in which players take turns trying to guess a
secret word by guessing its letters. Players keep guessing as long as they
correctly guess a letter in the word. If they guess wrong, it becomes the
next player’s turn. The winner of the game is the person who guesses the
last letter secret letter, thereby completely identifying the word.

Figure 9.32 provides an overview of the WordGuess class. If you com-
pare it with the design we used in Chapter 8, the only change in the in-
stance methods and instance variables is the addition of a new constructor,
WordGuess(int), and an init() method. This constructor takes an in-
teger parameter representing the number of players. The default construc-
tor assumes that there is one player. Of course, this version of WordGuess
extends the ComputerGame class, rather than the TwoPlayerGame class.
Both constructors call the init() method to initialize the game:� �

public WordGuess () { super (1) ; i n i t () ; }
public WordGuess (i n t m) { super (m) ; i n i t () ; }
public void i n i t () {

secretWord = getSecretWord () ;
currentWord = new S t r i n g B u f f e r (secretWord) ;
previousGuesses = new S t r i n g B u f f e r () ;
for (i n t k = 0 ; k < secretWord . length () ; k++)

currentWord . setCharAt (k , ’ ? ’) ;
unguessedLetters = secretWord . length () ;

}
 	
The only other change required to convert WordGuess to an N-player

game, is to rewrite its play() method. Because the new play() method
makes use of functionality inherited from the ComputerGame() class,

SECTION 9.11 • Case Study: An N-Player Computer Game 435

it is actually much simpler than the play() method in the Chapter 8
version:� �

public void play (U s e r I n t e r f a c e ui) {
ui . repor t (getRules ()) ;
ui . repor t (l i s t P l a y e r s ()) ;
ui . repor t (reportGameState ()) ;

while (! gameOver ()) {
WordGuesser p = (WordGuesser) player [whoseTurn] ;
i f (p . isComputer ())

ui . repor t (submitUserMove (p . makeAMove(getGamePrompt ()))) ;
e lse {

ui . prompt (getGamePrompt ()) ;
ui . repor t (submitUserMove (ui . getUserInput ())) ;

}
ui . repor t (reportGameState ()) ;

} // w h i l e

}
 	
The method begins by displaying the game’s rules and listing its players.
The listPlayers()method is inherited from the ComputerGame class.
After displaying the game’s current state, the method enters the play loop.
On each iteration of the loop, a player is selected from the array:� �

WordGuesser p = (WordGuesser) player [whoseTurn] ;
 	
The use of the WordGuesser variable, p, just makes the code some-
what more readable. Note that we have to use a cast operator,
(WordGuesser), to convert the array element, a Player, into a
WordGuesser. Because p is a WordGuesser, we can refer directly to
its isComputer() method.

If the player is a computer, we prompt it to make a move, submit the
move to the submitUserMove() method, and then report the result.
This is all done in a single statement:� �

ui . repor t (submitUserMove (p . makeAMove(getGamePrompt ()))) ;
 	
If the player is a human, we prompt the player and use the
KeyboardReader’s getUserInput() method to read the user’s move.
We then submit the move to the submitUserMove() method and report
the result. At the end of the loop, we report the game’s updated state.

436 CHAPTER 9 • Arrays and Array Processing

The following code segment illustrates a small portion of the interaction
generated by this play() method:� �

Current word ? ? ? ? ? ? ? ? Previous guesses GLE
Player 0 guesses next . Sorry , Y i s NOT a new l e t t e r

in the s e c r e t word
Current word ? ? ? ? ? ? ? ? Previous guesses GLEY
Player 1 guesses next . Sorry , H i s NOT a new l e t t e r

in the s e c r e t word
Current word ? ? ? ? ? ? ? ? Previous guesses GLEYH
Player 2 guesses next .
Guess a l e t t e r t h a t you think i s in the s e c r e t word : a
Yes , the l e t t e r A i s in the s e c r e t word
 	

In this example, players 0 and 1 are computers and player 2 is a human.

Figure 9.33: The WordGuesser
class extends Player.

In our new design, the WordGuesser class is a subclass of Player
(Figure 9.33). The WordGuesser class itself requires no changes other
than its declaration:� �

public c l a s s WordGuesser extends Player
 	
As we saw when we were discussing the WordGuess class, the play()
method invokes WordGuesser’s isComputer() method. But this
method is inherited from the Player class. The only other method used
by play() is the makeAMove() method. This method is coded exactly
the same as it was in the previous version of WordGuesser.

Figure 9.34 shows the implementation of the Player class. Most of
its code is very simple. Note that the default value for the kind vari-
able is HUMAN and the default id is -1, indicating the lack of an assigned
identification.

What gives Player its utility is the fact that it encapsulates those at-
tributes and actions that are common to all computer game players. Defin-
ing these elements, in the superclass, allows them to be used throughout
the Player hierarchy. It also makes it possible to establish an association
between a Player and a ComputerGame.

Given the ComputerGame and Player hierarchies and the many in-
terfaces they contain, the task of designing and implementing a new N-
player game is made much simpler. This too is due to the power of object-
oriented programming. By learning to use a library of classes, such as

SECTION 11 • A GUI-Based Game 437

these, even inexperienced programmers can create relatively sophisticated
and complex computer games.

JAVA EFFECTIVE DESIGN Code Reuse. Re-using library code by
extending classes and implementing interfaces makes it much simpler
to create sophisticated applications.

Finally, the following main()method instantiates and runs an instance
of the WordGuess game in a command-line user interface (CLUI):� �

public s t a t i c void main (S t r i n g args [])
{ KeyboardReader kb = new KeyboardReader () ;

ComputerGame game = new WordGuess (3) ;
game . addPlayer (new WordGuesser ((WordGuess) game , 0 ,

Player .HUMAN)) ;
game . addPlayer (new WordGuesser ((WordGuess) game , 1 ,

Player .COMPUTER) ;
game . addPlayer (new WordGuesser ((WordGuess) game , 2 ,

Player .COMPUTER) ;
((CLUIPlayableGame) game) . play (kb) ;

} // m a i n ()
 	
In this example, we create a three player game in which two of the players
are computers. Note how we create a new WordGuesser, passing it a
reference to the game itself, as well as its individual identification num-
ber, and its type (HUMAN or COMPUTER). To run the game, we simply
invoke its play() method. You know enough now about object-oriented
design principles to recognize that the use of play() in this context is an
example of polymorphism.

9.12 A GUI-Based Game (Optional Graphics)

Most modern computer games do not use a command-line interface. This
section addresses this shortcoming by expanding our ComputerGame hi-
erarchy so that it works with Graphical User Interfaces (GUIs) as well as
Command-Line User Interfaces (CLUIs).

The Sliding Tile Puzzle is a puzzle game. It is played by one player,
a human. The puzzle consists of six tiles arranged on a board contain-
ing seven spaces. Three of the tiles are labeled L and three are labeled R.
Initially the tiles are arranged as RRR LLL. In other words, the R tiles are
arranged to the left of the L tiles, with the blank space in the middle. The
object of the puzzle is to rearrange the tiles into LLL RRR. The rules are
that tiles labeled R can only move right. Tiles labeled L can only move
left. Tiles may move directly into the blank space or they can jump over
one tile into the blank space.

Our purpose in this section is to develop a GUI that plays this game.
An appropriate GUI is shown Figure 9.35. Here the tiles and the blank
space are represented by an array of buttons. To make a move the user
clicks on the ’tile’ he or she wishes to move. The GUI will assume that the
user wants to move that tile into the blank space. If the proposed move

438 CHAPTER 9 • Arrays and Array Processing

is legal, the GUI will carry out the move. Otherwise, it will just ignore it.
For example, if the user were to click on the third R button from the left,
a legal move, the GUI would rearrange the labels on the buttons so that
their new configuration would be RR RLLL. On the other hand, if the user
were to click on the rightmost L button, the GUI would ignore that move,
because it is illegal.

9.12.1 The GUIPlayableGame Interface
How should we extend our game-playing hierarchy to accommodate
GUI-based games? As we learned in Chapter 4, one difference between
GUI-based applications and CLUI-based applications, is the locus of con-
trol. In a CLUI-based application, control resides in the computational ob-
ject which, for games, is the game object. That’s why the play() method
in our CLUI-based games contains the game’s control loop. By contrast,
control resides in the GUI’s event loop in GUI-based applications. That’s
why, we learned how to manage Java’s event hierarchy in Chapter 4.
Thus, in the GUI shown in Figure 9.35, the GUI will listen and take action
when the user clicks one of its buttons.

However, given that control will reside in the GUI, there is still a need
for communication between the GUI and the game object. In the CLUI-
based games, we have used the CLUIPlayableGame interface to man-
age the communication between the game and the user interface. We
will follow the same design strategy in this case. Thus, we will design a
GUIPlayableGame interface that can be implemented by any game that
wishes to use a GUI (Fig. 9.36).

What method(s) should this interface contain? One way to answer this
question is to think about the type of interaction that must take place when
the user clicks one of the tiles. If the user clicks the third R button, the
GUI should pass this information to the game. The game should then
decide whether or not that is a legal move and communicate this back to
the GUI. Assuming it is a legal move, the game should also update its
representation of the game’s state to reflect that the tile array has changed.
And it should somehow make communicate the game’s state to the GUI.

Figure 9.36: The
GUIPlayableGame interface
extends the IGame interface.

Because it is impossible to know in advance just what form of data
a game’s moves might take, we will use Java Strings to communicate
between the user interface and the game object. Thus, a method with the
following signature will enable us to submit a String representing the
user’s move to the game and receive in return a String representing the
game object’s response to the move:� �

submitUserMove (S t r i n g move) : S t r i n g ;
 	
In addition to this method, a GUI interface could use the reportGame-
State() and getGamePrompt() methods that are part of the IGame
interface. Th design shown in Figure 9.36 leads to the following definition
for the GUIPlayableGame interface:� �

public i n t e r f a c e GUIPlayableGame extends IGame {
public S t r i n g submitUserMove (S t r i n g theMove) ;

}
 	

SECTION 12 • A GUI-Based Game 439

Because it extends IGame, this interface inherits the getGamePrompt()
and reportGameState() from the IGame interface. The GUI should be
able to communicate with any game that implements this interface.

9.12.2 The SlidingTilePuzzle

Let’s now discuss the design and details of the SlidingTilePuzzle it-
self. Its design is summarized in Figure 9.37. Most of the methods should
be familiar to you, because the design closely follows the design we em-
ployed in the WordGuess example. It has implementations of inher-
ited methods from the ComputerGame class and the GUIPlayableGame
interface.

We will represent the sliding tile puzzle in a one-dimensional array of
char. We will store the puzzle’s solution in a Java String and we will
use an int variable to keep track of where the blank space is in the array.
This leads to the following class-level declarations:� �

private char puzzle [] = { ’R ’ , ’R ’ , ’R ’ , ’ ’ , ’L ’ , ’L ’ , ’L ’ } ;
private S t r i n g s o l u t i o n = ”LLL RRR” ;
private i n t blankAt = 3 ;
 	

Figure 9.37: The
SlidingTilePuzzle is a
ComputerGame that implements
the GUIPlayableGame interface.

Note how we initialize the puzzle array with the initial configuration of
seven characters. Taken together, these statements initialize the puzzle’s
state.

Because a puzzle is a one-person game and our sliding tile puzzle will
be played by a human, this leads to a very simple constructor definition:� �

public S l i d i n g T i l e P u z z l e () {
super (1) ;

}
 	
We call the super() constructor (ComputerGame()) to create a one-
person game.

The puzzle’s state needs to be communicated to the GUI as a String.
This is the purpose of the reportGameState() method:� �

public S t r i n g reportGameState () {
S t r i n g B u f f e r sb = new S t r i n g B u f f e r () ;
sb . append (puzzle) ;
return sb . t o S t r i n g () ;

}
 	
We use a StringBuffer() to convert the puzzle, a char array, into a
String.

440 CHAPTER 9 • Arrays and Array Processing

The most important method for communicating with the GUI is the
submitUserMove() method:� �

public S t r i n g submitUserMove (S t r i n g usermove) {
i n t t i l e = I n t e g e r . p a r s e I n t (usermove) ;
char ch = puzzle [t i l e] ;
i f (ch == ’L ’ &&

(blankAt == t i l e −1 | | blankAt == t i l e −2))
swapTiles (t i l e , blankAt) ;

e lse i f (ch == ’R ’ &&
(blankAt == t i l e +1 | | blankAt == t i l e + 2))

swapTiles (t i l e , blankAt) ;
e lse

return ” That ’ s an i l l e g a l move .\n” ;
return ” That move i s l e g a l .\n” ;

}
 	
This is the method that processes the user’s move, which is communi-
cated through the GUI. As we saw, the puzzle’s ’tiles’ are represented by
an array of buttons in the GUI. The buttons are indexed 0 through 6 in the
array. When the user clicks a button, the GUI should pass its index, repre-
sented as a String to the submitUserMove() method. Given the index
number of the tile that was selected by the user, this method determines if
the move is legal.

The Integer.parseInt() method is used to extract the tile’s index
from the method’s parameter. This index is used to get a ’tile’ from the
puzzle array. The logic in this method reflects the rules of the game. If
the tile is an L, then it can only move into a blank space that is either 1 or 2
spaces to its left. Similarly, an R tile can only move into a blank space that
is 1 or 2 spaces to its right. All other moves are illegal. For legal moves, we
simply swap the tile and the blank space in the array, a task handled by
the swap() method. In either case, the method returns a string reporting
whether the move was legal or illegal.

Figure 9.38 shows the full implementation for the SlidingTilePuzzle,
the remaining details of which are straight forward.

SECTION 12 • A GUI-Based Game 441

9.12.3 The SlidingGUI Class

Let’s now implement a GUI that can be used to play the sliding tile puzzle.
We will model the GUI itself after those we designed in Chapter 4.

Figure 9.39 provides a summary of the design. As an implemen-
tor of the ActionListener interface, SlidingGUI implements the

Figure 9.39: The SlidingGUI
class.

actionPerformed() method, which is where the code that controls the
puzzle is located. The main data structure is an array of seven JButtons,
representing the seven tiles in the puzzles. The buttons’ labels will reflect
the state of the puzzle. They will be rearranged after every legal move by
the user. The reset button is used to reinitialize the game. This allows
users to play again or to start over if they get stuck.

The puzzleState is a String variable that stores the puzzle’s current
state, which is updated repeatedly from the SlidingTilePuzzle by
calling its reportGameState()method. The private labelButtons()
method will read the puzzleState and use its letters to set the labels of
the GUI’s buttons.

The implementation of SlidingGUI is shown in Figure 9.40. Its con-
structor and buildGUI()methods are responsible for setting up the GUI.
We use of a for loop in buildGUI() to create the JButtons, asso-
ciate an ActionListener with them, and add them to the GUI. Except
for the fact that we have an array of buttons, this is very similar to the
GUI created in Chapter 4. Recall that associating an ActionListener
with the buttons allows the program to respond to button clicks in its
actionPerformed() method.

Note how an instance of the SlidingTilePuzzle is created in the
constructor, and how its state is retrieved and stored in the puzzleState
variable:� �

puzzleS ta te = s l i d i n g . reportGameState () ;
 	
The labelButtons() method transfers the letters in puzzleState
onto the buttons.

The most important method in the GUI is the actionPerformed()
method. This method controls the GUI’s actions and is called automat-
ically whenever one of the GUI’s buttons is clicked. First, we check
whether the reset button has been clicked. If so, we reset the puzzle
by creating a new instance of SlidingTilePuzzle and re-initializing
the prompt label.

Next we use a for loop to check whether one of the tile buttons has
been clicked. If so, we use the loop index, k, as the tile’s identification and
submit this to the puzzle as the user’s move:� �

i f (e . getSource () == t i l e [k])
r e s u l t = ((GUIPlayableGame) s l i d i n g) . submitUserMove (””+ k) ;
 	

The cast operation is necessary here because we declared sliding as
a SlidingTilePuzzle rather than as a GUIPlayableGame. Note
also that we have to convert k to a String when passing it to
submitUserMove().

442 CHAPTER 9 • Arrays and Array Processing

As a result of this method call, the puzzle returns a result, which is
checked to see if the user’s move was illegal. If result contains the word
“illegal”, the computer beeps to signal an error:� �

i f (r e s u l t . indexOf (” i l l e g a l ”) != −1)
java . awt . T o o l k i t . g e t D e f a u l t T o o l k i t () . beep () ;
 	

The java.awt.Toolkit is a class that contains lots of useful meth-
ods, including the beep() method. Note that no matter what action
is performed, a reset or a tile click, we update puzzleState by call-
ing reportGameState() and use it to relabel the tile buttons. The
last task in the actionPerformed() method is to invoke the puzzle’s
gameOver() method to check if the user has successfully completed the
puzzle. If so, we display a congratulatory message in the GUI’s window.

Finally, the main() for a GUI is very simple, consisting of a single line
of code:� �

new SlidingGUI (” S l i d i n g T i l e Puzzle ”) ;
 	
Once a SlidingGUI is created, with the title of “Sliding Tile Puzzle,” it
will open a window and manage the control of the puzzle.

CHAPTER SUMMARY Technical Terms

array
array

initializer
array length
binary search
data structure
element
element type

insertion sort
multidimensional

array
one-dimensional

array
polymorphic sort

method
selection sort

sequential search
sorting
subscript
two-dimensional

array

Summary of Important Points

• An array is a named collection of contiguous storage locations, each
of which stores a data item of the same data type. Each element of an
array is referred to by a subscript—that is, by its position in the array. If
the array contains N elements, then its length is N and its indexes are
0, 1, ...N-1.
• Array elements are referred to using the following subscript notation

arrayname[subscript], where arrayname is any valid identifier, and sub-
script is an integer value in the range 0 to arrayname.length - 1.
The array’s length instance variable can be used as a bound for loops
that process the array.

CHAPTER 9 • Solutions to Self-Study Exercises 443

• An array declaration provides the name and type of the array. An array
instantiation uses the keyword new and causes the compiler to allocate
memory for the array’s elements:� �
i n t a r r [] ; // D e c l a r e a o n e − d i m e n s i o n a l a r r a y v a r i a b l e

a r r = new i n t [1 5] ; // A l l o c a t e 1 5 i n t l o c a t i o n s f o r i t
 	
• Multidimensional arrays have arrays as their components:� �

i n t twoDarr [] [] ; // D e c l a r e a two − d i m e n s i o n a l a r r a y v a r i a b l e

twoDarr = new i n t [1 0] [1 5] ; // A l l o c a t e 1 5 0 i n t l o c a t i o n s
 	
• An array’s values must be initialized by assigning values to each array

location. An initializer expression may be included as part of the array
declaration.
• Insertion sort and selection sort are examples of array sorting algo-

rithms. Both algorithms require several passes over the array.
• When an array is passed as a argument to a method, a reference to the

array is passed rather than the entire array itself.
• Swapping two elements of an array, or any two locations in memory,

requires the use of a temporary variable.
• Sequential search and binary search are examples of array searching

algorithms. Binary search requires that the array be sorted.
• For multidimensional arrays, each dimension of the array has its own
length variable.
• Inheritance and polymorphism are useful design features for develop-

ing a hierarchy of computer games.

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 9.1 Space (in bytes) allocated for each of the following?
a. int a[] = new int[5]; // 5 * 4 = 20 bytes

b. double b[] = new double[10]; // 10 * 8 = 80 bytes

c. char c[] = new char[30]; // 30 * 2 = 60 bytes

d. String s[] = new String[10]; // 10 * 4 (reference) = 40 bytes

e. Student s[] = new Student[5]; // 5 * 4 (reference) = 20 bytes

SOLUTION 9.2 An array containing 10 floats, 1.0 to 10.0.� �
f l o a t f a r r [] = { 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 , 6 . 0 , 7 . 0 , 8 . 0 , 9 . 0 , 1 0 . 0 } ;
 	
SOLUTION 9.3 Prints the first element of farr.� �
System . out . p r i n t l n (f a r r [0]) ;
 	
SOLUTION 9.4 Assigns 100.0 to the last element in farr.� �
f a r r [f a r r . length −1] = 1 0 0 . 0 ;
 	

444 CHAPTER 9 • Arrays and Array Processing

SOLUTION 9.5 A loop to print all of the elements of farr.� �
for (i n t j = 0 ; j < f a r r . length ; j ++)

System . out . p r i n t l n (f a r r [j]) ;
 	
SOLUTION 9.6 An array containing the first 100 square roots.� �
double doubarr [] = new double [1 0 0] ;
for (i n t k = 0 ; k < doubarr . length ; k++)

doubarr [k] = Math . s q r t (k + 1) ;
 	
SOLUTION 9.7 Analyzing the letter frequencies in a file.� �
import j ava . io . ∗ ;
import j ava . u t i l . Scanner ;
public s t a t i c void main (S t r i n g [] argv) {

Scanner f i l e S c a n ; // T o r e a d l i n e s o f t e x t f r o m t h e f i l e

S t r i n g s t r ; // T o s t o r e t h e l i n e o f t e x t

AnalyzeFreq af = new AnalyzeFreq () ;
t r y { // C r e a t e a S c a n n e r

F i l e t h e F i l e = new F i l e (” f r e q t e s t . t x t ”) ;
f i l e S c a n = Scanner . c r e a t e (t h e F i l e) ;
f i l e S c a n = f i l e S c a n . useDel imiter (”\ r\n”) ; // F o r W i n d o w s

while (f i l e S c a n . hasNext ()) { // R e a d a n d c o u n t

s t r = f i l e S c a n . next () ;
a f . c o u n t L e t t e r s (s t r) ;

} // w h i l e

af . printArray () ; // P r i n t f r e q u e n c i e s

} catch (Exception e) {
e . p r i n t S t a c k T r a c e () ;

} // c a t c h ()

} // m a i n ()
 	
SOLUTION 9.8 Sort 24 18 90 1 0 85 34 18 with insertion sort.� �

24 18 90 1 0 85 34 18 // I n i t i a l

18 24 90 1 0 85 34 18 // P a s s 1

18 24 90 1 0 85 34 18 // P a s s 2

1 18 24 90 0 85 34 18 // P a s s 3

0 1 18 24 90 85 34 18 // P a s s 4

0 1 18 24 85 90 34 18 // P a s s 5

0 1 18 24 34 85 90 18 // P a s s 6

0 1 18 18 24 34 85 90 // P a s s 7
 	

CHAPTER 9 • Solutions to Self-Study Exercises 445

SOLUTION 9.9 Sort 24 18 90 1 0 85 34 18 with selection sort.� �
24 18 90 1 0 85 34 18 // I n i t i a l

0 18 90 1 24 85 34 18 // P a s s 1

0 1 90 18 24 85 34 18 // P a s s 2

0 1 18 90 24 85 34 18 // P a s s 3

0 1 18 18 24 85 34 90 // P a s s 4

0 1 18 18 24 85 34 90 // P a s s 5

0 1 18 18 24 34 85 90 // P a s s 6

0 1 18 18 24 34 85 90 // P a s s 7
 	
SOLUTION 9.10 Code to swap two Students.� �
Student tempStud = student1 ;
student1 = student2 ;
student2 = tempStud ;
 	
SOLUTION 9.11 Implementation of the selectionSort().� �

public void s e l e c t i o n S o r t (i n t a r r []) {
i n t s m a l l e s t ; // L o c a t i o n o f s m a l l e s t e l e m e n t

for (i n t k = 0 ; k < a r r . length −1; k++) {
s m a l l e s t = k ;
for (i n t j = k +1; j < a r r . length ; j ++)

i f (a r r [j] < a r r [s m a l l e s t])
s m a l l e s t = j ;

i f (s m a l l e s t != k) { // Sw ap s m a l l e s t a n d k t h

i n t temp = a r r [s m a l l e s t] ;
a r r [s m a l l e s t] = a r r [k] ;
a r r [k] = temp ;

} // i f

} // o u t e r f o r

} // s e l e c t i o n S o r t ()
 	
SOLUTION 9.12 After mystery(myArr,k), myArr will store 1,2,3,5,5 and k
will store 3.

SOLUTION 9.13 Binary search trace for 21 in 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
24, 26, 28:� �
key i t e r a t i o n low high mid
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 0 0 13 6
21 1 7 13 10
21 2 7 9 8
21 3 9 9 9
21 4 10 9 f a i l u r e
 	
SOLUTION 9.14 A two-dimensional array with 5 rows of 10 integers.� �
i n t in t2d [] [] = new i n t [5] [1 0] ;
 	

446 CHAPTER 9 • Arrays and Array Processing

SOLUTION 9.15 Prints the last integer in the third row int2d and assigns 100
to its last element.� �
System . out . p r i n t l n (int2d [2] [9]) ;
in t2d [4] [9] = 1 0 0 ;
 	
SOLUTION 9.16 Prints all of the elements of int2d.� �
for (i n t k = 0 ; k < in t2d . length ; k++) {

for (i n t j = 0 ; j < in t2d [k] . length ; j ++)
System . out . p r i n t (int2d [k] [j] + ” ”) ;

System . out . p r i n t l n () ; // new l i n e

}
 	
SOLUTION 9.17 A 52 × 7 two-dimensional array of int.� �
i n t s a l e s [] [] = new i n t [5 2] [7] ;
for (i n t k = 0 ; k < s a l e s . length ; k++)

for (i n t j = 0 ; j < s a l e s [k] . length ; j ++)
s a l e s [k] [j] = 0 ;
 	

SOLUTION 9.18 A method to calculate average number of newspapers per
week.� �
double avgWeeklySales (i n t a r r [] []) {

double t o t a l = 0 ;
for (i n t k = 0 ; k < a r r . length ; k++)

for (i n t j = 0 ; j < a r r [k] . length ; j ++)
t o t a l += a r r [k] [j] ;

return t o t a l /52;
}
 	
SOLUTION 9.19 A method to calculate average Sunday newspapers.� �
double avgSundaySales (i n t a r r [] []) {

double t o t a l = 0 ;
for (i n t k = 0 ; k < a r r . length ; k++)

t o t a l += a r r [k] [6] ;
return t o t a l /52;

}
 	

CHAPTER 9 • Exercises 447

SOLUTION 9.20 A compareTo() for LetterFreq.� �
public i n t compareTo (Object l f) {

L e t t e r F r e q l e t F r e q = (L e t t e r F r e q) l f ;
i f (f r e q < l e t F r e q . getFreq ())

return −1;
e lse i f (f r e q > l e t F r e q . getFreq ())

return +1;
e lse return 0 ; // T h e f r e q u e n c i e s m u s t b e e q u a l .

} // c o m p a r e T o ()
 	
SOLUTION 9.21 A sort() for AnalyzeFreq.� �
public void s o r t () {

j ava . u t i l . Arrays . s o r t (freqArr) ;
} // s o r t ()
 	
SOLUTION 9.22 A new AnalyzeFreq.main() that uses sort().� �
public s t a t i c void main (S t r i n g [] argv) {

AnalyzeFreq af = new AnalyzeFreq () ;
a f . c o u n t L e t t e r s (”Now i s the time f o r a l l good students ” +

” to study computer−r e l a t e d t o p i c s . ”) ;
a f . s o r t () ;
a f . pr intArray () ;

} // m a i n ()
 	

EXERCISES
Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

EXERCISE 9.1 Explain the difference between the following pairs of terms:

a. An element and an element type.
b. A subscript and an array element.
c. A one-dimensional array and two-dimensional array.
d. An array and a vector.
e. A insertion sort and a selection sort.
f. A binary search and a sequential search.

EXERCISE 9.2 Fill in the blanks.

a. The process of arranging an array’s elements into a particular order is known

as .

b. One of the preconditions of the binary search method is that the array has to be

.

c. An is an object that can store a collection of elements of the same

type.

d. An is like an array except that it can grow.

e. For an array, its is represented by an instance variable.

f. An expression that can be used during array instantiation to assign values to

the array is known as an .

448 CHAPTER 9 • Arrays and Array Processing

g. A is an array of arrays.

h. A sort method that can be used to sort different types of data is known as a

method.

i. To instantiate an array you have to use the operator.

j. An array of objects stores to the objects.

EXERCISE 9.3 Make each of the following array declarations:

a. A 4×4 array of doubles.
b. A 20×5 array of Strings.
c. A 3×4 array of char initialized to ‘*’;
d. A 2×3×2 array of boolean initialized to true.
e. A 3×3 array of Students.
f. A 2×3 array of Strings initialized to “one,” “two,” and so on.

EXERCISE 9.4 Identify and correct the syntax error in each of the following
expressions:

a. int arr = new int[15];
b. int arr[] = new int(15);
c. float arr[] = new [3];
d. float arr[] = new float {1.0,2.0,3.0};
e. int arr[] = {1.1,2.2,3.3};
f. int arr[][] = new double[5][4];
g. int arr[][] = { {1.1,2.2}, {3.3, 1} };

EXERCISE 9.5 Evaluate each of the following expressions, some of which may
be erroneous:� �
i n t a r r [] = { 2 , 4 , 6 , 8 , 1 0 } ;
 	
a. arr[4]
b. arr[arr.length]
c. arr[arr[0]]
d. arr[arr.length / 2]
e. arr[arr[1]]

f. arr[5 % 2]
g. arr[arr[arr[0]]]
h. arr[5 / 2.0]
i. arr[1 + (int) Math.random()]
j. arr[arr[3] / 2]

EXERCISE 9.6 What would be printed by the following code segment?� �
i n t a r r [] = { 24 , 0 , 19 , 21 , 6 , −5, 10 , 1 6} ;
for (i n t k = 0 ; k < a r r . length ; k += 2)

System . out . p r i n t l n (a r r [k]) ;
 	
EXERCISE 9.7 What would be printed by the following code segment?� �
i n t a r r [] [] = { {24 , 0 , 19} , {21 , 6 , −5} , {10 , 16 , 3} ,

{1 , −1, 0} } ;
for (i n t j = 0 ; j < a r r . length ; j ++)

for (i n t k = 0 ; k < a r r [j] . length ; k++)
System . out . p r i n t l n (a r r [j] [k]) ;
 	

CHAPTER 9 • Exercises 449

EXERCISE 9.8 What would be printed by the following code segment?� �
i n t a r r [] [] = { {24 , 0 , 19} , {21 , 6 , −5} , {10 , 16 , 3} ,

{1 , −1, 0} } ;
for (i n t j = 0 ; j < a r r [0] . length ; j ++)

for (i n t k = 0 ; k < a r r . length ; k++)
System . out . p r i n t l n (a r r [k] [j]) ;
 	

EXERCISE 9.9 What’s wrong with the following code segment, which is sup-
posed to swap the values of the int variables, n1 and n2?� �
i n t temp = n1 ;
n2 = n1 ;
n1 = temp ;
 	
EXERCISE 9.10 Explain why the following method does not successfully swap
the values of its two parameters? Hint: Think about the difference between value
and reference parameters.� �
public void swapEm(i n t n1 , i n t n2) {

i n t temp = n1 ;
n1 = n2 ;
n2 = temp ;

}
 	
EXERCISE 9.11 Declare and initialize an array to store the following two-
dimensional table of values:� �
1 2 3 4
5 6 7 8
9 10 11 12
 	
EXERCISE 9.12 For the two-dimensional array you created in the previous ex-
ercise, write a nested for loop to print the values in the following order: 1 5 9 2 6
10 3 7 11 4 8 12. That is, print the values going down the columns instead of going
across the rows.

EXERCISE 9.13 Define an array that would be suitable for storing the following
values:

a. The GPAs of 2,000 students.
b. The lengths and widths of 100 rectangles.
c. A week’s worth of hourly temperature measurements, stored so that it is easy

to calculate the average daily temperature.
d. A board for a tic-tac-toe game.
e. The names and capitals of the 50 states.

EXERCISE 9.14 Write a code segment that will compute the sum of all the ele-
ments of an array of int.

EXERCISE 9.15 Write a code segment that will compute the sum of the elements
in a two-dimensional array of int.

450 CHAPTER 9 • Arrays and Array Processing

EXERCISE 9.16 Write a method that will compute the average of all the ele-
ments of a two-dimensional array of float.

EXERCISE 9.17 Write a method that takes two parameters, an int array and an
integer, and returns the location of the last element of the array that is greater than
or equal to the second parameter.

EXERCISE 9.18 Write a program that tests whether a 3 × 3 array, input by the
user, is a magic square. A magic square is an N × N matrix of numbers in which
every number from 1 to N2 must appear just once, and every row, column, and
diagonal must add up to the same total—for example,� �
6 7 2
1 5 9
8 3 4
 	
EXERCISE 9.19 Revise the program in the previous exercise so that it allows the
user to input the dimensions of the array, up to 4 × 4.

EXERCISE 9.20 Modify the AnalyzeFreq program so that it can display the
relative frequencies of the 10 most frequent and 10 least frequent letters.

EXERCISE 9.21 The merge sort algorithm takes two collections of data that have
been sorted and merges them together. Write a program that takes two 25-element
int arrays, sorts them, and then merges them, in order, into one 50-element array.

EXERCISE 9.22 Challenge: Design and implement a BigInteger class that
can add and subtract integers with up to 25 digits. Your class should also include
methods for input and output of the numbers. If you’re really ambitious, include
methods for multiplication and division.

EXERCISE 9.23 Challenge: Design a data structure for this problem: As man-
ager of Computer Warehouse, you want to track the dollar amount of purchases
made by those clients that have regular accounts. The accounts are numbered
from 0, 1, ..., N. The problem is that you don’t know in advance how many
purchases each account will have. Some may have one or two purchases. Others
may have 50 purchases.

EXERCISE 9.24 An anagram is a word made by rearranging the letters of another
word. For example, act is an anagram of cat, and aegllry is an anagram of allergy.
Write a Java program that accepts two words as input and determines if they are
anagrams.

EXERCISE 9.25 Challenge: An anagram dictionary is a dictionary that organizes
words together with their anagrams. Write a program that lets the user enter up
to 100 words (in a TextField, say). After each word is entered, the program
should display (in a TextArea perhaps) the complete anagram dictionary for
the words entered. Use the following sample format for the dictionary. Here the
words entered by the user were: felt, left, cat, act, opt, pot, top.� �
a c t : a c t c a t
e f l t : f e l t l e f t
opt : opt pot top
 	

CHAPTER 9 • Exercises 451

EXERCISE 9.26 Acme Trucking Company has hired you to write software to
help dispatch its trucks. One important element of this software is knowing
the distance between any two cities that it services. Design and implement a
Distance class that stores the distances between cities in a two-dimensional ar-
ray. This class will need some way to map a city name, Boise, into an integer that
can be used as an array subscript. The class should also contain methods that
would make it useful for looking up the distance between two cities. Another
useful method would tell the user the closest city to a given city.

EXERCISE 9.27 Rewrite the main() method for the WordGuess example so
that it allows the user to input the number of players and whether each players is
a computer or a human. Use a KeyboardReader.

EXERCISE 9.28 Write a smarter version of the WordGuesser class that
“knows” which letters of the English language are most frequent. HINT: Rather
than using random guesses, store the player’s guesses in a string in order of
decreasing frequency: ”ETAONRISHLGCMFBDGPUKJVWQXYZ”.

EXERCISE 9.29 Write a CLUI version of the SlidingTilePuzzle. You will
need to make modifications to the SlidingTilePuzzle class.

452 CHAPTER 9 • Arrays and Array Processing

� �
public c l a s s T e s t S o r t {

public s t a t i c i n t MAXSIZE = 2 5 ;

public void s o r t (Comparable [] a r r) {
Comparable temp ; // T e m p o r a r y v a r i a b l e f o r i n s e r t i o n

for (i n t k = 1 ; k < a r r . length ; k++) { // F o r e a c h e l e m e n t

temp = a r r [k] ; // R e m o v e i t

i n t i ;
for (i = k−1; i >= 0 && a r r [i] . compareTo (temp) > 0 ; i−−)

a r r [i +1] = a r r [i] ; // Move l a r g e r t o t h e r i g h t

a r r [i +1] = temp ; // I n s e r t t h e e l e m e n t

}
} // s o r t ()

public void p r i n t (Comparable a r r []) {
for (i n t k = 0 ; k < a r r . length ; k++) {

i f (k % 5 == 0) System . out . p r i n t l n () ; // New r o w

System . out . p r i n t (a r r [k] . t o S t r i n g () + ”\ t ”) ;
}
System . out . p r i n t l n () ;

}
// S o r t s t w o d i f f e r e n t t y p e s o f a r r a y w i t h t h e s a m e m e t h o d .

public s t a t i c void main (S t r i n g args []) {
I n t e g e r iArr [] = new I n t e g e r [T e s t S o r t . MAXSIZE] ;
F l o a t fArr [] = new F l o a t [T e s t S o r t . MAXSIZE] ;
for (i n t k = 0 ; k < T e s t S o r t . MAXSIZE ; k++) { // C r e a t e d a t a

iArr [k] = new I n t e g e r ((i n t) (Math . random () ∗ 1 0 0 0 0)) ;
fArr [k] = new F l o a t (Math . random () ∗ 1 0 0 0 0) ;

}
T e s t S o r t t e s t = new T e s t S o r t () ;
t e s t . s o r t (iArr) ; // S o r t a n d p r i n t I n t e g e r s

t e s t . p r i n t (iArr) ;
t e s t . s o r t (fArr) ; // S o r t a n d p r i n t F l o a t s

t e s t . p r i n t (fArr) ;
} // m a i n ()

}
 	
Figure 9.26: TestSort uses the polymorphic sort() method to sort
either Integers or Floats.

CHAPTER 9 • Exercises 453

� �
import j ava . u t i l . Vector ;

public c l a s s VectorDemo {

public s t a t i c void pr in tVec tor (Vector v) {
for (i n t k =0; k < v . s i z e () ; k++)

System . out . p r i n t l n (v . elementAt (k) . t o S t r i n g ()) ;
} // p r i n t V e c t o r ()

public s t a t i c void main (S t r i n g args []) {
Vector vec tor = new Vector () ; // An e m p t y v e c t o r

i n t bound = (i n t) (Math . random () ∗ 2 0) ;
for (i n t k = 0 ; k < bound ; k++) // I n s e r t a r a n d o m

vector . addElement (new I n t e g e r (k)) ; // n u m b e r o f I n t e g e r s

pr in tVec tor (vec tor) ; // P r i n t t h e e l e m e n t s

} // m a i n ()

}// V e c t o r D e m o
 	
Figure 9.28: Demonstration of the Vector class.

Figure 9.29: Overview of the
ComputerGame class hierarchy.

454 CHAPTER 9 • Arrays and Array Processing

� �
public a b s t r a c t c l a s s ComputerGame {

protected i n t nPlayers ;
protected i n t addedPlayers = 0 ;
protected i n t whoseTurn ;
protected Player player [] ; // An a r r a y o f p l a y e r s

public ComputerGame () {
nPlayers = 1 ; // D e f a u l t : 1 p l a y e r g a m e

player = new Player [1] ;
}
public ComputerGame (i n t n) {

nPlayers = n ;
player = new Player [n] ; // N− P l a y e r g a m e

}
public void s e t P l a y e r (i n t s t a r t e r) {

whoseTurn = s t a r t e r ;
}
public i n t getP layer () {

return whoseTurn ;
}
public void addPlayer (Player p) {

player [addedPlayers] = p ;
++addedPlayers ;

}
public void changePlayer () {

whoseTurn = (whoseTurn + 1) % nPlayers ;
}
public S t r i n g getRules () {

return ”The r u l e s of t h i s game are : ” ;
}
public S t r i n g l i s t P l a y e r s () {

S t r i n g B u f f e r r e s u l t =
new S t r i n g B u f f e r (”\nThe players are :\n”) ;

for (i n t k = 0 ; k < nPlayers ; k++)
r e s u l t . append (” Player ” + k + ” ” +

player [k] . t o S t r i n g () + ”\n”) ;
r e s u l t . append (”\n”) ;
return r e s u l t . t o S t r i n g () ;

}
public a b s t r a c t boolean gameOver () ; // A b s t r a c t

public a b s t r a c t S t r i n g getWinner () ; // m e t h o d s

} // C o m p u t e r G a m e
 	
Figure 9.31: Implementation of the ComputerGame class.

CHAPTER 9 • Exercises 455

� �
public a b s t r a c t c l a s s Player {

public s t a t i c f i n a l i n t COMPUTER=0;
public s t a t i c f i n a l i n t HUMAN=1;
protected i n t id = −1; // I d b e t w e e n 0 a n d n P l a y e r s −1

protected i n t kind = HUMAN; // D e f a u l t i s HUMAN

public Player () { }
public Player (i n t id , i n t kind) {

t h i s . id = id ;
t h i s . kind = kind ;

}
public void set ID (i n t k) { id = k ; }
public i n t getID () { return id ; }
public void setKind (i n t k) { kind = k ; }
public i n t getKind () { return kind ; }
public boolean isComputer () { return kind == COMPUTER; }
public a b s t r a c t S t r i n g makeAMove(S t r i n g prompt) ;

} // P l a y e r
 	
Figure 9.34: Implementation of the Player class.

Figure 9.35: The Sliding Tile Puz-
zle.

456 CHAPTER 9 • Arrays and Array Processing

� �
public c l a s s S l i d i n g T i l e P u z z l e extends ComputerGame

implements GUIPlayableGame {
private char puzzle [] = { ’R ’ , ’R ’ , ’R ’ , ’ ’ , ’L ’ , ’L ’ , ’L ’ } ;
private S t r i n g s o l u t i o n = ”LLL RRR” ;
private i n t blankAt = 3 ;
public S l i d i n g T i l e P u z z l e () { super (1) ; }

public boolean gameOver () { // T r u e i f p u z z l e s o l v e d

S t r i n g B u f f e r sb = new S t r i n g B u f f e r () ;
sb . append (puzzle) ;
return sb . t o S t r i n g () . equals (s o l u t i o n) ;

}
public S t r i n g getWinner () {

i f (gameOver ())
return ”\nYou did i t ! Very Nice !\n” ;

e lse return ”\nGood t r y . Try again !\n” ;
}
public S t r i n g reportGameState () {

S t r i n g B u f f e r sb = new S t r i n g B u f f e r () ;
sb . append (puzzle) ;
return sb . t o S t r i n g () ;

}
public S t r i n g getGamePrompt () {

return ”To move a t i l e , c l i c k on i t . ” ;
} // p r o m p t ()

public S t r i n g submitUserMove (S t r i n g usermove) {
i n t t i l e = I n t e g e r . p a r s e I n t (usermove) ;
char ch = puzzle [t i l e] ;
i f (ch== ’L ’ && (blankAt== t i l e −1 | | blankAt== t i l e −2))

swapTiles (t i l e , blankAt) ;
e lse i f (ch== ’R ’ &&

(blankAt== t i l e +1 | | blankAt== t i l e + 2))
swapTiles (t i l e , blankAt) ;

e lse
return ” That ’ s an i l l e g a l move .\n” ;

return ” That move i s l e g a l .\n” ;
}
private void swapTiles (i n t t i , i n t bl) {

char ch = puzzle [t i] ;
puzzle [t i] = puzzle [b l] ;
puzzle [b l] = ch ;
blankAt = t i ; // R e s e t t h e b l a n k

}
} // S l i d i n g T i l e P u z z l e
 	

Figure 9.38: Implementation of the SlidingTilePuzzle class.

CHAPTER 9 • Exercises 457

� �
import j avax . swing . ∗ ;
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;
public c l a s s SlidingGUI extends JFrame implements Act ionLis tener {

private JButton t i l e [] = new JButton [7] ;
private JButton r e s e t = new JButton (” Reset ”) ;
private S l i d i n g T i l e P u z z l e s l i d i n g ;
private S t r i n g puzz leS ta te ;
private Label label ;
private S t r i n g prompt = ”Goal : [LLL RRR] . ” +

” Cl ick on the t i l e you want to move . ” +
” I l l e g a l moves are ignored . ” ;

public SlidingGUI (S t r i n g t i t l e) {
s l i d i n g = new S l i d i n g T i l e P u z z l e () ;
buildGUI () ;
s e t T i t l e (t i t l e) ;
pack () ;
s e t V i s i b l e (t rue) ;

} // SlidingGUI ()
private void buildGUI () {

Container contentPane = getContentPane () ;
contentPane . setLayout (new BorderLayout ()) ;
JPanel buttons = new JPanel () ;
puzz leS ta te = s l i d i n g . reportGameState () ;
for (i n t k = 0 ; k < t i l e . length ; k++) {

t i l e [k] = new JButton (””+puzz leS ta te . charAt (k)) ;
t i l e [k] . addActionListener (t h i s) ;
buttons . add (t i l e [k]) ;

}
r e s e t . addActionListener (t h i s) ;
label = new Label (prompt) ;
buttons . add (r e s e t) ;
contentPane . add (” Center ” , buttons) ;
contentPane . add (”South” , label) ;

} // buildGUI ()
private void l a b e l B u t t o n s (S t r i n g s) {

for (i n t k = 0 ; k < t i l e . length ; k++)
t i l e [k] . s e t T e x t (””+ s . charAt (k)) ;

} // l a b e l B u t t o n s ()
public void actionPerformed (ActionEvent e) {

S t r i n g r e s u l t = ”” ;
i f (e . getSource () == r e s e t) { // Reset c l i c k e d ?

s l i d i n g = new S l i d i n g T i l e P u z z l e () ;
label . s e t T e x t (prompt) ;

}
for (i n t k = 0 ; k < t i l e . length ; k++) // T i l e c l i c k e d ?

i f (e . getSource () == t i l e [k])
r e s u l t = ((GUIPlayableGame) s l i d i n g) . submitUserMove (””+ k) ;

i f (r e s u l t . indexOf (” i l l e g a l ”) != −1)
java . awt . T o o l k i t . g e t D e f a u l t T o o l k i t () . beep () ;

puzz leS ta te = s l i d i n g . reportGameState () ;
l a b e l B u t t o n s (puzz leS ta te) ;
i f (s l i d i n g . gameOver ())

label . s e t T e x t (”You did i t ! Very nice ! ”) ;
} // actionPerformed ()
public s t a t i c void main (S t r i n g args []) {

new SlidingGUI (” S l i d i n g T i l e Puzzle ”) ;
} // main ()

} // SlidingGUI
 	
Figure 9.40: Implementation of the SlidingGUI class.

458 CHAPTER 9 • Arrays and Array Processing

OBJECTIVES
After studying this chapter, you will

• Understand Java’s exception-handling mechanisms.
• Be able to use the Java try/catch statement.
• Know how to design effective exception handlers.
• Appreciate the importance of exception handling in program design.
• Be able to design your own Exception subclasses.

OUTLINE
10.1 Introduction
10.2 Handling Exceptional Conditions
10.3 Java’s Exception Hierarchy
10.4 Handling Exceptions Within a Program
10.5 Error Handling and Robust Program Design
10.6 Creating and Throwing Your Own Exceptions
10.7 From the Java Library: javax.swing.JOptionPane

Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 10

Exceptions: When Things
Go Wrong

459

460 CHAPTER 10 • Exceptions: When Things Go Wrong

10.1 Introduction

Mistakes happen. Making mistakes is the norm rather than the exception.
This is not to say that we make mistakes more often than we get it right.
It is to say that (almost) nothing we do or build is ever perfectly correct,
least of all computer software. No matter how well-designed a program
is, there is always the chance that some kind of error will arise during its
execution.

An exception is an erroneous or anomalous condition that arises whileException
a program is running. Examples of such conditions that we have dis-
cussed in this text include attempting to divide by 0 (arithmetic excep-
tion), reading a decimal value when an integer is expected (number format
exception), attempting to write to a file that doesn’t exist (I/O exception),
or referring to a nonexistent character in a string (index out of bounds
exception). The list of potential errors and anomalies is endless.

A well-designed program should include code to guard against errors
and other exceptional conditions when they arise. This code should be in-
corporated into the program from the very first stages of its development.
That way it can help identify problems during development. In Java, the
preferred way of handling such conditions is to use exception handling,
a divide-and-conquer approach that separates a program’s normal codeException handling
from its error-handling code.

This chapter describes Java’s exception handling features. We begin by
contrasting the traditional way of handling errors within a program with
Java’s default exception-handling mechanism. We show how exceptions
are raised (thrown) and handled (caught) within a program and iden-
tify the rules that apply to different kinds of exceptions. We then focus
on some of the key design issues that govern when, where, and how to
use exceptions in your programs. Finally, we show how to design and
implement one’s own Exception subclass.

10.2 Handling Exceptional Conditions

To introduce you to handling exceptional conditions, Figure 10.1 shows
a method that computes the average of the first N integers, an admit-

� �
/∗ ∗
∗ P r e c o n d i t i o n : N > 0

∗ P o s t c o n d i t i o n : a v g F i r s t N () = (1 + 2 + . . . + N) / N

∗/

public double avgFirstN (i n t N) {
i n t sum = 0 ;
for (i n t k = 1 ; k <= N; k++)

sum += k ;
return sum/N; // W h a t i f N i s 0 ?

} // a v g F i r s t N ()
 	
Figure 10.1: Poor design. No attempt is made to guard against a divide-
by-zero error.

SECTION 10.2 • Handling Exceptional Conditions 461� �
/∗ ∗
∗ P r e c o n d i t i o n : N > 0

∗ P o s t c o n d i t i o n : a v g F i r s t N () e q u a l s (1 + 2 + . . . + N) d i v i d e d b y N

∗/

public double avgFirstN (i n t N) {
i n t sum = 0 ;
i f (N <= 0) {

System . out . p r i n t l n (
”ERROR avgFirstN : N <= 0 . Program terminat ing . ”) ;

System . e x i t (0) ;
}
for (i n t k = 1 ; k <= N; k++)

sum += k ;
return sum/N; // W h a t i f N i s 0 ?

} // a v g F i r s t N ()
 	
Figure 10.2: One way to handle a divide-by-zero error might be to ter-
minate the program, if there is an attempt to divide by 0, assuming it’s
the kind of program that can be safely aborted. This version does not use
exception handling.

tedly contrived example. We use it mainly to illustrate the basic con-
cepts involved in exception handling. As its precondition suggests, the
avgFirstN() method expects that N will be greater than 0. If N happens
to be 0, an error will occur in the expression sum/N, because you cannot
divide an integer by 0.

10.2.1 Traditional Error Handling
Obviously, the method in Figure 10.1 should not simply ignore the possi-
bility that N might be 0. Figure 10.2 shows a revised version of the method, Divide-by-zero error
which includes code that takes action if the method’s precondition fails.
Because there is no way to compute an average of 0 elements, the revised
method decides to abort the program. Aborting the program appears to
be a better alternative than returning 0 or some other default value (like
−1) as the method’s result and thereby allowing an erroneous value to
spread throughout the program. That would just compound the error.

JAVA EFFECTIVE DESIGN Unfixable Error. If an unfixable error is
detected, it is far better to terminate the program abnormally than to
allow the error to propagate throughout the program.

The revised avgFirstN() method takes the traditional approach to er-
ror handling: Error-handling code is built right into the algorithm. If N
happens to be 0 when avgFirstN() is called, the following output will
be generated:� �

ERROR avgFirstN : N <= 0 . Program terminat ing .
 	

462 CHAPTER 10 • Exceptions: When Things Go Wrong� �
public c l a s s CalcAverage {

public double avgFirstN (i n t N) {
i n t sum = 0 ;
for (i n t k = 1 ; k <= N; k++)

sum += k ;
return sum/N; // W h a t i f N i s 0 ?

} // a v g F i r s t N ()

}// C a l c A v e r a g e

public c l a s s CalcAvgTest {
public s t a t i c void main (S t r i n g args []) {

CalcAverage ca = new CalcAverage () ;
System . out . p r i n t l n (”AVG + ” + ca . avgFirstN (0)) ;

}// m a i n

}// C a l c A v g T e s t
 	
Figure 10.3: Note that there are two public classes defined in this figure,
which would be saved in separate Java files.

10.2.2 Java’s Default Exception Handling
To help detect and handle common runtime errors, Java’s creators incor-
porated an exception-handling model into the language itself. In the case
of our divide-by-zero error, the Java Virtual Machine (JVM) would detect
the error and abort the program. To see this, consider the program in Fig-
ure 10.3. Note that the avgFirstN() method is passed an argument of
0 in the CalcAvgTest.main(). When the JVM detects the error, it will
abort the program and print the following message:� �

Exception in thread ”main”
java . lang . Ari thmeticExcept ion : / by zero

a t CalcAverage . avgFirstN (Compiled Code)
a t CalcAvgTest . main (CalcAvgTest . j ava : 5)
 	

The error message describes the error and provides a trace of the method
calls, from last to first, that led to the error. This trace shows that the error
occurred in the CalcAverage.avgFirstN() method, which was called
by the CalcAvgTest.main() method.

As this example suggests, Java’s default exception handling is able to
detect and handle certain kinds of errors and exceptional conditions. In
the next section, we will identify what kinds of conditions are handled by
the JVM.

10.3 Java’s Exception Hierarchy

The Java class library contains a number of predefined exceptions, some
of which are shown in Figure 10.4. The most general type of exception,
java.lang.Exception, is located in the java.lang package, but most
of its subclasses are contained in other packages. Some of the various

SECTION 10.3 • Java’s Exception Hierarchy 463

Object

Throwable

Exception

RuntimeException
IndexOutOfBoundsException

SecurityException

ArrayIndexOutOfBoundsException

StringIndexOutOfBoundsException

NullPointerException

NegativeArrayException

IllegalMonitorException

ClassCastException

ArrayStoreException

ArithmeticException

java.lang

NumberFormatExceptionIllegalArgumentException

Figure 10.4: Part of Java’s excep-
tion hierarchy. All subclasses of
RuntimeException are known
as unchecked exceptions. Java pro-
grams are not required to catch
these exceptions.

IOException classes are contained in the java.io package, while oth-
ers are contained in the java.net package. In general, exception classes Exception hierarchy
are placed in the package that contains the methods that throw those
exceptions.

Each of the classes in Figure 10.4 identifies a particular type of
exception, and each is a subclass of the Exception class. Ob-
viously a subclass defines a more specific exception than its su-
perclass. Thus, both ArrayIndexOutOfBoundsException and
StringIndexOutOfBoundsException are more specific than Index-
OutOfBoundsException.

TABLE 10.1 Some of Java’s important exceptions.

Class Description

ArithmeticException Division by zero or some other kind of arithmetic problem
ArrayIndexOutOfBoundsException An array index is less than zero or greater

than or equal to the array’s length
FileNotFoundException Reference to a file that cannot be found
IllegalArgumentException Calling a method with an improper argument
IndexOutOfBoundsException An array or string index is out of bounds
NullPointerException Reference to an object that has not been instantiated
NumberFormatException Use of an illegal number format, such as when calling a method
StringIndexOutOfBoundsException A String index is less than zero or greater than

or equal to the String’s length

Table 10.1 gives a brief summary of some of the most important excep-
tions. You’ve undoubtedly encountered some of these exceptions, because
they are thrown by methods we have used repeatedly in programming
examples. Table 10.2 summarizes the exceptions raised by some of the
methods we’ve used most frequently.

464 CHAPTER 10 • Exceptions: When Things Go Wrong

TABLE 10.2 Some of Java’s important exceptions by method.

Class Method Exception Raised Description

Double valueOf(String) NumberFormatException The String is not a double
Integer parseInt(String) NumberFormatException The String is not a int
String String(String) NullPointerException The String is null

indexOf(String) NullPointerException The String is null
lastIndexOf(String) NullPointerException The String is null
charAt(int) StringIndexOutOfBoundsException The int is not a valid index
substring(int) StringIndexOutOfBoundsException The int is not a valid index
substring(int,int) StringIndexOutOfBoundsException An int is not a valid index

SELF-STUDY EXERCISE
EXERCISE 10.1 What type of exception would be thrown for the fol-

lowing statements?

a. Integer.parseInt("26.2");
b. String s; s.indexOf(’a’);
c. String s = "hello"; s.charAt(5);

10.3.1 Checked and Unchecked Exceptions
Java’s exception hierarchy is divided into two types of exceptions. A
checked exception is one that can be analyzed by the Java compiler.Checked exceptions
Checked exceptions are thrown by methods such as the Buffered-
Reader.readLine() method, in which there is a substantial likelihood
that something might go wrong. When the compiler encounters one
of these method calls, it checks whether the program either handles or
declares the exception. Compile-time checking for these exceptions is
designed to reduce the number of exceptions that are not properly han-
dled within a program. This improves the security of Java programs.

JAVA LANGUAGE RULE Checked Exceptions. A checked
exception, such as an IOException, must either be handled or
declared within the program.

The throws Clause

The IOException, which we encountered in Chapter 4 , is a checked
exception. The Java compiler knows that readLine() is a method that
can throw an IOException. A method that contains an expression that
might throw a checked exception must either handle the exception or de-
clare it. Otherwise, the compiler would generate a syntax error. The sim-
plest way to avoid such a syntax error is to declare the exception, in our caseDeclaring an exception
that means qualifying the method header with the expression throws
IOException.

In general, any method that contains an expression that might throw a
checked expression must declare the exception. However, because one
method can call another method, declaring exceptions can get a little
tricky. If a method calls another method that contains an expression that

SECTION 10.3 • Java’s Exception Hierarchy 465

might throw an unchecked exception, then both methods must have a
throws clause. For example, consider the following program:� �

import j ava . io . ∗ ;
public c l a s s Example {

BufferedReader input = new BufferedReader
(new InputStreamReader (System . in)) ;

public void doRead () throws IOException {
// May t h r o w I O E x c e p t i o n

S t r i n g i n p u t S t r i n g = input . readLine () ;
}
public s t a t i c void main (S t r i n g argv [])

throws IOException {
Example ex = new Example () ;
ex . doRead () ;

}
}
 	

In this case, the doRead() method contains a readLine() expres-
sion, which might throw an IOException. Therefore, the doRead()
method must declare that it throws IOException. However, because
doRead() is called by main(), the main()method must also declare the
IOException.

JAVA LANGUAGE RULE Where to Use throws. Unless a checked
exception, such as an IOException, is caught and handled by a
method, it must be declared with a throws clause within the method
and within any method that calls that method.

The alternative approach would be to catch the IOException within
the body of the method. We will discuss this approach in the next section.

Unchecked Exceptions

An unchecked exception is any exception belonging to a subclass of
RuntimeException (Fig. 10.4). Unchecked exceptions are not checked
by the compiler. The possibility that some statement or expression will
lead to an ArithmeticException or NullPointerException is ex-
tremely difficult to detect at compile time. The designers of Java decided
that forcing programmers to declare such exceptions would not signifi-
cantly improve the correctness of Java programs.

Therefore, unchecked exceptions do not have to be handled within
a program. And they do not have to be declared in a throws clause. Runtime (unchecked) exceptions
As shown in the chapter’s early divide-by-zero exception example,
unchecked exceptions are handled by Java’s default exception handlers,
unless your program takes specific steps to handle them directly. In many

466 CHAPTER 10 • Exceptions: When Things Go Wrong

cases leaving the handling of such exceptions up to Java may be the best
course of action, as we will see Section 10.5.

JAVA LANGUAGE RULE Unchecked Exceptions. An unchecked
exception—one belonging to some subclass of
RunTimeException—does not have to be caught within your
program.

10.3.2 The Exception Class
The java.lang.Exception class itself is very simple, consisting of
just two constructor methods (Fig. 10.5). The Throwable class, from
which Exception is derived, is the root class of Java’s exception and
error hierarchy. It contains definitions for the getMessage() and
printStackTrace() methods, which are two methods that we will use
frequently in our error-handling routines.

SELF-STUDY EXERCISE

+getMessage()

+printStackTrace()

Throwable

+Exception()

+Exception(in message : String)

Exception

Figure 10.5: The java.lang.Ex-
ception class.

EXERCISE 10.2 Which of the following are examples of unchecked
exceptions?
a. IOException
b. IndexOutOfBoundsException
c. NullPointerException
d. ClassNotFoundException
e. NumberFormatException

10.4 Handling Exceptions Within a Program

This section will describe how to handle exceptions within the program
rather than leaving them to be handled by the JVM.

10.4.1 Trying, Throwing, and Catching an Exception
In Java, errors and other abnormal conditions are handled by throwing
and catching exceptions. When an error or an exceptional condition isPulling the program’s fire alarm
detected, you can throw an exception as a way of signaling the abnormal
condition. This is like pulling the fire alarm. When an exception is thrown,
an exception handler will catch the exception and deal with it (Fig. 10.6).
We will discuss try blocks, which typically

Object

Exception

Object

«uses»

throws

«uses»

catches

Thrower Catcher

Figure 10.6: Exception handling.
When an exception occurs, an ob-
ject will throw an Exception.
The exception handler, possibly
the same object, will catch it.

are associated with catching exceptions, later in the section.
If we go back to our avgFirstN() example, the typical way of

handling this error in Java would be to throw an exception in the
avgFirstN() method and catch it in the calling method. Of course, the
calling method could be in the same object or it could belong to some
other object. In the latter case, the detection of the error is separated from
its handling. This division of labor opens up a wide range of possibilities.
For example, a program could dedicate a single object to serve as the han-
dler for all its exceptions. The object would be sort of like the program’s
fire department.

To illustrate Java’s try/throw/catch mechanism, let’s revisit the
CalcAvgTest program. The version shown in Figure 10.7 mimics

SECTION 10.4 • Handling Exceptions Within a Program 467� �
public c l a s s CalcAverage {

/∗ ∗
∗ P r e c o n d i t i o n : N > 0

∗ P o s t c o n d i t i o n : a v g F i r s t N () e q u a l s t h e a v e r a g e o f (1 + 2 + . . . + N)

∗/

public double avgFirstN (i n t N) {
i n t sum = 0 ;
i f (N <= 0)

throw new I l legalArgumentException (”ERROR: I l l e g a l argument”) ;
for (i n t k = 1 ; k <= N; k++)

sum += k ;
return sum/N; // W h a t i f N i s 0 ?

} // a v g F i r s t N ()

} // C a l c A v e r a g e

public c l a s s CalcAvgTest {
public s t a t i c void main (S t r i n g args []) {

t r y {
CalcAverage ca = new CalcAverage () ;
System . out . p r i n t l n (”AVG + ” + ca . avgFirstN (0)) ;

}
catch (I l legalArgumentException e) { // E x c e p t i o n H a n d l e r

System . out . p r i n t l n (e . getMessage ()) ;
e . p r i n t S t a c k T r a c e () ;
System . e x i t (0) ;

}
}// m a i n

}// C a l c A v g T e s t
 	
Figure 10.7: In this version of the calcAvgTest program, an Illegal-
ArgumentException thrown in CalcAverage.avgFirstN(), would
be handled by the catch clause in CalcAvgTest.main().

the way Java’s default exception handler works. If the avgFirstN()
method is called with an argument that is zero or negative, an
IllegalArgumentException is thrown. The exception is caught by
the catch clause in the CalcAvgTest.main() method.

Let’s go through this example step by step. The first thing to notice is
that if the CalcAverage.avgFirstN() method has a zero or negative
argument, it will throw an exception:� �

i f (N <= 0)
throw new I l legalArgumentException (”ERROR: I l l e g a l argument”) ;
 	

Note the syntax of the throw statement. It creates a new Illegal-
ArgumentException object and passes it a message that describes the
error. This message becomes part of the exception object. It can be re-
trieved using the getMessage() method, which is inherited from the
Throwable class (Fig. 10.4).

When a throw statement is executed, the JVM interrupts the normal ex-
ecution of the program and searches for an exception handler. We will de-

468 CHAPTER 10 • Exceptions: When Things Go Wrong

scribe the details of this search shortly. In this case, the exception handler
is the catch clause contained in the CalcAvgTest.main() method:� �

catch (I l legalArgumentException e) {// E x c e p t i o n H a n d l e r

System . out . p r i n t l n (e . getMessage ()) ;
e . p r i n t S t a c k T r a c e () ;
System . e x i t (0) ;

}
 	
When an IllegalArgumentException is thrown, the statements
within this catch clause are executed. The first statement uses the
getMessage() method to print a copy of the error message. The sec-
ond statement uses the printStackTrace() method, which is defined
in Throwable and inherited by all Exceptions, to print a trace of the
method calls leading up to the exception. The last statement causes the
program to terminate.

When we run this program, the following output will be generated as
a result of the illegal argument error:� �

ERROR: Can ’ t average 0 elements
java . lang . I l legalArgumentException : ERROR: I l l e g a l argument

a t java . lang . Throwable . f i l l I n S t a c k T r a c e (Native Method)
a t java . lang . Throwable.< i n i t >(Throwable . j ava : 9 4)
a t java . lang . Exception .< i n i t >(Exception . java : 4 2)
a t java . lang . RuntimeException .< i n i t >

(RuntimeException . java : 4 7)
a t java . lang . I l legalArgumentException .< i n i t >

(I l legalArgumentException . java : 4 3)
a t CalcAverage . avgFirstN (Compiled Code)
a t CalcAvgTest . main (CalcAvgTest . j ava : 5)
 	

Thus, as in the previous example of Java’s default exception handler, our
exception handler also prints out a description of the error and a trace of
the method calls that led up to the error. However, in this example, we are
directly handling the exception rather than leaving it up to Java’s default
exception handler. Of course, this example is intended mainly for illus-
trative purposes. It would make little sense to write our own exception
handler if it does nothing more than mimic Java’s default handler.

JAVA EFFECTIVE DESIGN Using an Exception. Unless your
program’s handling of an exception is significantly different from
Java’s default handling of it, the program should just rely on the
default.

Finally, note that the catch clause is associated with a try block. The
handling of exceptions in Java takes place in two parts: First, we try to

SECTION 10.4 • Handling Exceptions Within a Program 469

execute some statements, which may or may not lead to an exception.
These are the statements contained within the try clause:� �

t r y {
CalcAverage ca = new CalcAverage () ;
System . out . p r i n t l n (”AVG + ” + ca . avgFirstN (0)) ;

}
 	
Second, we provide one or more catch clauses to handle par-
ticular types of exceptions. In this case, we are only handling
IllegalArgumentExceptions.

As we said earlier, throwing an exception is like pulling a fire alarm.
The throw occurs somewhere within the scope of the try block. The “fire
department” in this case is the code contained in the catch clause that
immediately follows the try block. This is the exception handler for this Responding to the fire alarm
particular exception. There’s something like a game of catch going on
here: Some method within the try block throws an Exception object,
which is caught and handled by the catch block located in some other
object (Fig. 10.8).

+avgFirstN(in N : int) : double

CalcAverage

Exception

+main()

CalcAvgTest

«uses»

throws

«uses»

catches

IllegalArgumentException

Figure 10.8: Playing catch: In
this design, the Illegal-
ArgumentException is thrown
by the CalcAverage.avg-
FirstN() method and caught
by the catch clause within
CalcAvgTest.main() method.

10.4.2 Separating Error Checking from Error Handling
As we see in the CalcAvgTest example, an important difference be-
tween Java’s exception handling and more traditional approaches is that Divide and conquer
error handling can be separated from the normal flow of execution within
a program. The CalcAverage.avgFirstN() method still checks for
the error and it still throws IllegalArgumentException if N does
not satisfy the method’s precondition. But it does not contain code for
handling the exception. The exception-handling code is located in the
CalcAvgTest class.

Thus, the CalcAvgTest program creates a clear separation between
the normal algorithm and the exception-handling code. One advantage of
this design is that the normal algorithm is uncluttered by error-handling
code and, therefore, easier to read.

Another advantage is that the program’s response to errors has been
organized into one central location. By locating the exception handler
in CalcAvgTest.main(), one exception handler can be used to han-
dle other errors of that type. For example, this catch clause could handle
all IllegalArgumentExceptions that get thrown in the program. Its
use of printStackTrace() will identify exactly where the exception
occurred. In fact, because a Java application starts in the main() method,

470 CHAPTER 10 • Exceptions: When Things Go Wrong

encapsulating all of a program’s executable statements within a single try
block in the main() method will effectively handle all the exceptions that
occur within a program.

JAVA EFFECTIVE DESIGN Normal Versus Exceptional Code. A key
element of Java’s exception-handling mechanism is that the exception
handler—the catch block—is distinct from the code that throws the
exception—the try block. The try block contains the normal algorithm.
The catch block contains code for handling exceptional conditions.

10.4.3 Syntax and Semantics of Try/Throw/Catch
A try block begins with the keyword try followed by a block of codeThe try block
enclosed within curly braces. A catch clause or catch block consists of the
keyword catch, followed by a parameter declaration that identifies the
type of Exception being caught, followed by a collection of statements
enclosed within curly braces. These are the statements that handle theThe catch block
exception by taking appropriate action.

Once an exception is thrown, control is transferred out of the try block
to an appropriate catch block. Control does not return to the try block.

JAVA LANGUAGE RULE Try Block Control. If an exception is
thrown, the try block is exited and control does not return to it.

The complete syntax of the try/catch statement is summarized in Fig-
ure 10.9. The try block is meant to include a statement or statements that� �

t r y {
// B l o c k o f s t a t e m e n t s

// A t l e a s t o n e o f w h i c h may t h r o w a n e x c e p t i o n

i f (/∗ S o m e c o n d i t i o n o b t a i n s ∗/)
throw new ExceptionName () ;

} catch (ExceptionName ParameterName) {
// B l o c k o f s t a t e m e n t s t o b e e x e c u t e d

// I f t h e E x c e p t i o n N a m e e x c e p t i o n i s t h r o w n i n t r y

} catch (ExceptionName2 ParameterName) {
// B l o c k o f s t a t e m e n t s t o b e e x e c u t e d

// I f t h e E x c e p t i o n N a m e 2 e x c e p t i o n i s t h r o w n i n t r y

. . . // P o s s i b l y o t h e r c a t c h c l a u s e s

} f i n a l l y {
// O p t i o n a l b l o c k o f s t a t e m e n t s t h a t i s e x e c u t e d

// W h e t h e r a n e x c e p t i o n i s t h r o w n o r n o t

}
 	
Figure 10.9: Java’s try/catch statement.

might throw an exception. The catch blocks—there can be one or more—
are meant to handle exceptions that are thrown in the try block. A catch
block will handle any exception that matches its parameter class, includ-
ing subclasses of that class. The finally block clause is an optional clause
that is always executed, whether an exception is thrown or not.

SECTION 10.4 • Handling Exceptions Within a Program 471

The statements in the try block are part of the program’s normal flow
of execution. By encapsulating a group of statements within a try block, Normal flow of execution
you thereby indicate that one or more exceptions may be thrown by those
statements, and that you intend to catch them. In effect, you are trying a
block of code with the possibility that something might go wrong.

If an exception is thrown within a try block, Java exits the block and
transfers control to the first catch block that matches the particular kind Exceptional flow of execution
of exception that was thrown. Exceptions are thrown by using the throw
statement, which takes the following general form:� �

throw new ExceptionClassName (OptionalMessageString) ;
 	
The keyword throw is followed by the instantiation of an object of the
ExceptionClassName class. This is done the same way we instanti-
ate any object in Java: by using the new operator and invoking one of
the exception’s constructor methods. Some of the constructors take an
OptionalMessageString, which is the message that gets returned by
the exception’s getMessage() method.

A catch block has the following general form:� �
catch (ExceptionClassName ParameterName) {

// E x c e p t i o n h a n d l i n g s t a t e m e n t s

}
 	
A catch block is very much like a method definition. It contains a param-
eter, which specifies the class of exception that is handled by that block.
The ParameterName can be any valid identifier, but it is customary to use
e as the catch block parameter. The parameter’s scope is limited to the
catch block, and it is used to refer to the caught exception.

The ExceptionClassName must be one of the classes in Java’s exception Exceptions are objects
hierarchy (see Fig. 10.4). A thrown exception will match any parameter of
its own class or any of its superclasses. Thus, if an ArithmeticExcep-
tion is thrown, it will match both an ArithmeticException parame-
ter and an Exception parameter, because ArithmeticException is a
subclass of Exception.

Note that there can be multiple catch clauses associated with a given
try block, and the order with which they are arranged is important. A
thrown exception will be caught by the first catch clause it matches.
Therefore, catch clauses should be arranged in order from most specific Arranging catch clauses
to most general (See the exception hierarchy in Figure 10.4). If a more
general catch clause precedes a more specific one, it will prevent the more
specific one from executing. In effect, the more specific clause will be hid-
den by the more general one. You might as well just not have the more
specific clause at all.

472 CHAPTER 10 • Exceptions: When Things Go Wrong

To illustrate how to arrange catch clauses, suppose an Arithmetic-
Exception is thrown in the following try/catch statement:� �

t r y {
// S u p p o s e a n A r i t h m e t i c E x c e p t i o n i s t h r o w n h e r e

} catch (Ari thmeticExcept ion e) {
System . out . p r i n t l n (”ERROR: ” + e . getMessage ()) ;
e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} catch (Exception e) {
System . out . p r i n t l n (”ERROR: ” + e . getMessage ()) ;

}
 	
In this case, the exception would be handled by the more specific
ArithmeticException block. On the other hand, if some other kind
of exception is raised, it will be caught by the second catch clause. TheWhich handler to use?
Exception class will match any exception that is thrown. Therefore, it
should always occur last in a sequence of catch clauses.

JAVA PROGRAMMING TIP Arranging Catch Clauses. Catch
clauses should be arranged from most specific to most general. The
Exception clause should always be the last in the sequence.

10.4.4 Restrictions on the try/catch/finally
Statement

There are several important restrictions that apply to Java’s exception-
handling mechanism. We’ll describe these in more detail later in this
chapter.

• A try block must be immediately followed by one or more catch clauses
and a catch clause may only follow a try block.
• A throw statement is used to throw both checked exceptions and

unchecked exceptions, where unchecked exceptions are those belong-
ing to RuntimeException or its subclasses. Unchecked exceptions
need not be caught by the program.
• A throw statement must be contained within the dynamic scope of

a try block, and the type of Exception thrown must match at least
one of the try block’s catch clauses. Or the throw statement must be
contained within a method or constructor that has a throws clause for
the type of thrown Exception.

JAVA LANGUAGE RULE Try/Catch Syntax. A try block must be
followed immediately—with no intervening code—by one or more
catch blocks. A catch block can only be preceded by a try block or by
another catch block. You may not place intervening code between
catch blocks.

SECTION 10.4 • Handling Exceptions Within a Program 473

10.4.5 Dynamic Versus Static Scoping

How does Java know that it should execute the catch clause in
CalcAvgTest.main() when an exception is thrown in avgFirstN()?
Also, doesn’t the latest version of avgFirstN() (Fig. 10.7) violate the
restriction that a throw statement must occur within a try block?

An exception can only be thrown within a dynamically enclosing try
block. This means that the throw statement must fall within the dynamic
scope of an enclosing try block. Let’s see what this means. Dynamic scope

Dynamic scoping refers to the way a program is executed. For ex-
ample, in CalcAverage (Fig. 10.7), the avgFirstN() method is called
from within the try block located in CalcAvgTest.main(). Thus, it falls
within the dynamic scope of that try block.

Contrast dynamic with what you have learned about static scope,
which we’ve used previously to define the scope of parameters and lo- Static scope
cal variables (Fig. 10.10). Static scoping refers to the way a program is
written. A statement or variable occurs within the scope of a block if its
text is actually written within that block. For example, consider the def-
inition of MyClass (Fig. 10.11). The variable X occurs within the (static)
scope of method1(), and the variable Y occurs within the (static) scope
of method2().

method1 () method2 ()

method2()

main()

X Y

main ()

class MyClass{

	 public void method1 () {

 		 int X=1;

 		 System.out.println("Hello" + X);

	 }

	 public void method2 () {

		 int Y=2;

		 System.out.println("Hello" + Y);

	 }

	 public static void main(String argv[]) {

 		 MyClass myclass=new MyClass();

 		 if(Math.random()>0.5)

 			 myclass.method2 () ;

 		 else

 			 myclass.method1 () ;

	 }

}

Dynamic Scope: Follow the execution.

If Math.random()>0.5, method2()

is in the dynamic scope of main().

Static Scope: Follow the definitions.

Neither method1() nor method2() is

in the static scope of main().

MyClass

Figure 10.10: Dynamic versus
static scoping. Static scoping
refers to how the program is writ-
ten. Look at its definitions. Dy-
namic scoping refers to how the
program executes. Look at what
it actually does.

A method’s parameters and local variables occur within its static scope.
Also, in the MyClass definition, the System.out.println() state-
ments occur within the static scope of method1() and method2(), re-
spectively. In general, static scoping refers to where a variable is de-
clared or where a statement is located. Static scoping can be completely
determined by just reading the program.

Dynamic scoping can only be determined by running the program. For
example, in MyClass the order in which its statements are executed de-
pends on the result of Math.random(). Suppose that when random()
is executed it returns the value 0.99. In that case, main() will call
method2(), which will call System.out.println(), which will print

474 CHAPTER 10 • Exceptions: When Things Go Wrong� �
public c l a s s MyClass {

public void method1 () {
i n t X = 1 ;
System . out . p r i n t l n (” Hello ” + X) ;

}
public void method2 () {

i n t Y = 2 ;
System . out . p r i n t l n (” Hello ” + Y) ;

}
public s t a t i c void main (S t r i n g argv []) {

MyClass myclass = new MyClass () ;
i f (Math . random () > 0 . 5)

myclass . method2 () ;
e lse

myclass . method1 () ;
}

} // M y C l a s s
 	
Figure 10.11: An example of dynamic versus static scoping.

“Hello2.” In that case, the statement System.out.println("Hello"
+ Y) has the following dynamic scope:� �

main ()
method2 ()

System . out . p r i n t l n (” Hello ” + Y) ;
 	
It occurs within the (dynamic) scope of method2(), which is within the
(dynamic) scope of main(). On the other hand, if the result of random()
had been 0.10, that particular println() statement wouldn’t have been
executed at all. Thus, to determine the dynamic scope of a particular
statement, you must trace the program’s execution. In fact, this is what
the printStackTrace() method does. It prints a trace of a statement’s
dynamic scope.

10.4.6 Exception Propagation: Searching for a Catch Block
When an exception is thrown, Java uses both static and dynamic scop-
ing to find a catch clause to handle it. Java knows how the program is
defined—after all, it compiled it. Thus, the static scope of a program’s
methods is determined by the compiler. Java also places a record of every
method call the program makes on a method call stack. A method call
stack is a data structure that behaves like a stack of dishes in the cafeteria.Method call stack
For each method call, a method call block is placed on top of the stack (like
a dish), and when a particular method call returns, its block is removed
from the top of the stack (Fig. 10.12).

An important feature of the method call stack is that the current ex-
ecuting method is always represented by the top block on the method
call stack. If an exception happens during that method call, you can trace
backward through the method calls, if necessary, to find an exception han-
dler for that exception. In Figure 10.12, you can visualize this back trace
as a matter of reversing the direction of the curved arrows.

SECTION 10.4 • Handling Exceptions Within a Program 475

public class Propagate{

 	 public void method1 (int n) {

 		 method2(n);

 	 }

 	 public void method2 (int n) {

 		 method3(n);

 	 }

 	 public void method3 (int n) {

 		 for(int k=0; k<5; k++) {	//Block1

 		 if(k % 2==0) {	 //Block2

 			 System.out.println(k/n) ;

 		 }

 		 }

 	 }

 	 public static void main(String args[]) {

 		 Propagate p=new propagate() ;

 		 p.method1(0) ;

 	 }

}

The state of the stack on

the first iteration of the

for loop in method3().

Method Call Stack

method3 ()

n=0 k=0

method2 ()

n=0

method1 ()

n=0

main()

Figure 10.12: The method call
stack for the Propagate pro-
gram. The curved arrows give a
trace of the method calls leading
to the program’s present state.

In order to find a matching catch block for an exception, Java uses
its knowledge of the program’s static and dynamic scope to perform a
method stack trace. The basic idea is that Java traces backward through Method stack trace
the program until it finds an appropriate catch clause. The trace begins
within the block that threw the exception. Of course, one block can be
nested (statically) within another block. If the exception is not caught by
the block in which it is thrown, Java searches the enclosing block. This is
static scoping. If it is not caught within the enclosing block, Java searches
the next higher enclosing block, and so on. This is still static scoping.

If the exception is not caught at all within the method in which it was
thrown, Java uses the method call stack (Fig. 10.12) to search backward
through the method calls that were made leading up to the exception.
This is dynamic scoping. In the case of our CalcAvgTest() example
(Fig. 10.7), Java would search backward to the CalcAvgTest.main()
method, which is where avgFirstN() was called, and it would find
the catch clause there for handling IllegalArgumentExceptions. It
would, therefore, execute that catch clause.

SELF-STUDY EXERCISES

EXERCISE 10.3 Suppose a program throws an ArrayIndexOutOf-
BoundsException. Using the exception hierarchy in Figure 10.4, de-
termine which of the following catch clauses could handle that exception.

a. catch (RunTimeException e)
b. catch (StringIndexOutOfBoundsException e)
c. catch (IndexOutOfBoundsException e)
d. catch (Exception e)
e. catch (ArrayStoreException e)

476 CHAPTER 10 • Exceptions: When Things Go Wrong

EXERCISE 10.4 In the program that follows suppose that the first time
random() is called it returns 0.98, and the second time it is called it
returns 0.44. What output would be printed by the program?� �
c l a s s MyClass2 {

public void method1 (double X) {
i f (X > 0 . 9 5)

throw new ArithmeticExcept ion (X
+ ” i s out of range ”) ;

System . out . p r i n t l n (” Hello ” + X) ;
}
public void method2 (double Y) {

i f (Y > 0 . 5)
throw new ArithmeticExcept ion (Y

+ ” i s out of range ”) ;
System . out . p r i n t l n (” Hello ” + Y) ;

}
public s t a t i c void main (S t r i n g argv []) {

MyClass2 myclass = new MyClass2 () ;
t r y {

myclass . method1 (Math . random ()) ;
myclass . method2 (Math . random ()) ;

} catch (Ari thmeticExcept ion e) {
System . out . p r i n t l n (e . getMessage ()) ;

}
} // m a i n ()

} // M y C l a s s 2
 	

EXERCISE 10.5 For the values returned by random() in the previ-
ous exercise, show what would be output if printStackTrace() were
called in addition to printing an error message.

EXERCISE 10.6 In the MyClass2 program, suppose that the first time
random() is called it returns 0.44, and the second time it is called it
returns 0.98. What output would be printed by the program?

EXERCISE 10.7 For the values returned by random() in the previ-
ous exercise, show what would be output if printStackTrace() were
called instead of printing an error message.

SECTION 10.5 • Error Handling and Robust Program Design 477

EXERCISE 10.8 Find the divide-by-zero error in the following pro-
gram, and then show what stack trace would be printed by the program:� �
public c l a s s BadDivide {

public void method1 (i n t n) {
method2 (1 0 0 , n) ;

}
public void method2 (i n t n , i n t d) {

System . out . p r i n t l n (n / d) ;
}
public s t a t i c void main (S t r i n g args []) {

BadDivide bd = new BadDivide () ;
for (i n t k = 0 ; k < 5 ; k++)

bd . method1 (k) ;
}

}
 	
EXERCISE 10.9 Modify method2() so that it handles the divide-by-

zero exception itself, instead of letting Java handle it. Have it print an
error message and a stack trace.

EXERCISE 10.10 What would be printed by the following code seg-
ment if someValue equals 1000?� �
i n t M = someValue ;
t r y {

System . out . p r i n t l n (” Enter ing t r y block ”) ;
i f (M > 100)

throw new Exception (M + ” i s too l a r g e ”) ;
System . out . p r i n t l n (” E x i t i n g t r y block ”) ;

} catch (Exception e) {
System . out . p r i n t l n (”ERROR: ” + e . getMessage ()) ;

}
 	
EXERCISE 10.11 What would be printed by the code segment in the

preceding question if someValue equals 50?

EXERCISE 10.12 Write a try/catch block that throws an Exception
if the value of variable X is less than zero. The exception should be an
instance of Exception and, when it is caught, the message returned by
getMessage() should be “ERROR: Negative value in X coordinate.”

10.5 Error Handling and Robust
Program Design

An important element of program design is to develop appropriate ways
of handling erroneous and exceptional conditions. As we have seen, the
JVM will catch any unchecked exceptions that are not caught by the pro-
gram itself. For your own (practice) programs, the best design may sim- Let Java do it?

478 CHAPTER 10 • Exceptions: When Things Go Wrong

ply be to use Java’s default exception handling. The program will termi-
nate when an exception is thrown, and then you can debug the error and
recompile the program.

On the other hand, this strategy would be inappropriate for commercial
software, which cannot be fixed by its users. A well-designed commercial
program should contain exception handlers for those truly exceptional
conditions that may arise.

In general there are three ways to handle an exceptional condition that
isn’t already handled by Java (Table 10.3). If the exceptional condition

TABLE 10.3 Exception-handling strategies.

Kind of Exception Kind of Program Action to Be Taken

Caught by Java Let Java handle it
Fixable condition Fix the error and resume execution
Unfixable condition Stoppable Report the error and terminate

the program
Unfixable condition Not stoppable Report the error and resume

processing

cannot be fixed, the program should be terminated, with an appropriate
error message. Second, if the exceptional condition can be fixed withoutWhat action should we take?
invalidating the program, then it should be remedied and the program’s
normal execution should be resumed. Third, if the exception cannot be
fixed, but the program cannot be terminated, the exceptional condition
should be reported or logged in some way, and the program should be
resumed.

JAVA EFFECTIVE DESIGN Handling Exceptions. There are three
general ways to handle exceptions: (1) Report the exception and
terminate the program; (2) fix the exceptional condition and resume
normal execution; and (3) report the exception to a log and resume
execution.

10.5.1 Print a Message and Terminate

Our illegal argument example is a clear case in which the exception is best
handled by terminating the program. In this case, this particular error
is best left to Java’s default exception handling, which will terminate the
program when the exception is thrown. There is simply no way to satisfy
the postcondition of the avgFirstN() method when N is less than or
equal to 0. This type of error often calls attention to a design flaw in theProgram development

SECTION 10.5 • Error Handling and Robust Program Design 479

program’s logic that should be caught during program development. The
throwing of the exception helps identify the design flaw.

JAVA EFFECTIVE DESIGN Exceptions and Program
Development. Java’s built-in exception handling helps identify
design flaws during program development. Your own use of
exceptions should follow this approach.

Similar problems can (and often do) arise in connection with errors that
are not caught by Java. For example, suppose that your program receives
an erroneous input value, whose use would invalidate the calculation it
is making. This won’t be caught by Java. But it should be caught by Don’t spread bad data!
your program, and an appropriate alternative here is to report the error
and terminate the program. Fixing this type of error may involve adding
routines to validate the input data before they are used in the calculation.

In short, rather than allowing an erroneous result to propagate through-
out the program, it is best to terminate the program.

JAVA EFFECTIVE DESIGN Report and Terminate. If an unfixable
exception arises in a program that can be terminated, it is better to
report the error and terminate the program. That would be better than
allowing it to run with an erroneous value.

10.5.2 Log the Error and Resume
Of course, the advice to stop the program assumes that the program can be
terminated reasonably. Some programs—such as programs that monitor
the space shuttle or programs that control a nuclear magnetic resonance
(NMR) machine—cannot (and should not) be terminated because of such
an error.

Such programs are called failsafe because they are designed to run with-

Failsafe programs

out termination. For these programs, the exception should be reported in
whatever manner is most appropriate, but the program should continue
running. If the exceptional condition invalidates the program’s computa-
tions, then the exception handler should make it clear that the results are
tainted.

Other programs—such as programs that analyze a large transaction
database—should be designed to continue processing after catching such Programs that can’t be stopped
errors. For example, suppose the program a large airline runs a program
once a day to analyze the ticketing transactions that took place. This
kind of program might use exceptions to identify erroneous transactions
or transactions that involve invalid data of some sort. Because there are
bound to be many errors of this kind in the database, it is not reason-
able to stop the program. This kind of program shouldn’t stop until it
has finished processing all of the transactions. An appropriate action for
this kind of program is to log the exceptions into some kind of file and
continue processing the transactions.

Suppose a divide-by-zero error happened in one of these programs. In
that case, you would override Java’s default exception handling to ensure
that the program is not terminated. More generally, it’s important that

480 CHAPTER 10 • Exceptions: When Things Go Wrong

these types of programs be designed to catch and report such exceptions.
This type of exception handling should be built right into the program’s
design.

JAVA EFFECTIVE DESIGN Report and Resume. If an unfixable
exception arises in a program that cannot be terminated reasonably,
the exception should be reported and the program should continue
executing.

10.5.3 Fix the Error and Resume
As an example of a problem that can be addressed as the program runs,Problem statement
consider the task of inputting an integer into a text field. As you have
probably experienced, if a program is expecting an integer and you at-
tempt to input something beside an integer, a NumberFormatException
is generated and the program will terminate. For example, if you enter
“$55” when prompted to input an integer dollar amount, this will gen-
erate an exception when the Integer.parseInt() method is invoked.
The input string cannot be parsed into a valid int. However, this is the
kind of error that can be addressed as the program is running.

Let’s design a special IntField that functions like a normal text field
but accepts only integers. If the user enters a value that generates a
NumberFormatException, an error message should be printed and the
user should be invited to try again. As

JTextField

+IntField()

+IntField(in size : int)

+getInt() : int

IntField

Figure 10.13: An IntField is a
JTextField that accepts only in-
tegers.

Figure 10.13 shows, we want this special field to be a subclass of
JTextField and to inherit the basic JTextField functionality. It
should have the same kind of constructors that a normal JTextField
has. This leads to the definition shown in Figure 10.14.� �
import j avax . swing . ∗ ;

public c l a s s I n t F i e l d extends J T e x t F i e l d {
public I n t F i e l d () {

super () ;
}
public I n t F i e l d (i n t s i z e) {

super (s i z e) ;
}
public i n t g e t I n t () throws NumberFormatException {

return I n t e g e r . p a r s e I n t (getText ()) ;
} // g e t I n t ()

} // I n t F i e l d
 	
Figure 10.14: A NumberFormatException might be thrown by the
Integer.parseInt() method in IntField.getInt().

Note that the constructor methods use super to call the JTextField
constructor. For now, these two constructors should suffice. However,What constructors do we need?
later we will introduce a third constructor that allows us to associate a
bound with the IntField later in this chapter.

SECTION 10.5 • Error Handling and Robust Program Design 481

Our IntField class needs a method that can return its contents. This
method should work like JTextField.getText(), but it should re- What methods do we need?
turn a valid integer. The getInt() method takes no parameters and
will return an int, assuming that a valid integer is typed into the
IntField. If the user enters “$55,” a NumberFormatException will
be thrown by the Integer.parseInt() method. Note that getInt()
declares that it throws this exception. This is not necessary because a
NumberFormatException is not a checked exception, but it makes the
code clearer.

Where and how should this exception be handled? The exception can-
not easily be handled within the getInt() method. This method has to
return an integer value. If the user types in a non-integer, there’s no way
to return a valid value. Therefore, it’s better just to throw the exception to
the calling method, where it can be handled more easily.

In a GUI application or applet, the calling method is likely to be an
actionPerformed() method, such as the following:� �

public void actionPerformed (ActionEvent e) {
t r y {

u s e r I n t = i n t F i e l d . g e t I n t () ;
message = ”You input ” + u s e r I n t + ” Thank you . ” ;

} catch (NumberFormatException ex) {
JOptionPane . showMessageDialog (this ,

”The input must be an i n t e g e r . P lease re−enter . ”) ;
} f i n a l l y {

r e p a i n t () ;
}

} // a c t i o n P e r f o r m e d ()
 	
The call to getInt() is embedded in a try/catch block. This leads
to the design summarized in Figure 10.15. The IntField throws an
exception that is caught by the GUI, which then displays an error message.

showMessageDialog()

: IntField : AppletSubclass

: NumberFormatException : JOptionPane

throw()

catch()

Figure 10.15: If the user
types a non-integer into an
IntField, it will throw a
NumberFormatException. The
GUI will display an error message
in a JOptionPane (a dialog
window).

If the user inputs a valid integer, the program will just report a mes-
sage that displays the value. A more real-world example would make a
more significant use of the value. On the other hand, if the user types
an erroneous value, the program will pop up the dialog box shown in
Figure 10.16. (See the “From the Library” section of this chapter for more
on dialog boxes.) When the user clicks the OK button, the program will
resume normal execution, so that when an exception is raised, the enter
value is not used, and no harm is done by an erroneous value. The user

482 CHAPTER 10 • Exceptions: When Things Go Wrong
Figure 10.16: This exception han-
dler opens a dialog box to display
an error message.

can try again to input a valid integer. Note that the finally clause repaints
the GUI. In this case, repainting would display the appropriate message
on the applet or the application.

This is an example of what we might call defensive design. Defensive de-
sign is when we anticipate a possible input error and take steps to ensureDefensive design: Anticipating an

exception that a bad value is not propagated throughout the program.

JAVA EFFECTIVE DESIGN Defensive Design. Well-designed code
should anticipate potential problems, especially potential input
problems. Effective use of exceptions can help with this task.

Admittedly, the sense in which the error here is “fixed” is simply that
the user’s original input is ignored and reentered. This is a legitimate
and simple course of action for this particular situation. It is far prefer-
able to ignoring the exception. If the program does not handle this excep-
tion itself, Java will catch it and will print a stack trace and terminate the
program. That would not be a very user-friendly interface!

Clearly, this is the type of exceptional condition that should be antici-Anticipating exceptions
pated during program design. If this happens to be a program designed
exclusively for your own use, then this type of exception handling might
be unnecessary. But if the program is meant to be used by others, it is im-
portant that the program be able to handle erroneous user input without
crashing.

JAVA EFFECTIVE DESIGN Fixing an Exception. If a method can
handle an exception effectively, it should handle it locally. This is both
clearer and more efficient.

JAVA EFFECTIVE DESIGN Library Exception Handling. Many of
Java’s library classes do not handle their own exceptions. The thinking
behind this design is that the user of the class is in a better position to
handle the exception in a way that’s appropriate for the application.

SECTION 10.5 • Error Handling and Robust Program Design 483

10.5.4 To Fix or Not to Fix

Let’s now consider a problem where it is less clear whether an excep-
tion can be successfully fixed “on the fly.” Suppose you have a program
that contains an array of Strings, which is initially created with just two
elements.� �

S t r i n g l i s t [] = new S t r i n g [2] ;
 	
If an attempt is made to add more than two elements to the array, an
ArrayIndexOutOfBoundsException will be raised. This exception
can be handled by extending the size of the array and inserting the ele-
ment. Then the program’s normal execution can be resumed.

To begin creating such a program, let’s first design a method that will
insert a string into the array. Suppose that this is intended to be a private Problem statement
method that will only be used within the program. Also, let’s suppose that
the program maintains a variable, count, that tracks how many values
have been stored in the array. Therefore, it will not be necessary to pass
the array as a parameter. So, we are creating a void method with one
parameter, the String to be inserted:� �

private void i n s e r t S t r i n g (S t r i n g s t r) {
// M i g h t t h r o w A r r a y I n d e x O u t O f B o u n d s E x c e p t i o n

l i s t [count] = s t r ;
++count ;

}
 	
The comment notes where an exception might be thrown.

Can we handle this exception? When this exception is raised, we could
create a new array with one more element than the current array. We
could copy the old array into the new array and then insert the String in Algorithm design
the new location. Finally, we could set the variable list, the array refer-
ence, so that it points to the new array. Thus, we could use the following
try/catch block to handle this exception:� �

private void i n s e r t S t r i n g (S t r i n g s t r) {
t r y {

l i s t [count] = s t r ;
} catch (ArrayIndexOutOfBoundsException e) {

// C r e a t e a new a r r a y

S t r i n g newList [] = new S t r i n g [l i s t . length + 1] ;
for (i n t k = 0 ; k < l i s t . length ; k++) // C o p y a r r a y

newList [k] = l i s t [k] ;
newList [count] = s t r ; // I n s e r t i n t o new a r r a y

l i s t = newList ; // Make o l d p o i n t t o new

} f i n a l l y { // S i n c e t h e e x c e p t i o n i s now f i x e d

count ++; // I n c r e a s e t h e c o u n t

}
} // i n s e r t S t r i n g ()
 	

The effect of the catch clause is to create a new array, still referred to as
list, but that contains one more element than the original array.

+FixArrayBound()

+paintComponent(in g : Graphics)

-insertString(in s : String)

+actionPerformed()

+main()

-list[] : String

-inField : JTextField

-prompt : JLabel

-count : int

FixArrayBound

JPanel

Figure 10.17: The
FixArrayBound class uses
exception handling to extend the
size of an array each time a new
element is inserted.

484 CHAPTER 10 • Exceptions: When Things Go Wrong

Note the use of the finally clause here. For this problem it’s impor-
tant that we increment count in the finally clause. This is the only
way to guarantee that count is incremented exactly once whenever an
element is assigned to the array.

The design of the FixArrayBound class is shown in Figure 10.17.
It provides a simple GUI interface that enables you to test the
insertString()method. This program has a standard Swing interface,
using a JFrame as the top-level window. The program’s components are
contained within a JPanel that’s added to the JFrame in the main()
method.

Each time the user types a string into the text field, the action-
Performed() method calls the insertString() method to add the
string to the array. On each user action, the JPanel is repainted. The
paintComponent() method simply clears the panel and then displays
the array’s elements (Fig. 10.18).

JAVA DEBUGGING TIP Clearing the JPanel. Swing components,
such as JPanel, do not automatically clear their backgrounds. This
must be done explicitly in the paintComponent() method.

The complete implementation of FixArrayBound is given in Fig-
ure 10–19. This example illustrates how an exception can be handled suc-
cessfully and the program’s normal flow of control resumed. However,
the question is whether such an exception should be handled this way.

Unfortunately, this is not a well-designed program. The array’s initialPoor program design
size is much too small for the program’s intended use. Therefore, the fact
that these exceptions arise at all is the result of poor design. In general,
exceptions should not be used as a remedy for poor design.

JAVA EFFECTIVE DESIGN Truly Exceptional Conditions. A
well-designed program should use exception handling to deal with
truly exceptional conditions, not to process conditions that arise under
normal or expected circumstances.

For a program that uses an array, the size of the array should be chosen so
that it can store all the objects required by the program. If the program isProper array usage
some kind of failsafe program, which cannot afford to crash, then some-
thing like the previous approach might be justified, provided this type
of exception occurs very rarely. Even in that case it would be better to
generate a message that alerts the program’s user that this condition has
occurred. The alert will indicate a need to modify the program’s memory
requirements and restart the program.

Figure 10.18: The strings dis-
played are stored in an array that
is extended each time a new string
is entered.

SECTION 10.5 • Error Handling and Robust Program Design 485

� �
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;
import j avax . swing . ∗ ;

public c l a s s FixArrayBound extends JPanel
implements Act ionLis tener {

public s t a t i c f i n a l i n t WIDTH = 350 , HEIGHT = 1 0 0 ;
private J T e x t F i e l d i n F i e l d = new J T e x t F i e l d (1 0) ;
private JLabe l prompt = new JLabe l (

” Input a word and type <ENTER>: ”) ;
// I n i t i a l l y l i s t h a s 2 e l e m e n t s

private S t r i n g l i s t [] = new S t r i n g [2] ;
private i n t count = 0 ;

public FixArrayBound () {
i n F i e l d . addActionListener (t h i s) ;
add (prompt) ;
add (i n F i e l d) ;
s e t S i z e (WIDTH, HEIGHT) ;

} // F i x A r r a y B o u n d ()

public void paintComponent (Graphics g) {
g . se tColor (getBackground ()) ; // C l e a r t h e b a c k g r o u n d

g . f i l l R e c t (0 , 0 , WIDTH, HEIGHT) ;
g . se tColor (getForeground ()) ;
S t r i n g tempS = ”” ;
for (i n t k = 0 ; k < l i s t . length ; k++)

tempS = tempS + l i s t [k] + ” ” ;
g . drawString (tempS , 10 , 5 0) ;

} // p a i n t C o m p o n e n t

private void i n s e r t S t r i n g (S t r i n g s t r) {
t r y {

l i s t [count] = s t r ;
} catch (ArrayIndexOutOfBoundsException e) {

S t r i n g newList [] = new S t r i n g [l i s t . length + 1] ; // New a r r a y

for (i n t k = 0 ; k < l i s t . length ; k++) // C o p y o l d t o new

newList [k] = l i s t [k] ;
newList [count] = s t r ; // I n s e r t i t e m i n t o new

l i s t = newList ; // Make o l d p o i n t t o new

} f i n a l l y { // T h e e x c e p t i o n i s now f i x e d

count ++; // s o i n c r e a s e t h e c o u n t

}
} // i n s e r t S t r i n g ()

public void actionPerformed (ActionEvent evt) {
i n s e r t S t r i n g (i n F i e l d . getText ()) ;
i n F i e l d . s e t T e x t (””) ;
r e p a i n t () ;

} // a c t i o n P e r f o r m e d ()
 	
Figure 10.19: FixArrayBound increases the size of the array when a
ArrayIndexOutOfBoundsException is raised.

486 CHAPTER 10 • Exceptions: When Things Go Wrong� �
public s t a t i c void main (S t r i n g args []) {

JFrame f = new JFrame (”Array F i x e r ”) ;
FixArrayBound panel = new FixArrayBound () ;
f . getContentPane () . add (panel) ;
f . s e t S i z e (panel .WIDTH, panel .HEIGHT) ;
f . s e t V i s i b l e (t rue) ;
f . addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent e) {
System . e x i t (0) ; // Q u i t t h e a p p l i c a t i o n

}
}) ;

} // m a i n ()

} // F i x A r r a y B o u n d
 	
Figure 10.19: (continued) FixArrayBound increases the size of the array
when ArrayIndexOutOfBoundsException is raised.

If it is not known in advance how many objects will be stored in an
array, a better design would be to make use of the java.util.Vector
class (see “From the Java Library” in Chapter 9). Vectors are designed toChoosing the correct data structure
grow as new objects are inserted. In some ways the exception-handling
code in our example mimics the behavior of a vector. However, the
Vector class makes use of efficient algorithms for extending its size. By
contrast, exception-handling code is very inefficient. Because exceptions
force the system into an abnormal mode of execution, it takes considerably
longer to handle an exception than it would to use a Vector for this type
of application.

JAVA EFFECTIVE DESIGN Appropriate Data Structure. A major
component of problem solving is choosing the best way to represent
the data. A vector should be used as an array structure whenever the
size of the array will grow and shrink dynamically during the
program’s execution.

SELF-STUDY EXERCISE
EXERCISE 10.13 For each of the following exceptions, determine

whether it can be handled in such a way that the program can be resumed
or whether the program should be terminated:

a. A computer game program detects a problem with one of its GUI ele-
ments and throws a NullPointerException.

b. A factory assembly-line control program determines that an important
control value has become negative and generates an Arithmetic-
Exception.

c. A company’s Web-based order form detects that its user has entered an
invalid String and throws a SecurityException.

+getMessage()

Exception

+IntOutOfRangeException(in b : int)

IntOutOfRangeException

Figure 10.20: The
IntOutOfRange exception.

SECTION 10.6 • Creating and Throwing Your Own Exceptions 487

10.6 Creating and Throwing Your Own
Exceptions

Like other Java classes, the Exception class can be extended to handle
cases that are not already covered by Java’s built-in exceptions. Exceptions
that you define will be handled the same way by the Java interpreter, but
you will have to throw them yourself.

For example, Figure 10.20 shows the design of an exception that can
be used for validating that an integer is less than or equal to a certain
maximum value. It would be coded as follows:� �

/∗ ∗
∗ I n t O u t O f R a n g e E x c e p t i o n r e p o r t s a n e x c e p t i o n when

∗ a n i n t e g e r e x c e e d s i t s b o u n d .

∗/

public c l a s s IntOutOfRangeException extends Exception {

public IntOutOfRangeException (i n t Bound) {
super (”The input value exceeds the bound ” + Bound) ;

}
}
 	

The class extends Exception and consists entirely of a constructor
method that calls the superclass constructor. The argument passed
to the superclass constructor is the message that will be returned by
getMessage() when an instance of this exception is created.

Now let’s consider an example where this new exception will be
thrown. Suppose we wish to constrain the IntField class that we de-
veloped previously (Fig. 10.14) so that it will only accept numbers that are
less than a certain bound. First, let’s modify IntField so that its bound
can be set when an instance is created. We want its bound to be an instance
variable with some initial value, and we want to provide a constructor that
can be used to override the default (Fig. 10.21).

JTextField

+IntField()

+IntField(in size : int)

+IntField(in size : int, in max : int)

+getInt() : int

-bound : int

IntField

Figure 10.21: The revised
IntField class contains a
bound on the size of the numbers
that should be entered.

This leads to the following revision of IntField:� �
public c l a s s I n t F i e l d extends J T e x t F i e l d {

private i n t bound = I n t e g e r .MAX VALUE;

public I n t F i e l d (i n t s ize , i n t max) {
super (s i z e) ;
bound = max ;

}
// T h e r e s t o f t h e c l a s s i s u n c h a n g e d f o r now

} // I n t F i e l d
 	
Our new constructor has the signature IntField(int,int), which
doesn’t duplicate any of JTextField’s constructors. This is good design,
because in extending a class, we want to be careful about the effect that
our definitions have on the original methods in the superclass. Superclass
methods should be overridden by design, not by accident. If a method is

488 CHAPTER 10 • Exceptions: When Things Go Wrong� �
import j avax . swing . ∗ ;

public c l a s s I n t F i e l d extends J T e x t F i e l d {
private i n t bound = I n t e g e r .MAX VALUE;

public I n t F i e l d (i n t s i z e) {
super (s i z e) ;

}

public I n t F i e l d (i n t s ize , i n t max) {
super (s i z e) ;
bound = max ;

}

public i n t g e t I n t () throws NumberFormatException ,
IntOutOfRangeException {

i n t num = I n t e g e r . p a r s e I n t (getText ()) ;
i f (num > bound)

throw new IntOutOfRangeException (bound) ;
return num;

} // g e t I n t ()

} // I n t F i e l d
 	
Figure 10.22: The revised IntField class containing the revised
getInt() method.

redefined inadvertently, it might not function as expected by users of the
subclass.

JAVA EFFECTIVE DESIGN Extending a Class. When extending a
class, care must taken to ensure that the superclass’s methods are not
inadvertently overridden. A superclass method should only be
overridden by design, not by accident.

Note how we have handled the problem of setting the default value
of the bound. Integer.MAX VALUE is a class constant that sets the
maximum value for the int type. It’s an appropriate value to use, be-
cause any valid int that the user types should be less than or equal to
MAX VALUE. Given these changes to IntField, let’s now incorporate our
new exception into its getInt() method (Fig. 10.22).

This new version of getInt() throws an exception if the integer en-
tered by the user is greater than the IntField’s bound. Here again, it
is difficult to handle this exception appropriately in this method. The
method would either have to return an erroneous value—because it must
return something—or it must terminate. Neither is an acceptable alterna-
tive. It is far better to throw the exception to the calling method.

The IntFieldTester class (Fig. 10.23) has the design and function-
ality shown in Figure 10.15. It provides a simple GUI interface to test
the IntField class. It prompts the user to type an integer that is less
than 100, and then it echoes the user’s input. Note how the exception is

SECTION 10.7 • From the Java Library: JOptionPane 489

handled in the actionPerformed() method. If an exception is thrown
in IntField.getInt(), the actionPerformed() method pops up an
error dialog, and the erroneous input is not used. Instead, the user is given
another chance to enter a valid integer.

SELF-STUDY EXERCISES
EXERCISE 10.14 Define a new Exception named FieldIsEmpty-
Exception, which is meant to be thrown if the user forgets to enter a
value into a IntField.

EXERCISE 10.15 Modify the IntField.getInt() method so that it
throws and catches the FieldIsEmptyException.

10.7 From the Java Library: JOptionPane

A dialog box is a window that can be opened by a program to communi-
cate in some way with the user. Dialog boxes come in many varieties and
have many uses in a GUI environment. You’ve undoubtedly encountered
them when using your own computer.

For example, a file dialog is opened whenever you want to open or save
a file. It provides an interface that lets you name the file and helps you

java.sun.com/j2se/1.5.0/docs/api/search through the computer’s directory structure to find a file.
A warning dialog or error dialog is opened whenever a program needs

to notify or warn you that some kind of error occurred. It usually presents
an error message and an OK button that you click to dismiss the dialog.

Dialogs are easy to create and use in Java. The Swing component
set provides several different kinds of basic dialogs that can be incorpo-
rated into your program with one or two lines of code. For example, the
IntFieldTester class makes use of a simple message dialog to report
an input error to the user. This dialog was created by the following code
segment in the program (see Figure 10.23):� �

catch (NumberFormatException e) {
JOptionPane . showMessageDialog (this ,

”The input must be an i n t e g e r . P lease r e e n t e r . ”) ;
}
 	

This method call displays the window shown in Figure 10.16. It con-
tains the error message and an OK button that is used to close the win-
dow. The showMessageDialog() method is a static method of the
javax.swing.JOptionPane class. This class provides a collection of
similar methods for creating and displaying basic dialog boxes.

TopLevelWindow

DialogWindow

Creates

Figure 10.24: A dialog window
cannot stand alone. It must be cre-
ated by a top-level window.

A dialog differs from other kinds of top-level windows—such
as JApplet and JFrame—in that it is associated with another
window (Fig. 10–24). The first parameter in this version of the
showMessageDialog() method is a reference to the dialog’s parent
window. The second parameter is a String representing the message.

The basic message dialog used in this example is known as a modal
dialog. This means that once it’s been displayed, you can’t do anything
else until you click the OK button and dismiss the dialog. It’s also possible

490 CHAPTER 10 • Exceptions: When Things Go Wrong� �
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;
import j avax . swing . ∗ ;

public c l a s s I n t F i e l d T e s t e r extends JPanel
implements Act ionLis tener {

public s t a t i c f i n a l i n t WIDTH = 300 , HEIGHT = 3 0 0 ;
private JLabe l prompt = new JLabe l (” Input an i n t e g e r <= 1 0 0 : ”) ;
private I n t F i e l d i n t F i e l d = new I n t F i e l d (1 2 , 1 0 0) ;
private i n t u s e r I n t ;
private S t r i n g message = ” Hello ” ;

public I n t F i e l d T e s t e r () {
add (prompt) ;
i n t F i e l d . addActionListener (t h i s) ;
add (i n t F i e l d) ;
s e t S i z e (WIDTH, HEIGHT) ;

} // I n t F i e l d T e s t e r ()

public void paintComponent (Graphics g) {
g . se tColor (getBackground ()) ; // C l e a r t h e p a n e l

g . f i l l R e c t (0 , 0 , WIDTH, HEIGHT) ;
g . se tColor (getForeground ()) ;
g . drawString (message , 10 , 7 0) ;

} // p a i n t C o m p o n e n t ()

public void actionPerformed (ActionEvent evt) {
t r y {

u s e r I n t = i n t F i e l d . g e t I n t () ;
message = ”You input ” + u s e r I n t + ” Thank you . ” ;

} catch (NumberFormatException e) {
JOptionPane . showMessageDialog (this ,

”The input must be an i n t e g e r . P lease r e e n t e r . ”) ;
} catch (IntOutOfRangeException e) {

JOptionPane . showMessageDialog (this , e . getMessage ()) ;
} f i n a l l y {

r e p a i n t () ;
}

} // a c t i o n P e r f o r m e d ()

public s t a t i c void main (S t r i n g args []) {
JFrame f = new JFrame (” I n t F i e l d T e s t e r ”) ;
I n t F i e l d T e s t e r panel = new I n t F i e l d T e s t e r () ;
f . getContentPane () . add (panel) ;
f . s e t S i z e (panel .WIDTH, panel .HEIGHT) ;
f . s e t V i s i b l e (t rue) ;
f . addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent e) {
System . e x i t (0) ; // Q u i t t h e a p p l i c a t i o n

}
}) ;

} // m a i n ()

} // I n t F i e l d T e s t e r
 	
Figure 10.23: An application that uses an IntField object to process
integers.

SECTION 10.7 • From the Java Library: JOptionPane 491

to create nonmodal dialogs. These can stay around on the screen while you
move on to other tasks. Modal and nonmodal dialogs

Note that the dialog box also contains an icon that symbolizes the pur-
pose of the message (Fig. 10.25). The icon is representative of the dialog’s

Figure 10.25: An error dialog.

message type. Among the basic types available in JOptionPane are the
following:� �

JOptionPane . PLAIN MESSAGE
JOptionPane . INFORMATIONAL MESSAGE // D e f a u l t

JOptionPane .WARNING MESSAGE
JOptionPane . QUESTION MESSAGE
JOptionPane .ERROR MESSAGE
 	

To set the dialog to anything other than the default (informational) type,
you can use the following version of showMessageDialog():� �

showMessageDialog (Component comp , Object message ,
S t r i n g t i t l e , i n t msgType) ;
 	

The first parameter is a reference to the parent window. The second is the
message string. The third is a string used as the dialog window’s title, and
the fourth is one of the five dialog types. For example, we can change our
dialog to an error dialog with the following statement:� �

catch (IntOutOfRangeException e) {
JOptionPane . showMessageDialog (this ,

e . getMessage () ,
” Error dia log ” ,
JOptionPane .ERROR MESSAGE) ;

}
 	
This would produce the dialog shown in Figure 10.25.

The other kinds of basic dialogs provided by the JOptionPane class
are listed in Table 10.4. All of the dialogs listed there can be created with a
line or two of code. In addition to these, it’s also possible to create sophis- Basic Swing dialogs
ticated dialogs that can be as customized as any other GUI interface you
can build in Java.

492 CHAPTER 10 • Exceptions: When Things Go Wrong
TABLE 10.4 Basic dialogs provided by JOptionPane.

Dialog Description

Message Dialog Presents a simple error or informational message
Confirm Dialog Prompts the user to confirm a particular action
Option Dialog Lets the user choose from some options
Input Dialog Prompts and inputs a string

In this chapter, you have learned how to handle exceptional conditions
that occur in programs. You now know that Java has a default excep-
tion handler that can take of many situations, and you also understand
that proper program design using Java excpetion-handling elements helps
deal with many other situations. This chapter continues the emphasis on
good program design for creating useful, stable programs.

CHAPTER SUMMARY Technical Terms
catch block
catch an exception
checked exception
dialog box
dynamic scope
error dialog

exception
exception handling
finally block
method call stack
method stack trace
modal dialog

static scope
throw an exception
try block
unchecked exception

The Try/Catch Statement
The try/catch/finally statement has the following syntax:� �

t r y {
// B l o c k o f s t a t e m e n t s

// A t l e a s t o n e o f w h i c h may t h r o w a n e x c e p t i o n

i f (∗ Some condi t ion obta ins ∗/)
throw new ExceptionName () ;

} catch (ExceptionName ParameterName) {
// B l o c k o f s t a t e m e n t s t o b e e x e c u t e d

// I f t h e E x c e p t i o n N a m e e x c e p t i o n i s t h r o w n i n t r y

}
. .
} catch (ExceptionName2 ParameterName) {

// B l o c k o f s t a t e m e n t s t o b e e x e c u t e d

// I f t h e E x c e p t i o n N a m e 2 e x c e p t i o n i s t h r o w n i n t r y

} f i n a l l y {
// O p t i o n a l b l o c k o f s t a t e m e n t s t h a t i s e x e c u t e d

// W h e t h e r a n e x c e p t i o n i s t h r o w n o r n o t

}
 	
The try block is meant to include a statement or statements that might
throw an exception. The catch blocks—there can be one or more—are
meant to handle exceptions that are thrown in the try block. A catch block

CHAPTER 10 • Chapter Summary 493

will handle any exception that matches its parameter class, including sub-
classes of that class. The finally block is optional. It will be executed
whether an exception is thrown or not. If an exception is thrown in the
try block, the try block is exited permanently.

The throw statement inside the try block is there to illustrate how
throw can be used. You will usually not see a throw statement in a try
block, because most throws are done from within Java library methods,
which are called from a try block.

Summary of Important Points
• In Java, when an error or exceptional condition occurs, you throw an
Exception, which is caught by special code known as an exception
handler. A throw statement—throw new Exception()—is used to
throw an exception.
• A try block is a block of statements containing one or more statements

that may throw an exception. Embedding a statement in a try block
indicates your awareness that it might throw an exception and your
intention to handle the exception.
• Java distinguishes between checked and unchecked exceptions. Checked

exceptions must either be caught by the method in which they occur
or you must declare that the method containing that statement throws
the exception.
• Unchecked exceptions are those that belong to subclasses of Runtime-
Exception. If they are left uncaught, they will be handled by Java’s
default exception handlers.
• A catch block is a block of statements that handles the exceptions that

match its parameter. A catch block can only follow a try block, and
there may be more than one catch block for each try block.
• The try/catch syntax allows you to separate the normal parts of an

algorithm from special code meant to handle errors and exceptional
conditions.
• A method stack trace is a trace of the method calls that have led

to the execution of a particular statement in the program. The
Exception.printStackTrace() method can be called by excep-
tion handlers to print a trace of exactly how the program reached the
statement that threw the exception.
• Static scoping refers to how the text of the program is arranged. If a vari-

able is declared within a method or a block, its static scope is confined
to that method or block.
• Dynamic scoping refers to how the program is executed. A statement is

within the dynamic scope of a method or block if it is called from that
method or block, or if it is called by some other method that was called
from that method or block.
• When searching for a catch block to handle an exception thrown by a

statement, Java searches upward through the statement’s static scope
and backward through its dynamic scope until it finds a matching
catch block. If none is found, the Java Virtual Machine will handle the
exception itself by printing an error message and a method stack trace.
• Many Java library methods throw exceptions when an error occurs.

These throw statements do not appear in the program. For example,

494 CHAPTER 10 • Exceptions: When Things Go Wrong

Java’s integer division operator will throw an ArithmeticException
if an attempt is made to divide by zero.
• Generally, there are four ways to handle an exception: (1) Let Java han-

dle it; (2) fix the problem that led to the exception and resume the pro-
gram; (3) report the problem and resume the program; and (4) print an
error message and terminate the program. Most erroneous conditions
reported by exceptions are difficult or impossible to fix.
• A finally statement is an optional part of a try/catch block. State-

ments contained in a finally block will be executed whether an excep-
tion is raised or not.
• A well-designed program should use exception handling to deal with

truly exceptional conditions, not as a means of normal program control.
• User-defined exceptions can be defined by extending the Exception

class or one of its subclasses.

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 10.1

a. Integer.parseInt("26.2"); ==> NumberFormatException

b. String s; s.indexOf(’a’); ==> NullPointerException

c. String s = "hello"; s.charAt(5); ==> StringIndexOutOfBoundsException

SOLUTION 10.2 The unchecked exceptions are IndexOutOfBoundsException,
NumberFormatException, and NullPointerException, because these are
subclasses of RuntimeException. The others are checked exceptions.

SOLUTION 10.3 An ArrayIndexOutOfBoundsException could be handled
by the handlers in a, c, or d, because their classes are all superclasses of Array-
IndexOutOfBoundsException.

SOLUTION 10.4 If Math.random() in MyClass2 returns 0.98 and then 0.44,
the program will generate the following output:� �
0 . 9 8 i s out of range
 	
Note that because the out-of-range error occurs in method1(), method2() is not
called at all.

SOLUTION 10.5 If Math.random() in MyClass2 returns 0.98 and then 0.44,
the following stack trace would be printed:� �
j ava . lang . Ari thmeticExcept ion : 0 . 9 8 i s out of range

a t MyClass2 . method1 (MyClass2 . j ava : 3)
a t MyClass2 . main (MyClass2 . j ava : 1 5)
 	

SOLUTION 10.6 If Math.random() in MyClass2 returns 0.44 and then 0.98,
the program will generate the following output:� �
Hello 0 . 4 4
0 . 9 8 i s out of range
 	

CHAPTER 10 • Solutions to Self-Study Exercises 495

SOLUTION 10.7 If Math.random() in MyClass2 returns 0.44 and then 0.98,
the following stack trace would be printed:� �
j ava . lang . Ari thmeticExcept ion : 0 . 9 8 i s out of range

a t MyClass2 . method2 (MyClass2 . j ava : 8)
a t MyClass2 . main (MyClass2 . j ava : 1 6)
 	

SOLUTION 10.8 The divide-by-zero error in BadDivide occurs in the expres-
sion n/d in Method2(). It would generate the following stack trace:� �
j ava . lang . Ari thmeticExcept ion : divide by zero

a t BadDivide . method2 (BadDivide . java : 7)
a t BadDivide . method1 (BadDivide . java : 3)
a t BadDivide . main (BadDivide . java : 1 3)
 	

SOLUTION 10.9 The following version of BadDivide.method2() will handle
the divide-by-zero error itself:� �
public void method2 (i n t n , i n t d) {

t r y {
System . out . p r i n t l n (n / d) ;

} catch (Ari thmeticExcept ion e) {
System . out . p r i n t l n (e . getMessage ()) ;
e . p r i n t S t a c k T r a c e () ;
System . e x i t (0) ;

}
}
 	
SOLUTION 10.10 If someValue equals 1000, the code segment will print� �
Entering t r y block
ERROR: 1000 i s too l a r g e
 	
SOLUTION 10.11 If someValue equals 50, the code segment will print� �
Entering t r y block
E x i t i n g t r y block
 	
SOLUTION 10.12� �
t r y {

i f (X < 0)
throw new Exception (

”ERROR: Negative value in X coordinate ”) ;
} catch (Exception e) {

System . out . p r i n t l n (e . getMessage ()) ;
}
 	
SOLUTION 10.13

496 CHAPTER 10 • Exceptions: When Things Go Wrong

a. It depends. This is a computer game, so one way to handle this problem
would be to generate a message into a log file and resume the game. If
the GUI element is crucial to the game, it’s hard to see how it could be
successfully handled.

b. It depends. You would have to decide whether it would be more harmful or
dangerous to continue production than not.

c. The program could report the security violation to the user and to the system
manager and then keep accepting user input.

SOLUTION 10.14� �
public c l a s s FieldIsEmptyException extends Exception {

public FieldIsEmptyException () {
super (”The input f i e l d i s empty ”) ;

}
}
 	
SOLUTION 10.15� �
public i n t g e t I n t () {

i n t num = 0 ;
t r y {

S t r i n g data = getText () ;
i f (data . equals (””))

throw new FieldIsEmptyException () ;
num = I n t e g e r . p a r s e I n t (getText ()) ;
i f (num > bound)

throw new IntOutOfRangeException (bound) ;
} catch (FieldIsEmptyException e) {

System . out . p r i n t l n (” Error : ” + e . getMessage ()) ;
} catch (NumberFormatException e) {

System . out . p r i n t l n (” Error : You must input an i n t e g e r .
P lease t r y again . ”) ;

} catch (IntOutOfRangeException e) {
System . out . p r i n t l n (e . getMessage ()) ;
return 0 ;

}
return num;

}
 	
EXERCISES
Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

EXERCISE 10.1 Explain the difference between the following pairs of terms:
a. Throwing an exception and catching an exception.
b. Try block and catch block.
c. Catch block and finally block.
d. Try block and finally block.
e. Dynamic scope and static scope.
f. Dialog box and top-level window.
g. Checked and unchecked exception.
h. Method stack and method call.

EXERCISE 10.2 Fill in the blanks.

CHAPTER 10 • Exercises 497

a. an exception is Java’s way of signaling that some kind of abnormal

situation has occurred.

b. The only place that an exception can be thrown in a Java program is within a

.

c. The block of statements placed within a catch block is generally known as an

.

d. To determine a statement’s scope, you have to trace the program’s

execution.

e. To determine a statement’s scope, you can just read its definition.

f. When a method is called, a representation of the method call is placed on the

.

g. The root of Java’s exception hierarchy is the class.

h. A exception must be either caught or declared within the method in

which it might be thrown.

i. An exception can be left up to Java to handle.

EXERCISE 10.3 Compare and contrast the four different ways of handling ex-
ceptions within a program.

EXERCISE 10.4 Suppose you have a program that asks the user to input a string
of no more than five letters. Describe the steps you’d need to take in order to
design a StringTooLongException to handle cases where the user types in too
many characters.

EXERCISE 10.5 Exceptions require more computational overhead than normal
processing. Explain.

EXERCISE 10.6 Suppose the following ExerciseExample program is cur-
rently executing the if statement in method2():� �
public c l a s s ExerciseExample {

public void method1 (i n t M) {
t r y {

System . out . p r i n t l n (” Enter ing t r y block ”) ;
method2 (M) ;
System . out . p r i n t l n (” E x i t i n g t r y block ”) ;

} catch (Exception e) {
System . out . p r i n t l n (”ERROR: ” + e . getMessage ()) ;

}
} // m e t h o d 1 ()

public void method2 (i n t M) {
i f (M > 100)

throw new ArithmeticExcept ion (M + ” i s too l a r g e ”) ;
}

public s t a t i c void main (S t r i n g argv []) {
ExerciseExample ex = new ExerciseExample () ;
ex . method1 (5 0 0) ;

}
} // E x e r c i s e E x a m p l e
 	
Draw a picture of the method call stack that represents this situation.

498 CHAPTER 10 • Exceptions: When Things Go Wrong

EXERCISE 10.7 Repeat the previous exercise for the situation where the pro-
gram is currently executing the second println() statement in method1().

EXERCISE 10.8 Draw a hierarchy chart that represents the static scoping rela-
tionships among the elements of the ExerciseExample program.

EXERCISE 10.9 What would be printed by the ExerciseExample program
when it is run?

EXERCISE 10.10 What would be printed by the ExerciseExample program,
if the statement in its main method were changed to ex.method1(5)?

EXERCISE 10.11 Consider again the ExerciseExample program. If the ex-
ception thrown were Exception rather than ArithmeticException, explain
why we would get the following error message: java.lang.Exception must
be caught, or it must be declared....

EXERCISE 10.12 Write a try/catch block that throws an Exception if the
value of variable X is less than zero. The exception should be an instance of
Exception and, when it is caught, the message returned by getMessage()
should be “ERROR: Negative value in X coordinate.”

EXERCISE 10.13 Look at the IntFieldTester program (Fig. 10.23) and the
IntField class definition (Fig. 10.22). Suppose the user inputs a value that’s
greater than 100. Show what the method call stack would look like when the
IntField.getInt() method is executing the num > bound expression.

EXERCISE 10.14 As a continuation of the previous exercise, show what the
program’s output would be if the user input a value greater than 100.

EXERCISE 10.15 As a continuation of the previous exercise, modify the
IntOutOfRangeException handler so that it prints the message call stack. Then
show what it would print.

EXERCISE 10.16 Define a subclass of RuntimeException named Invalid-
PasswordException, which contains two constructors. The first constructor
takes no parameters and an exception thrown with this constructor should re-
turn “ERROR: invalid password” when its getMessage() is invoked. The sec-
ond constructor takes a single String parameter. Exceptions thrown with this
constructor should return the constructor’s argument when getMessage() is
invoked.

EXERCISE 10.17 Extend the IntField class so that it will constrain the integer
JTextField to an int between both a lower and upper bound. In other words, it
should throw an exception if the user types in a value lower than the lower bound
or greater than the upper bound.

EXERCISE 10.18 Design Issue: One of the preconditions for the Insertion-
Sort() method (Fig. 9.13) is that its array parameter not be null. Of course, this
precondition would fail if the array were passed a null array reference. In that
case, Java would throw a NullPointerException and terminate the program.
Is this an appropriate way to handle that exception?

EXERCISE 10.19 With respect to the previous exercise, suppose you decide that
it is more appropriate to handle the NullPointerException by presenting an
error dialog. Modify the method to accommodate this behavior.

EXERCISE 10.20 Design Issue: Another possible way to design the sequential-
Search() method (Fig. 9.16) would be to have it throw an exception when its key
is not found in the array. Is this a good design? Explain.

OBJECTIVES
After studying this chapter, you will

• Be able to read and write text files.
• Know how to read and write binary files.
• Understand the use of InputStreams and OutputStreams.
• Be able to design methods for performing input and output.
• Know how to use the File class.
• Be able to use the JFileChooser class.

OUTLINE
11.1 Introduction
11.2 Streams and Files
11.3 Case Study: Reading and Writing Text Files
11.4 The File Class
11.5 Example: Reading and Writing Binary Files
11.6 Object Serialization: Reading and Writing Objects
11.7 From the Java Library: javax.swing.JFileChooser
11.8 Using File Data in Programs

Special Topic: Databases and Personal Privacy
Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 11

Files and Streams:
Input/Output Techniques

499

500 CHAPTER 11 • Files and Streams: Input/Output Techniques

11.1 Introduction

We have been using input and output in our programs since the very first
chapters of the book. In this chapter we will take a closer look at Java’s
input and output elements.

Input refers to information or data read from some external source into
a running program. We introduced you to working with input in Chap-
ter 4, when we developed the KeyboardReader class with methods for
reading data from the keyboard into the console window. We also dis-
cussed reading data from the keyboard into a JTextField in a GUI inter-
face, as well as reading data from a text file using methods in the Scannerinput and output
class during that chapter.

Output refers to information or data written from the running program
to some external destination. Up to this point, whenever our programs
have produced output, it has been sent to either the Java console, to a text
area, or to some other GUI component. These destinations are transitory,
in the sense that they reside in the computer’s primary memory and exist
only so long as the program is running.

A file is a collection of data that’s stored on a disk or on some other
relatively permanent storage medium. A file’s existence does not depend
on a running program. In this chapter, we will learn how to create files
and how to perform input and output operations on their data using the
Java classes designed specifically for this purpose. Methods from these
classes allow us to write data to files and provide greater flexibility in the
way we read data from files than the Scanner class offers.

11.2 Streams and Files

As was noted in Chapter 4, all input and output (I/O) in Java is accom-
plished through the use of input streams and output streams. You are
already familiar with input and output streams because we have rou-I/O streams
tinely used the System.out output stream and and the System.in in-
put stream (Fig. 11.1) in this text’s examples. Recall that System.out
usually connects your program (source) to the screen (destination) and
System.in usually connects the keyboard (source) to the running pro-
gram (destination). What you have learned about streams will also be a
key for connecting files to a program.

Figure 11.1: The System.out
output stream connects your
program to the screen and
the System.in input stream
connects it to the keyboard. Screen

Keyboard

Memory

System.in

Input stream

System.out

Output stream

Program

SECTION 11.2 • Streams and Files 501

11.2.1 The Data Hierarchy

Data, or information, are the contents that flow through Java streams or
stored in files. All data are comprised of binary digits or bits. A bit is
simply a 0 or a 1, the electronic states that correspond to these values. As
we learned in Chapter 5, a bit is the smallest unit of data.

However, it would be tedious if a program had to work with data in
units as small as bits. Therefore, most operations involve various-sized
aggregates of data such as an 8-bit byte, a 16-bit short, a 16-bit char, a
32-bit int, a 64-bit long, a 32-bit float, or a 64-bit double. As we know,
these are Java’s primitive numeric types. In addition to these aggregates,
we can group together a sequence of char to form a String.

It is also possible to group data of different types into objects. A record,
which corresponds closely to a Java object, can have fields that contain
different types of data. For example, a student record might contain fields
for the student’s name and address represented by (Strings), expected
year of graduation (int), and current grade point average represented
by (double). Collections of these records are typically grouped into files.
For example, your registrar’s office may have a separate file for each of
its graduating classes. These are typically organized into a collection of
related files, which is called a database.

Database

File

Record

chris martine

deborah mars 2000 9.15

Byte

Bit

a

00110001

0

william smith 2001 8.75

Field

deborah mars

deborah mars 2000 9.15

1999 10.1

Figure 11.2: The data hierarchy.

Taken together, the different kinds of data that are processed by a com-
puter or stored in a file can be organized into a data hierarchy (Fig. 11.2).

It’s important to recognize that while we, the programmers, may
group data into various types of abstract entities, the information flowing
through an input or output stream is just a sequence of bits. There are no
natural boundaries that mark where one byte (or one int or one record)
ends and the next one begins. Therefore, it will be up to us to provide the
boundaries as we process the data.

11.2.2 Binary Files and Text Files

As we noted in chapter 4, there are two types of files in Java: binary files
and text files. Both kinds store data as a sequence of bits—that is, a se-
quence of 0’s and 1’s. Thus, the difference between the two types of files
lies in the way they are interpreted by the programs that read and write
them. A binary file is processed as a sequence of bytes, whereas a text file is
processed as a sequence of characters.

Text editors and other programs that process text files interpret the
file’s sequence of bits as a sequence of characters—that is, as a string.
Your Java source programs (*.java) are text files, and so are the HTML
files that populate the World Wide Web. The big advantage of text files
is their portability. Because their data are represented in the ASCII code Text files are portable
(Table 5.13), they can be read and written by just about any text-processing
program. Thus, a text file created by a program on a Windows/Intel
computer can be read by a Macintosh program.

In non-Java environments, data in binary files are stored as bytes, and
the representation used varies from computer to computer. The manner
in which a computer’s memory stores binary data determines how it is
represented in a file. Thus, binary data are not very portable. For exam-
ple, a binary file of integers created on a Macintosh cannot be read by a
Windows/Intel program.

502 CHAPTER 11 • Files and Streams: Input/Output Techniques

One reason for the lack of portability is that each type of computer uses
its own definition for how an integer is defined. On some systems anBinary files are platform dependent
integer might be 16 bits, and on others it might be 32 bits, so even if you
know that a Macintosh binary file contains integers, that still won’t make
it readable by Windows/Intel programs. Another problem is that even
if two computers use the same number of bits to represent an integer,
they might use different representation schemes. For example, some com-
puters might use 10000101 as the 8-bit representation of the number 133,
whereas other computers might use the reverse, 10100001, to represent
133.

The good news for us is that Java’s designers have made its binary files
platform independent by carefully defining the exact size and representation
that must be used for integers and all other primitive types. Thus, binary
files created by Java programs can be interpreted by Java programs on any
platform.

JAVA LANGUAGE RULE Platform Independence. Java binary files
are platform independent. They can be interpreted by any computer
that supports Java.

11.2.3 Input and Output Streams
Java has a wide variety of streams for performing I/O. They are de-
fined in the java.io package, which must be imported by any program
that does I/O. They are generally organized into the hierarchy illustrated
in Figure 11.3. We will cover only a small portion of the hierarchy in
this text. Generally speaking, binary files are processed by subclasses
of InputStream and OutputStream. Text files are processed by sub-I/O streams
classes of Reader and Writer, both of which are streams, despite their
names.

InputStream and OutputStream are abstract classes that serve as
the root classes for reading and writing binary data. Their most commonly
used subclasses are DataInputStream and DataOutputStream,
which are used for processing String data and data of any of Java’s prim-
itive types—char, boolean, int, double, and so on. The analogues of
these classes for processing text data are the Reader and Writer classes,
which serve as the root classes for all text I/O.

JAVA PROGRAMMING TIP Choosing a Stream. In choosing an
appropriate stream for an I/O operation, DataInputStreams and
DataOutputStreams normally are used for binary I/O. Reader and
Writer streams normally are used for text I/O.

The various subclasses of these root classes perform various specialized
I/O operations. For example, FileInputStream and FileOutput-
Stream are used for performing binary input and output on files. The
PrintStream class contains methods for outputting various primitive
data—integers, floats, and so forth—as text. The System.out stream,
one of the most widely used output streams, is an object of this type. The
PrintWriter class, which was introduced in JDK 1.1 contains the same

SECTION 11.2 • Streams and Files 503

Object

InputStream

File

Reader

OutputStream

Writer

ByteArrayInputStream

FileInputStream

FilterInputStream

ObjectInputStream

PipedInputStream

BufferedInputStream

DataInputStream

BufferedReader

CharArrayReader

InputStreamReader

PipedReader

StringReader

LineNumberReader

FileReader

ByteArrayOutputStream

FileOutputStream

FilterOutputStream

ObjectOutputStream

PipedOutputStream

BufferedOutputStream

DataOutputStream

BufferedWriter

CharArrayWriter

PipedWriter

PrintWriter

StringWriter

OutputStreamWriter FileWriter

java.io

FilterWriter

Figure 11.3: Java’s stream hierar-
chy.

methods as PrintStream but the methods are designed to support plat-
form independence and internationalized I/O—that is, I/O that works in
different languages and alphabets.

504 CHAPTER 11 • Files and Streams: Input/Output Techniques

The various methods defined in PrintWriter are designed to output

+PrintWriter(in out : OutputStream)

+PrintWriter(in out : Writer)

+print(in i : int)

+print(in l : long)

+print(in f : float)

+print(in d : double)

+print(in s : String)

+print(in o : Object)

+println(in i : int)

+println(in l : long)

+println(in f : float)

+println(in d : double)

+println(in s : String)

+println(in o : Object)

PrintWriter

Writer

Figure 11.4: PrintWriter meth-
ods print data of various types.

a particular type of primitive data (Fig. 11.4). As you would expect, there
is both a print() and println() method for each kind of data that the
programmer wants to output.

Table 11.1 briefly describes Java’s most commonly used input and out-
put streams. In addition to the ones we’ve already mentioned, you are
already familiar with methods from the BufferedReader and File
classes, which were used in Chapter 4.

Filtering refers to performing operations on data while the data are
being input or output. Methods in the FilterInputStream and
FilterReader classes can be used to filter binary and text data dur-
ing input. Methods in the FilterOutputStream and FilterWriter
can be used to filter output data. These classes serve as the root classes
for various filtering subclasses. They can also be subclassed to perform
customized data filtering.

One type of filtering is buffering, which is provided by several buffered
streams, including BufferedInputStream and BufferedReader, for
performing binary and text input, and BufferedOutputStream and
BufferedWriter, for buffered output operations. As was discussed in

TABLE 11.1 Description of some of Java’s important stream classes.

Class Description

InputStream Abstract root class of all binary input streams
FileInputStream Provides methods for reading bytes from a binary file
FilterInputStream Provides methods required to filter data
BufferedInputStream Provides input data buffering for reading large files
ByteArrayInputStream Provides methods for reading an array as if it were a stream
DataInputStream Provides methods for reading Java’s primitive data types
PipedInputStream Provides methods for reading piped data from another thread
OutputStream Abstract root class of all binary output streams
FileOutputStream Provides methods for writing bytes to a binary file
FilterOutputStream Provides methods required to filter data
BufferedOutputStream Provides output data buffering for writing large files
ByteArrayOutputStream Provides methods for writing an array as if it were a stream
DataOutputStream Provides methods for writing Java’s primitive data types
PipedOutputStream Provides methods for writing piped data to another thread
PrintStream Provides methods for writing primitive data as text
Reader Abstract root class for all text input streams
BufferedReader Provides buffering for character input streams
CharArrayReader Provides input operations on char arrays
FileReader Provides methods for character input on files
FilterReader Provides methods to filter character input
StringReader Provides input operations on Strings
Writer Abstract root class for all text output streams
BufferedWriter Provides buffering for character output streams
CharArrayWriter Provides output operations to char arrays
FileWriter Provides methods for output to text files
FilterWriter Provides methods to filter character output
PrintWriter Provides methods for printing binary data as characters
StringWriter Provides output operations to Strings

SECTION 11.3 • CASE STUDY: Reading and Writing Text Files 505

chapter 4, a buffer is a relatively large region of memory used to temporar-
ily store data while they are being input or output. When buffering is
used, a program will transfer a large number of bytes into the buffer from
the relatively slow input device and then transfer these to the program
as each read operation is performed. The transfer from the buffer to the
program’s memory is very fast.

Similarly, when buffering is used during output, data are transferred
directly to the buffer and then written to the disk when the buffer fills up
or when the flush() method is called.

JAVA PROGRAMMING TIP Buffering. Buffered streams can
improve a program’s overall efficiency by reducing the amount of time
it spends accessing relatively slow input or output devices.

You can also define your own data filtering subclasses to perform cus- Buffering
tomized filtering. For example, suppose you want to add line numbers
to a text editor’s printed output. To perform this task, you could define a
FilterWriter subclass and override its write() methods to perform Filtering data
the desired filtering operation. Similarly, to remove the line numbers from
such a file during input, you could define a FilterReader subclass. In
that case, you would override its read() methods to suit your goals for
the program.

There are several classes that provide I/O-like operations on various
internal memory structures. ByteArrayInputStream, ByteArray-
OutputStream, CharArrayReader, and CharArrayWriter are four
classes that take input from or send output to arrays in the program’s
memory. Methods in these classes can be useful for performing vari-
ous operations on data during input or output. For example, suppose
a program reads an entire line of integer data from a binary file into a
ByteArray. It might then transform the data by, say, computing the
remainder modulo N of each value. The program now can read these
transformed data by treating the byte array as an input stream. A similar
example would apply for some kind of output transformation.

The StringReader and StringWriter classes provide methods for
treating Strings and StringBuffers as I/O streams. These methods
can be useful for performing certain data conversions.

JAVA PROGRAMMING TIP Integer/String Conversion. An integer
can be converted to a String by writing it to a StringBuffer,
which can then be output as an entire line of text. StringReader
methods can be used to read integer data from an ordinary String
object.

11.3 CASE STUDY: Reading and Writing Text
Files

Let’s write a GUI application that will be able to read and write data to
and from a text file. To do this, we will need to develop a set of methods
to perform I/O on text files.

506 CHAPTER 11 • Files and Streams: Input/Output Techniques

The GUI for this application will contain a JTextArea, where text fileGUI design
data can be input and displayed, and a JTextField, where the user can
enter the file’s name. It will also contain two JButtons, one for read-
ing a file into the JTextArea, and the other for writing the data in the
JTextArea into a file (Fig. 11.5). Note that even this simple interface will
let the user create new files and rename existing files.

Figure 11.5: The GUI design for
a program that reads and writes
text files.

JTextArea for displaying file

BorderLayout Center

JFrame JTextField JButtons
BorderLayout

north

JFrame

	 Controls JPanel

		 Prompt JLabel

		 Input JTextField

		 ReadFile JButton

		 WriteFile JButton

	 Display JTextArea

WriteFileReadFileprompt:

JLabel

Component Hierarchy

11.3.1 Text File Format
A text file consists of a sequence of characters divided into zero or more
lines and ending with a special end-of-file character. When you open aThe end-of-file character
new file in a text editor, it contains zero lines and zero characters. After
typing a single character, it would contain one character and one line. The
following would be an example of a file with four lines of text:� �

one\ntwo\nthree\nfour\n\ eof
 	
Note the use of the end-of-line character, \n, to mark the end of each line,
and the use of the end-of-file character, \eof, to mark the end of the file.
As we’ll see, the I/O methods for text files use these special characters to
control reading and writing loops. Thus, when the file is read by appro-
priate Java methods, such as the BufferedReader.readLine() and
BufferedReader.read()methods, one or more characters will be read
until either an end-of-line or end-of-file character is encountered. When a
line of characters is written using println(), the end-of-line character is
appended to the characters themselves.

11.3.2 Writing to a Text File
Let’s see how to write to a text file. In this program we write the entire
contents of the JTextArea() to the text file. In general, writing data to a
file requires three steps:

1. Connect an output stream to the file.
2. Write text data into the stream, possibly using a loop.
3. Close the stream.

As Figure 11.1 shows, connecting a stream to a file looks like doing a bit
of plumbing. The first step is to connect an output stream to the file. The
output stream serves as a conduit between the program and a named file.Output stream
The output stream opens the file and gets it ready to accept data from the

SECTION 11.3 • CASE STUDY: Reading and Writing Text Files 507

program. If the file already exists, then opening the file will destroy any
data it previously contained. If the file doesn’t yet exist, then it will be
created from scratch.

Once the file is open, the next step is to write the text to the stream,
which passes the text on to the file. This step might require a loop that
outputs one line of data on each iteration. Finally, once all the data have
been written to the file, the stream should be closed. This also has the
effect of closing the file itself.

JAVA EFFECTIVE DESIGN Writing a File. Writing data to a file
requires a three-step algorithm: (1) Connect an output stream to the
file, (2) write the data, and (3) close the file.

Code Reuse: Designing an Output Method

Now let’s see how these three steps are done in Java. Suppose the text we
want to write is contained in a JTextArea. Thus, we want a method that
will write the contents of a JTextArea to a named file.

What output stream should we use for the task of writing a String to Choosing an output stream
a named file? To decide this, we need to use the information in Figure 11.3
and Table 11.1. As we pointed out earlier, because we’re writing a text file,
we would use a Writer subclass. But which subclass should we use? The
only way to decide this is to consult the Java API documentation, using
links at� �

http : //java . sun . com/ j 2 s e /1 .5 .0/ docs/api/
 	
to see what methods are available in the various subclasses. For I/O op-
erations you want to consult the classes in the java.io package. Ideally,
we would like to be able to create an output stream to a named file, and
we would like to be able to write a String to the file.

One likely candidate is the FileWriter class (Fig. 11.6). Its name and
description (Table 11.1) suggest that it’s designed for writing text files.
And indeed it contains the kind of constructor we need—that is, one that
takes the file name as a parameter. Note that by taking a boolean param-
eter, the second constructor allows us to append data to a file rather than
rewrite the entire file, which is the default case.

However, FileWriter doesn’t define a write() method. This
doesn’t necessarily mean that it doesn’t contain such a method. It might
have inherited one from its superclasses, OutputStreamWriter and Inheritance
Writer. Indeed, the Writer class contains a method, write(), whose
signature suggests that it is ideally suited for our task (Fig. 11.6).

508 CHAPTER 11 • Files and Streams: Input/Output Techniques
Figure 11.6: To find the right I/O
method, it is sometimes necessary
to search the Java class hierarchy.
This is easy to do with the online
documentation.

+write(in s : String)

Writer

OutputStreamWriter

+FileWriter(in fileName : String)

+FileWriter(in fileName : String, in append :boolean)

FileWriter

Having decided on a FileWriter stream, the rest of the task of de-
signing our method is simply a matter of using FileWriter methods in
an appropriate way:� �

private void w r i t e T e x t F i l e (JTextArea display ,
S t r i n g fileName) {

// C r e a t e s t r e a m & o p e n f i l e

F i l e W r i t e r outStream = new F i l e W r i t e r (fileName) ;
// W r i t e t h e e n t i r e d i s p l a y t e x t a n d c l o s e t h e s t r e a m

outStream . wri te (display . getText ()) ;
outStream . c l o s e () ; // C l o s e t h e o u t p u t s t r e a m

}
 	
We use the FileWriter() constructor to create an output stream to the
file whose name is stored in fileName. In this case, the task of writing
data to the file is handled by a single write() statement, which writes
the entire contents of the JTextArea in one operation.

Finally, once we have finished writing the data, we close() the output
stream. This also has the effect of closing the file. The overall effect of this
method is that the text contained in display has been output to a file,
named fileName, which is stored on the disk.

JAVA PROGRAMMING TIP Closing a File. Even though Java will
close any apen files and streams when a program terminates normally,
it is good programming practice to close the file yourself with a
close() statement. It also reduces the chances of damaging the file if
the program terminates abnormally.

Because so many different things can go wrong during an I/O operation,
most I/O operations generate some kind of checked exception. Therefore, it
is necessary to embed the I/O operations within a try/catch statement.
In this example, the FileWriter() constructor, the write() method,
and the close() method may each throw an IOException. Therefore,
the entire body of this method should be embedded within a try/catch
block that catches the IOException (Fig. 11.7).

SECTION 11.3 • CASE STUDY: Reading and Writing Text Files 509� �
private void w r i t e T e x t F i l e (JTextArea display ,

S t r i n g fileName) {
t r y {

F i l e W r i t e r outStream = new F i l e W r i t e r (fileName) ;
outStream . wri te (display . getText ()) ;
outStream . c l o s e () ;

} catch (IOException e) {
display . s e t T e x t (”IOERROR : ” + e . getMessage () + ”\n”) ;
e . p r i n t S t a c k T r a c e () ;

}
} // w r i t e T e x t F i l e ()
 	

Figure 11.7: A method to write a text file.

11.3.3 Code Reuse: Designing Text File Output
The writeTextFile() method provides a simple example of how to
write data to a text file. More importantly, its development illustrates
the kinds of choices necessary to design effective I/O methods. Two
important design questions we asked and answered were

• What methods do we need to perform the desired task?
• What streams contain the desired methods?

As in so many other examples we’ve considered, designing a method to Method design
perform a task is often a matter of finding the appropriate methods in the
Java class hierarchy.

JAVA EFFECTIVE DESIGN Code Reuse. Developing effective I/O
routines is primarily a matter of choosing the right library methods.
Start by asking yourself, “What methods do I need?” and then find a
stream class that contains the appropriate methods.

As you might expect, there is more than one way to write data to a text
file. Suppose we decided that writing text to a file is like printing data to
System.out. And suppose we chose to use a PrintWriter object as
our first candidate for an output stream (Fig. 11.3 and Table 11.1). This
class (Fig. 11.4) contains a wide range of print() methods for writing
different types of data as text. So it has exactly the kind of method we
need: print(String). However, this stream does not contain a con-
structor method that allows us to create a stream from the name of a
file. Its constructors require either a Writer object or an OutputStream
object.

This means that we can use a PrintWriter to print to a file, but only
if we can first construct either an OutputStream or a Writer object
to the file. So we must go back to searching Figure 11.3 and Table 11.1
for an appropriate candidate. Fortunately, the FileOutputStream class
(Fig. 11.8) has just the constructors we want. We now have an alterna-
tive way of coding the writeTextFile() method, this time using a
combination of PrintWriter and FileOutputStream:

510 CHAPTER 11 • Files and Streams: Input/Output Techniques
Figure 11.8: The FileOutput-
Stream class. OutputStream

+FileOutputStream(in filename : String)

+FileOutputStream(in filename : String, in append : boolean)

FileOutputStream

� �
// C r e a t e a n o u t p u t s t r e a m a n d o p e n t h e f i l e

P r i n t W r i t e r outStream =
new P r i n t W r i t e r (new FileOutputStream (fileName)) ;

// W r i t e t h e d i s p l a y ’ s t e x t a n d c l o s e t h e s t r e a m

outStream . p r i n t (display . getText ()) ;
outStream . c l o s e () ;
 	

Note how the output stream is created in this case. First, we create a
FileOutputStream using the file name as its argument. Then we cre-
ate a PrintWriter using the FileOutputStream as its argument. The
reason we can do this is because the PrintWriter() constructor takesParameter agreement
a FileOutputStream parameter. This is what makes the connection
possible.

To use the plumbing analogy again, this is like connecting two sections
of pipe between the program and the file. The data will flow from the
program through PrintWriter, through the OutputStream, to the file.
Of course, you can’t just arbitrarily connect one stream to another. They
have to “fit together,” which means that their parameters have to match.

JAVA EFFECTIVE DESIGN Stream/Stream Connections. Two
different kinds of streams can be connected if a constructor for one
stream takes the second kind of stream as a parameter. This is often an
effective way to create the kind of object you need to perform an I/O
task.

java.sun.com/j2se/1.5.0/docs/api/
The important lesson here is that we found what we wanted by searching
through the java.io.* hierarchy. This same approach can be used to
help you to design I/O methods for other tasks.

SELF-STUDY EXERCISE
EXERCISE 11.1 Is it possible to perform output to a text file using a
PrintWriter and a FileWriter stream in combination? If so, write
the Java code.

11.3.4 Reading from a Text File
Let’s now look at the problem of inputting data from an existing text file,
a common operation that occurs whenever your email program opens an
email message or your word processor opens a document. In general,
there are three steps to reading data from a file:

1. Connect an input stream to the file.

SECTION 11.3 • CASE STUDY: Reading and Writing Text Files 511

2. Read the text data using a loop.
3. Close the stream.

As Figure 11.9 shows, the input stream serves as a kind of pipe between
the file and the program. The first step is to connect an input stream to the

Memory

Output stream

Input stream

Text file0100010

0100101

1111111

1111100

1100101

0111110

1111110

Figure 11.9: A stream serves as a
pipe through which data flow.

file. Of course, in order to read a file, the file must exist. The input stream
serves as a conduit between the program and the named file. It opens the
file and gets it ready for reading. Once the file is open, the next step is to
read the file’s data. This will usually require a loop that reads data until
the end of the file is reached. Finally, once all the data are read, the stream
should be closed.

JAVA EFFECTIVE DESIGN Reading Data Reading data from a file
requires a three-step algorithm: (1) Connect an input stream to the file,
(2) read the data, and (3) close the file.

Now let’s see how these three steps are done in Java. Suppose that we
want to put the file’s data into a JTextArea. Thus, we want a method
that will be given the name of a file and a reference to a JTextArea, and
it will read the data from the file into the JTextArea.

What input stream should we use for this task? Here again we need to Choosing an input stream
use the information in Figure 11.3 and Table 11.1. Because we’re reading
a text file, we should use a Reader subclass. A good candidate is the
FileReader, whose name and description suggest that it might contain
useful methods.

What methods do we need? As in the previous example, we need a
constructor method that connects an input stream to a file when the con-
structor is given the name of the file. And, ideally, we’d like to have a What methods should we use?
method that will read one line at a time from the text file.

The FileReader class (Fig. 11.10) has the right kind of constructor.
However, it contains no readLine() methods itself, which would be
necessary for our purposes. Searching upward through its superclasses,
we find that InputStreamReader, its immediate parent class, has a
method that reads ints:� �

public i n t read () throws IOException () ;
 	
As shown in Figure 11.10, this read() method is an override of the
read() method defined in the Reader class, the root class for text file
input streams. Thus, there are no readLine() methods in the Reader
branch of the hierarchy. We have to look elsewhere for an appropriate
class.

512 CHAPTER 11 • Files and Streams: Input/Output Techniques
Figure 11.10: FileReader’s su-
perclasses contain read() meth-
ods but no readLine() meth-
ods. +read() : int

Reader

+read() : int

InputStreamReader

+FileReader(in fileName : String)

FileReader

+BufferedReader(in instream : Reader)

+readLine() : String

BufferedReader

One class that does contain a readLine()method is BufferedReader
(Fig. 11.10). Can we somehow use it? Fortunately, the answer is yes.
BufferedReader’s constructor takes a Reader object as a parameter.
But a FileReader is a Reader—that is, it is a descendant of the Reader
class. So, to use our plumbing analogy again, to build an input stream to
the file, we can join a BufferedReader and a FileReader� �

BufferedReader inStream
= new BufferedReader (new Fi leReader (fileName)) ;
 	

Given this sort of connection to the file, the program can use Buffered-
Reader.readLine() to read one line at a time from the file.

So, we have found a method that reads one line at a time. Now we need
an algorithm that will read the entire file. Of course, this will involve
a loop, and the key will be to make sure we get the loop’s termination
condition correct.

An important fact about readLine() is that it will return null as itsUsing the end-of-file character
value when it reaches the end of the file. Recall that text files have a special
end-of-file character. When readLine() encounters this character, it will
return null. Therefore, we can specify the following while loop:� �

S t r i n g l i n e = inStream . readLine () ;
while (l i n e != null) {

display . append (l i n e + ”\n”) ;
l i n e = inStream . readLine () ;

}
 	
We begin outside the loop by attempting to read a line from the file. If
the file happens to be empty (which it might be), then line will be set to
null; otherwise it will contain the String that was read. In this case, we
append the line to a JTextArea. Note that readLine() does not return

SECTION 11.3 • CASE STUDY: Reading and Writing Text Files 513

the end-of-line character with its return value. That’s why we add a \n
before we append the line to the JTextArea.

JAVA PROGRAMMING TIP End of Line. Remember that
readLine() does not return the end-of-line character as part of the
text it returns. If you want to print the text on separate lines, you must
append \n.

The last statement in the body of the loop attempts to read the next line
from the input stream. If the end of file has been reached, this attempt
will return null and the loop will terminate. Otherwise, the loop will
continue reading and displaying lines until the end of file is reached.
Taken together, these various design decisions lead to the definition for
readTextFile() shown in Figure 11.11.� �
private void r e a d T e x t F i l e (JTextArea display ,

S t r i n g fileName) {
t r y {

BufferedReader inStream // C r e a t e a n d o p e n t h e s t r e a m

= new BufferedReader (new Fi leReader (fileName)) ;
S t r i n g l i n e = inStream . readLine () ; // R e a d o n e l i n e

while (l i n e != null) { // W h i l e m o r e t e x t

display . append (l i n e + ”\n”) ; // D i s p l a y a l i n e

l i n e = inStream . readLine () ; // R e a d n e x t l i n e

}
inStream . c l o s e () ; // C l o s e t h e s t r e a m

} catch (FileNotFoundException e) {
display . s e t T e x t (”IOERROR : ”+ fileName +” NOT found\n”) ;
e . p r i n t S t a c k T r a c e () ;
} catch (IOException e) {

display . s e t T e x t (”IOERROR : ” + e . getMessage () + ”\n”) ;
e . p r i n t S t a c k T r a c e () ;
}

} // r e a d T e x t F i l e ()
 	
Figure 11.11: A method for reading a text file.

Note that we must catch both the IOException, thrown by
readLine() and close(), and the FileNotFoundException, thrown IOException
by the FileReader() constructor. It’s important to see that the read loop
has the following form:� �

t r y to read one l i n e of data
and s t o r e i t in l i n e // L o o p i n i t i a l i z e r

while (l i n e i s not null) { // L o o p e n t r y c o n d i t i o n

process the data
t r y to read one l i n e of data

and s t o r e i t in l i n e // L o o p u p d a t e r

}
 	

514 CHAPTER 11 • Files and Streams: Input/Output Techniques

When it attempts to read the end-of-file character, readLine() will return
null.

JAVA EFFECTIVE DESIGN Reading Text. In reading text files, the
readLine() method will return null when it tries to read the
end-of-file character. This provides a convenient way of testing for the
end of file.

JAVA EFFECTIVE DESIGN Reading an Empty File. Loops for
reading text files are designed to work even if the file is empty.
Therefore, the loop should attempt to read a line before testing the
loop-entry condition. If the initial read returns null, that means the
file is empty and the loop body will be skipped.

SELF-STUDY EXERCISE
EXERCISE 11.2 What’s wrong with the following loop for reading a

text file and printing its output on the screen?� �
S t r i n g l i n e = null ;
do {

l i n e = inStream . readLine () ;
System . out . p r i n t l n (l i n e) ;

} while (l i n e != null) ;
 	
11.3.5 Code Reuse: Designing Text File Input
Our last example used BufferedReader.readLine() to read an entire
line from the file in one operation. But this isn’t the only way to do things.
For example, we could use the FileReader stream directly if we were
willing to do without the readLine()method. Let’s design an algorithm
that works in this case.

As we saw earlier, if you use a FileReader stream, then you must use
the InputStreamReader.read() method. This method reads bytes
from an input stream and translates them into Java Unicode characters.
The read() method, for example, returns a single Unicode character as
an int:� �

public i n t read () throws IOException () ;
 	
Of course, we can always convert this to a char and concatenate it to a
JTextArea, as the following algorithm illustrates:� �

i n t ch = inStream . read () ; // I n i t : T r y t o r e a d a c h a r a c t e r

while (ch != −1) { // E n t r y − c o n d i t i o n : w h i l e m o r e c h a r s

display . append ((char) ch + ””) ; // A p p e n d t h e c h a r a c t e r

ch = inStream . read () ; // U p d a t e r : t r y t o r e a d

}
 	

SECTION 11.3 • CASE STUDY: Reading and Writing Text Files 515

Although the details are different, the structure of this loop is the same as
if we were reading one line at a time.

The loop variable in this case is an int because InputStreamReader.-
read() returns the next character as an int, or it returns −1 if it encoun-
ters the end-of-file character. Because ch is an int, we must convert Data conversion
it to a char and then to a String in order to append() it to the display.

A loop to read data from a file has the following basic form:� �
t r y to read data i n t o a v a r i a b l e // I n i t i a l i z e r

while (read was s u c c e s s f u l) { // E n t r y c o n d i t i o n

process the data
t r y to read data i n t o a v a r i a b l e // U p d a t e r

}
 	
JAVA EFFECTIVE DESIGN Read Loop Structure. The read() and
readLine() methods have different ways to indicate when a read
attempt fails. These differences affect how the loop-entry condition is
specified, but the structure of the read loop is the same.

JAVA PROGRAMMING TIP Read Versus Readline. Unless it is
necessary to manipulate each character in the text file, reading a line at
a time is more efficient and, therefore, preferable.

It is worth noting again the point we made earlier: Designing effective
I/O routines is largely a matter of searching the java.io package for ap-
propriate classes and methods. The methods we’ve developed can serve
as suitable models for a wide variety of text I/O tasks, but if you find
that they aren’t suitable for a particular task, you can design your own
method. Just think about what it is you want the program to accomplish,
then find the stream classes that contain methods you can use to perform
the desired task. Basic reading and writing algorithms will be pretty much Reusing existing code
the same no matter which particular read or write method you use.

SELF-STUDY EXERCISE
EXERCISE 11.3 What’s wrong with the following loop for reading a

text file and printing its output on the screen?� �
i n t ch ;
do {

ch = inStream . read () ;
System . out . p r i n t ((char) ch) ;

} while (ch != −1)
 	

516 CHAPTER 11 • Files and Streams: Input/Output Techniques
Figure 11.12: The TextIO class.

+TextIO()

-readTextFile(in display : JTextArea, in fileName : String)

-writeTextFile(in display : JTextArea, in fileName : String)

+actionPerformed(in evt : ActionEvent)

+main(in args[] : String)

-display : JTextArea

-read : JButton

-nameField : JTextField

-prompt : JLabel

-commands : JPanel

TextIO

+actionPerformed()

«interface»

ActionListener

JFrame

11.3.6 The TextIO Application

Given the text I/O methods we wrote in the previous sections, we can
now specify the overall design of our TextIO class (Fig. 11.12). In order
to complete this application, we need only set up its GUI and write its
actionPerformed() method.
Setting up the GUI for this application is straightforward. Figure 11.13
shows how the finished product will look. The code is given in Fig-
ure 11.14. Pay particular attention to the actionPerformed() method,
which uses the methods we defined in the previous section.

Figure 11.13: An application that
performs simple text I/O.

SECTION 11.3 • CASE STUDY: Reading and Writing Text Files 517� �
import j avax . swing . ∗ ; // S w i n g c o m p o n e n t s

import j ava . awt . ∗ ;
import j ava . io . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s TextIO extends JFrame implements Act ionLis tener {
private JTextArea display = new JTextArea () ;
private JButton read = new JButton (”Read From F i l e ”) ,

wri te = new JButton (” Write to F i l e ”) ;
private J T e x t F i e l d nameField = new J T e x t F i e l d (2 0) ;
private JLabe l prompt = new JLabe l (” Filename : ” , JLabe l . RIGHT) ;
private JPanel commands = new JPanel () ;

public TextIO () { // C o n s t r u c t o r

super (” TextIO Demo”) ; // S e t w i n d o w t i t l e

read . addActionListener (t h i s) ;
wri te . addActionListener (t h i s) ;
commands . setLayout (new GridLayout (2 , 2 , 1 , 1)) ; // C o n t r o l p a n e l

commands . add (prompt) ;
commands . add (nameField) ;
commands . add (read) ;
commands . add (wri te) ;
d isplay . setLineWrap (t rue) ;
t h i s . getContentPane () . setLayout (new BorderLayout ()) ;
t h i s . getContentPane () . add (”North” , commands) ;
t h i s . getContentPane () . add (new J S c r o l l P a n e (display)) ;
t h i s . getContentPane () . add (” Center ” , display) ;
} // T e x t I O

private void w r i t e T e x t F i l e (JTextArea display , S t r i n g fileName) {
t r y {

F i l e W r i t e r outStream = new F i l e W r i t e r (fileName) ;
outStream . wri te (display . getText ()) ;
outStream . c l o s e () ;

} catch (IOException e) {
display . s e t T e x t (”IOERROR : ” + e . getMessage () + ”\n”) ;
e . p r i n t S t a c k T r a c e () ;

}
} // w r i t e T e x t F i l e ()

private void r e a d T e x t F i l e (JTextArea display , S t r i n g fileName) {
t r y {

BufferedReader inStream // C r e a t e a n d o p e n t h e s t r e a m

= new BufferedReader (new Fi leReader (fileName)) ;
S t r i n g l i n e = inStream . readLine () ; // R e a d o n e l i n e

while (l i n e != null) { // W h i l e m o r e t e x t

display . append (l i n e + ”\n”) ; // D i s p l a y a l i n e

l i n e = inStream . readLine () ; // R e a d n e x t l i n e

}
inStream . c l o s e () ; // C l o s e t h e s t r e a m

} catch (FileNotFoundException e) {
display . s e t T e x t (”IOERROR : ”+ fileName +” NOT found\n”) ;
e . p r i n t S t a c k T r a c e () ;

} catch (IOException e) {
display . s e t T e x t (”IOERROR : ” + e . getMessage () + ”\n”) ;
e . p r i n t S t a c k T r a c e () ;

}
} // r e a d T e x t F i l e
 	

Figure 11.14: Part I of the TextIO class.

518 CHAPTER 11 • Files and Streams: Input/Output Techniques� �
public void actionPerformed (ActionEvent evt) {

S t r i n g fileName = nameField . getText () ;
i f (evt . getSource () == read) {

display . s e t T e x t (””) ;
r e a d T e x t F i l e (display , fileName) ;

}
e lse w r i t e T e x t F i l e (display , fileName) ;

} // a c t i o n P e r f o r m e d ()

public s t a t i c void main (S t r i n g args []) {
TextIO t i o = new TextIO () ;
t i o . s e t S i z e (4 0 0 , 2 0 0) ;
t i o . s e t V i s i b l e (t rue) ;
t i o . addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent e) {
System . e x i t (0) ; // Q u i t t h e a p p l i c a t i o n

}
}) ;

} // m a i n ()

}// T e x t I O
 	
Figure 11.14: (continued) The TextIO class, Part II.

11.4 The File Class

As we’ve seen, an attempt to create a FileReader stream may throw a
FileNotFoundException. The way this happens is if the user provides
a name for a file that either doesn’t exist or isn’t located where its name
says it should be located. The question that needs to be considered: Is
there any way we can detect these kinds of errors before attempting to
read the file?

The java.io.File class provides methods that we can use for this
task. The File class provides a representation of the computer’s file and

root

index.html

home

examples

java

datafiles

data.txt

MyClass.java MyClass.class

Figure 11.15: A simple hierarchy
of directories and files.

directory information in a platform-independent manner. As you know, a
file is a collection of data, whereas a directory is a collection of files. (To be
exact, a directory is a file that stores its files’ names and attributes, not the
files themselves.) In this section, we will provide details about the File
class and how to use the methods available in the class.

11.4.1 Names and Paths
In order to correctly specify a file’s location, it is necessary to know a little
about how files are stored on your computer’s disk drive. File systems
are organized into a hierarchy. A path is a description of a file’s loca-
tion in the hierarchy. For example, consider the hierarchy of files in Fig-
ure 11.15. Assume that your Java program is named MyClass.class.
When a program is running, the program’s directory is considered the
current directory. Any files located in the current directory can be referred
to by name alone—for example, MyClass.java. To refer to a file located
in a subdirectory of the current directory, you need to provide the nameThe file hierarchy
of the subdirectory and the file: datafiles/data.txt. In this case, we
are assuming a Unix file system, so we are using the / as the separator

SECTION 11.4 • The File Class 519

between the name of the directory (datafiles) and the name of the file
(data.txt). This is an example of a relative path name, because we are
specifying a file in relation to the current directory.

Alternatively, a file can be specified by its absolute path name. This
would be a name whose path starts at the root directory of the file system.
For example,� �

/root/ java/examples/ d a t a f i l e s /data . t x t
 	
would be the absolute path name for the file named data.txt on a Unix
system. When you supply the name of a file to one of the stream construc-
tors, you are actually providing a path name. If the path consists of just a
name, such as data.txt, Java assumes that the file is located in the same
directory as the program itself.

11.4.2 Validating File Names

Before reading a file it is often necessary to determine that the file’s name
is a valid one and that the file can be read. The File class (Fig. 11.16)
provides platform-independent methods for dealing with files and di-
rectories. It contains methods that list the contents of directories, de-
termine a file’s attributes, and rename and delete files. Note the sev-

+canRead() : boolean

+canWrite() : boolean

+delete() : boolean

+exists() : boolean

+getName() : String

+getParent() : String

+getPath() : String

+isDirectory() : boolean

+isFile() : boolean

+lastModified() : long

+length() : long

+list() : String[]

+renameToFile(in f : File) : File

+pathSeparator : String

+pathSeparatorChar : char

+separator : String

+separatorChar : char

File

Object «interface»

Serializable

Figure 11.16: The java.io.File
class.

eral static constants provided. These allow path names to be speci-
fied in a platform-independent way. For example, on a Unix system, the
File.separator character will be the / and on a Windows system it
will be the \,backslash. File.separator will be initialized to the
appropriate separator for the particular system being used.

JAVA PROGRAMMING TIP File Separators. To help make your
programs platform independent, use the File.separator constant
instead of a literal value whenever you are specifying a path name.

As an example of how you might use some of File’s methods, let’s write
a method that tests whether the file name entered by the user is the name
of a valid, readable file.

A file might be unreadable for a number of reasons. It might be owned
by another user and readable only by that user. Or it might be designated Method design
as not readable by its owner. We’ll pass the method the name of the file
(a String), and the method will return true if a readable file with that

520 CHAPTER 11 • Files and Streams: Input/Output Techniques

name exists. Otherwise, the method will throw an exception and return
false:� �
private boolean i s R e a d a b l e F i l e (S t r i n g fileName) {

t r y {
F i l e f i l e = new F i l e (fileName) ;
i f (! f i l e . e x i s t s ())

throw (new FileNotFoundException (”No such F i l e : ”
+ fileName)) ;

i f (! f i l e . canRead ())
throw (new IOException (” F i l e not readable : ”

+ fileName)) ;
return true ;

} catch (FileNotFoundException e) {
System . out . p r i n t l n (”IOERROR : F i l e NOT Found : ”

+ fileName + ”\n”) ;
return f a l s e ;

} catch (IOException e) {
System . out . p r i n t l n (”IOERROR : ” + e . getMessage () + ”\n”) ;
return f a l s e ;

}
} // i s R e a d a b l e F i l e
 	
The method simply creates a File instance and uses its exists() and
canRead() methods to check whether its name is valid. If either condi-
tion fails, an exception is thrown. The method handles its own exceptions,
printing an error message and returning false in each case.

Before attempting to write data to a file, we might want to check that
the file has been given an appropriate name. For example, if the user
leaves the file name blank, we should not write data to the file. Also, a file
might be designated as unwriteable in order to protect it from being in-
advertently overwritten. We should check that the file is writeable before
attempting to write to it:� �

private boolean i s W r i t e a b l e F i l e (S t r i n g fileName) {
t r y {

F i l e f i l e = new F i l e (fileName) ;
i f (fileName . length () == 0)

throw (new IOException (” I n v a l i d f i l e name : ”
+ fileName)) ;

i f (f i l e . e x i s t s () && ! f i l e . canWrite ())
throw (new IOException (

”IOERROR : F i l e not wr i tea b le : ” + fileName)) ;
return true ;

} catch (IOException e) {
display . s e t T e x t (”IOERROR : ” + e . getMessage () + ”\n”) ;
return f a l s e ;

}
} // i s W r i t e a b l e F i l e ()
 	

The first check in this code tests that the user has not forgotten to pro-
vide a name for the output file. It is unlikely that the user wants to name
the file with the empty string. We use the exists() method to test

SECTION 11.5 • Example: Reading and Writing Binary Files 521

whether the user is attempting to write to an existing file. If so, we use
the canWrite() method to test whether the file is writeable. Both kinds
of errors result in IOExceptions.

SELF-STUDY EXERCISE
EXERCISE 11.4 The other methods of the File class are just as easy to

use as the ones we have illustrated in this section. Write a method that
takes the name of a file as its single parameter and prints the following
information about the file: its absolute path, its length, and whether it is a
directory or a file.

11.5 Example: Reading and Writing Binary Files

Although text files are extremely useful and often employed, they can’t
and shouldn’t be used for every data-processing application. For exam-
ple, your college’s administrative data system undoubtedly uses files to
store student records. Because your student record contains a variety of
different types of data—Strings, ints, doubles—it cannot be processed
as text. Similarly, a company’s inventory files, which also include data of
a wide variety of types, cannot be processed as text. Files such as these
must be processed as binary data.

Suppose you are asked to write an application that involves the use
of a company’s employee records. Recall that a record is a structure that
combines different types of data into a single entity. It’s like an object with
no methods, just instance variables.

A binary file is a sequence of bytes. Unlike a text file, which is termi-
nated by a special end-of-file marker, a binary file consists of nothing but
data. A binary file doesn’t have an end-of-file character because any such
character would be indistinguishable from a binary datum.

JAVA DEBUGGING TIP End of Binary File. Because a binary file
does not have an end-of-file character, it would be an error to use the
same loop-entry conditions we used in the loops we designed for
reading text files.

Generally speaking, the steps involved in reading and writing binary files
are the same as for text files:

1. Connect a stream to the file.
2. Read or write the data, possibly using a loop.
3. Close the stream.

The difference between text and binary file I/O resides in the Java streams
that we use.

11.5.1 Writing Binary Data
Let’s begin by designing a method that will output employee data to a
binary file. As the developer of this program, one thing you’ll have to Generating binary data
do is build some sample data files. These can’t easily be built by hand—
remember you can’t use a text editor to create them—so you’ll want to

522 CHAPTER 11 • Files and Streams: Input/Output Techniques

develop a method that can generate some random data of the sort your
application will have to process.

JAVA EFFECTIVE DESIGN I/O Design. When designing file I/O
applications, it is good to design the input and the output methods
together. This is especially important for binary I/O.

The first thing we need to know is exactly what the data look like. Let’s
assume that each record contains three individual pieces of data—the em-
ployee’s name, age, and pay rate. For example, the data in a file containing
four records might look like this, once the data are interpreted:� �

Name0 24 15 .06
Name1 25 5 . 0 9
Name2 40 11 .45
Name3 52 9 . 2 5
 	

As you can see, these data look as if they were randomly generated, but
they resemble the real data in the important respects: They are of the
right type—String, int, double—and have the right kind of values. Of
course, when these data are stored in the file, or in the program’s memory,
they just look like one long string of 0’s and 1’s.

Our approach to designing this output method will be the same as the
approach we used in designing methods for text I/O. That is, we start
with two questions:

• What stream classes should I use?
• What methods can I use?

And we find the answers to these by searching through the java.io
package (Fig. 11.3 and Table 11.1).

Because we are performing binary output, we need to use some sub-
class of OutputStream. Because we’re outputting to a file, one likely
candidate is FileOutputStream (Fig. 11.17). This class has the right
kind of constructors, but it only contains write() methods for writing
ints and bytes, and we need to be able to write Strings and doubles
as well as ints.

Figure 11.17: The FileOutput-
Stream class.

+FileOutputStream(in filename : String)

+FileOutputStream(in filename : String, in append : boolean)

FileOutputStream

OutputStream

SECTION 11.5 • Example: Reading and Writing Binary Files 523

These kinds of methods are found in DataOutputStream (Fig. 11.18),

+DataOutputStream(in s : OutputStream)

+flush()�
+writeBoolean(in b : Boolean)

+writeByte(in i : int)

+writeBytes(in s : String)

+writeChar(in c : int)

+writeChars(in s : String)

+writeDouble(in d : double)

+writeFloat(in f : float)

+writeInt(in i : int)

+writeLong(in l : long)

+writeShort(in s : short)

+writeUTF(in s : String)

DataOutputStream

FilterOutputStream

Figure 11.18: The
java.io.DataOutputStream
class contains methods for writing
all types of data.

which contains a write() method for each different type of data. As
you can see, there’s one method for each primitive type. However, note
that the writeChar() takes an int parameter, which indicates that the
character is written in binary format rather than as a ASCII or Unicode
character. Although you can’t tell by just reading its method signature,
the writeChars(String) method also writes its data in binary for-
mat rather than as a sequence of characters. This is the main difference
between these write() methods and the ones defined in the Writer
branch of Java’s I/O hierarchy.

Now that we’ve found the appropriate classes and methods, we need
to create a pipeline to write data to the file and develop an output al-
gorithm. To construct a stream to use in writing employee records, we
want to join together a DataOutputStream and a FileOutputStream.
The DataOutputStream gives us the output methods we need, and the
FileOutputStream lets us use the file’s name to create the stream:� �

DataOutputStream outStream
= new DataOutputStream (new FileOutputStream (fileName)) ;
 	

This enables the program to write data to the DataOutputStream, which
will pass them through the FileOutputStream to the file itself. That
settles the first question.

To develop the output algorithm, we need some kind of loop that in-
volves calls to the appropriate methods. In this case, because we are gen-
erating random data, we can use a simple for loop to generate, say, five
records of employee data. We need one write() statement for each of
the elements in the employee record: The name (String), age (int), and
pay rate (double):� �

for (i n t k = 0 ; k < 5 ; k++) { // O u t p u t 5 d a t a r e c o r d s

outStream . writeUTF (”Name” + k) ; // Name

outStream . w r i t e I n t ((i n t) (2 0 + Math . random () ∗ 2 5)) ; // Ag e

outStream . writeDouble (Math . random () ∗ 5 0 0) ; // P a y r a t e

}
 	
Within the loop body we have one output statement for each data element
in the record. The names of the methods reflect the type of data they write.
Thus, we use writeInt() to write an int and writeDouble() to write
a double. But why do we use writeUTF to write the employee’s name,
a String?

The Unicode Text Format (UTF)

There is no DataOutputStream.writeString() method. Instead,
Strings are written using the writeUTF() method. UTF stands for
Unicode Text Format, a coding scheme for Java’s Unicode character set.
Recall that Java uses the Unicode character set instead of the ASCII set.
As a 16-bit code, Unicode can represent 8-bit ASCII characters plus a wide ASCII vs. Unicode
variety of Asian and other international characters. However, Unicode is
not a very efficient coding scheme if you aren’t writing an international

524 CHAPTER 11 • Files and Streams: Input/Output Techniques

program. If your program just uses the standard ASCII characters, which
can be stored in 1 byte, you would be wasting 1 byte per character if you
stored them as straight Unicode characters. Therefore, for efficiency pur-
poses, Java uses the UTF format. UTF encoding can still represent all of the
Unicode characters, but it provides a more efficient way of representing
the ASCII subset.

It’s now time to combine these separate elements into a single method
(Fig. 11.19). The writeRecords() method takes a single String pa-
rameter that specifies the name of the file. This is a void method. It
will output data to a file, but it will not return anything to the calling
method. The method follows the standard output algorithm: Create an
output stream, write the data, close the stream. Note also that the method
includes a try/catch block to handle any IOExceptions that might be
thrown.� �

private void writeRecords (S t r i n g fileName) {
t r y {

DataOutputStream outStream // O p e n s t r e a m

= new DataOutputStream (new FileOutputStream (fileName)) ;
for (i n t k = 0 ; k < 5 ; k++) { // O u t p u t 5 d a t a r e c o r d s

S t r i n g name = ”Name” + k ; // o f name , a g e , p a y r a t e

outStream . writeUTF (”Name” + k) ;
outStream . w r i t e I n t ((i n t) (2 0 + Math . random () ∗ 2 5)) ;
outStream . writeDouble (5 . 0 0 + Math . random () ∗ 1 0) ;

} // f o r

outStream . c l o s e () ; // C l o s e t h e s t r e a m

} catch (IOException e) {
display . s e t T e x t (”IOERROR : ” + e . getMessage () + ”\n”) ;

}
} // w r i t e R e c o r d s ()
 	

Figure 11.19: A method to write a binary file consisting of five randomly
constructed records.

11.5.2 Reading Binary Data
The steps involved in reading data from a binary file are the same as for
reading data from a text file: Create an input stream and open the file,
read the data, close the file. The main difference lies in the way you check
for the end-of-file marker in a binary file.

Let’s design a method to read the binary data that were output by the
writeRecords() method. We’ll call this method readRecords(). It,
too, will consist of a single String parameter that provides the name of

InputStream

+FileInputStream(in filename : String)

FileInputStream

Figure 11.20: The
java.io.FileInputStream
class.

the file to be read, and it will be a void method. It will just display the
data on System.out.

The next questions we need to address are: What stream classes should
we use, and what methods should we use? For binary input, we need
an InputStream subclass (Fig. 11.3 and Table 11.1). As you’ve prob-
ably come to expect, the FileInputStream class contains construc-
tors that let us create a stream from a file name (Fig. 11.20). How-
ever, it does not contain useful read() methods. Fortunately, the

SECTION 11.5 • Example: Reading and Writing Binary Files 525

DataInputStream class contains the input counterparts of the meth-
ods we found in DataOutputStream (Fig. 11.21). Therefore, our input
stream for this method will be a combination of DataInputStream and
FileInputStream:� �

DataInputStream inStream
= new DataInputStream (new Fi le InputStream (f i l e)) ;
 	

Now that we have identified the classes and methods we’ll use to read the
data, the most important remaining issue is designing a read loop that will
terminate correctly. Unlike text files, binary files do not contain a special
end-of-file marker. Therefore, the read methods can’t see anything in the
file that tells them they’re at the end of the file. Instead, when a binary read
method attempts to read past the end of the file, an end-of-file exception
EOFException is thrown. Thus, the binary loop is coded as an infinite
loop that’s exited when the EOFException is raised: fig-distream

+readBoolean() : boolean

+readByte() : byte

+readChar() : char

+readDouble() : double

+readFloat() : float

+readInt() : int

+readLong() : long

+readShort() : short

+readUTF() : String

DataInputStream

FilterInputStream

FIGURE 11.21 The
java.io.DataInputStream class
contains methods for reading all
types of data.

� �
t r y {

while (t rue) { // I n f i n i t e l o o p

S t r i n g name = inStream . readUTF () ; // R e a d a r e c o r d

i n t age = inStream . readInt () ;
double pay = inStream . readDouble () ;
d isplay . append (name + ” ” + age + ” ” + pay + ”\n”) ;

} // w h i l e

} catch (EOFException e) {} // U n t i l EOF e x c e p t i o n
 	
The read loop is embedded within a try/catch statement. Note that the
catch clause for the EOFException does nothing. Recall that when an
exception is thrown in a try block, the block is exited for good, which is
precisely the action we want to take. That’s why we needn’t do anything
when we catch the EOFException. We have to catch the exception or
else Java will catch it and terminate the program. This is an example of an An expected exception
expected exception.

JAVA EFFECTIVE DESIGN EOFException. An attempt to read
past the end of a binary file will cause an EOFException to be
thrown. Catching this exception is the standard way of terminating a
binary input loop.

Note also the read() statements within the loop are mirror opposites of
the write() statements in the method that created the data. This will
generally be true for binary I/O routines: The statements that read data
from a file should “match” those that wrote the data in the first place.

JAVA EFFECTIVE DESIGN Matching Input to Output. The
statements used to read binary data should match those that wrote the
data. If a writeX() method were used to write the data, a readX()
should be used to read it.

To complete the method, the only remaining task is to close() the stream
after the data are read. The complete definition is shown in Figure 11.22.

526 CHAPTER 11 • Files and Streams: Input/Output Techniques� �
private void readRecords (S t r i n g fileName) {

t r y {
DataInputStream inStream // O p e n s t r e a m

= new DataInputStream (new Fi le InputStream (fileName)) ;
d isplay . s e t T e x t (”Name Age Pay\n”) ;
t r y {

while (t rue) { // I n f i n i t e l o o p

S t r i n g name = inStream . readUTF () ; // R e a d a r e c o r d

i n t age = inStream . readInt () ;
double pay = inStream . readDouble () ;
d isplay . append (name + ” ” + age + ” ” + pay + ”\n”) ;

} // w h i l e

} catch (EOFException e) { // U n t i l EOF e x c e p t i o n

} f i n a l l y {
inStream . c l o s e () ; // C l o s e t h e s t r e a m

}
} catch (FileNotFoundException e) {

display . s e t T e x t (”IOERROR : ”+ fileName + ” NOT Found : \n”) ;
} catch (IOException e) {

display . s e t T e x t (”IOERROR : ” + e . getMessage () + ”\n”) ;
}

} // r e a d R e c o r d s ()
 	
Figure 11.22: A method for reading binary data.

It’s important that a close() statement be placed after the catch
EOFException clause. If it were placed in the try block, it would
never get executed. Note also that the entire method is embedded in an
outer try block that catches the IOException, thrown by the various
read() methods, and the FileNotFoundException, thrown by the
FileInputStream() constructor. These make the method a bit longer,
but conceptually they belong in this method.

JAVA PROGRAMMING TIP The finally Block. In coding a
binary read loop, the try block is exited as soon as the EOFException
is raised. Therefore, the close() statement must be placed in the
finally clause, which is executed after the catch clause.

JAVA EFFECTIVE DESIGN Nested Try/Catch. Nested try blocks
must be used to perform binary I/O correctly. The outer block
encapsulates statements that throw IOExceptions. The inner block
encapsulates the read loop and catches the EOFException. No
particular action need be taken when the EOFException is caught.

SECTION 11.5 • Example: Reading and Writing Binary Files 527

SELF-STUDY EXERCISE
EXERCISE 11.5 Identify the error in the following method, which is

supposed to read a binary file of ints from a DataInputStream:� �
public void r e a d I n t eg e r s (DataInputStream inStream) {

t r y {
while (t rue) {

i n t num = inStream . readInt () ;
System . out . p r i n t l n (num) ;

}
inStream . c l o s e () ;

} catch (EOFException e) {
} catch (IOException e) {
}

} // r e a d I n t e g e r s
 	
11.5.3 The BinaryIO Application
Given the methods we wrote in the previous section, we can now specify
the overall design of the BinaryIO class (Fig. 11.23). The program sets
up the same interface we used in the text file example (Fig. 11.24). It al-
lows the user to specify the name of a data file to read or write. One button
allows the user to write random employee records to a binary file, and the
other allows the user to display the contents of a file in a JTextArea. The
BinaryIO program in Figure 11.25 incorporates both readRecords()

+BinaryIO()

-readRecords()

-writeRecords()

+actionPerformed()

+main()

-display : JTextArea

-read : JButton

-write : JButton

-prompt : JLabel

BinaryIO

+actionPerformed()

«interface»

ActionListener

JFrame

Figure 11.23: Design of the
BinaryIO class.

and writeRecords() into a complete Java program.

FIGURE 11.24 A program to read
and write binary files.

fig-binaryioscreen

11.5.4 Abstracting Data from Files
It’s important to recognize that the method to read a binary file must ex-
actly match the order of the write and read statements of the method that
wrote the binary file. For example, if the file contains records that consist
of a String followed by an int followed by a double, then they must
be written by a sequence consisting of� �

writeUTF () ;
w r i t e I n t () :
writeDouble () ;
 	

And they must thereafter be read by the sequence of� �
readUTF () ;
readInt () :
readDouble () ;
 	

Attempting to do otherwise would make it impossible to interpret the data
in the file.

This point should make it evident why (non-Java) binary files are not
portable whereas text files are. With text files, each character consists of Portability
8 bits, and each 8-bit chunk can be interpreted as an ASCII character. So
even though a text file consists of a long sequence of 0’s and 1’s, we know

528 CHAPTER 11 • Files and Streams: Input/Output Techniques� �
import j avax . swing . ∗ ; // S w i n g c o m p o n e n t s

import j ava . awt . ∗ ;
import j ava . io . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s BinaryIO extends JFrame implements Act ionLis tener {
private JTextArea display = new JTextArea () ;
private JButton read = new JButton (”Read Records From F i l e ”) ,

wri te = new JButton (” Generate Random Records ”) ;
private J T e x t F i e l d nameField = new J T e x t F i e l d (1 0) ;
private JLabe l prompt = new JLabe l (” Filename : ” , JLabe l . RIGHT) ;
private JPanel commands = new JPanel () ;

public BinaryIO () {
super (” BinaryIO Demo”) ; // S e t w i n d o w t i t l e

read . addActionListener (t h i s) ;
wri te . addActionListener (t h i s) ;
commands . setLayout (new GridLayout (2 , 2 , 1 , 1)) ; // C o n t r o l p a n e l

commands . add (prompt) ;
commands . add (nameField) ;
commands . add (read) ;
commands . add (wri te) ;
d isplay . setLineWrap (t rue) ;
t h i s . getContentPane () . setLayout (new BorderLayout ()) ;
t h i s . getContentPane () . add (”North” , commands) ;
t h i s . getContentPane () . add (new J S c r o l l P a n e (display)) ;
t h i s . getContentPane () . add (” Center ” , display) ;

} // B i n a r y I O ()

private void readRecords (S t r i n g fileName) {
t r y {

DataInputStream inStream // O p e n s t r e a m

= new DataInputStream (new Fi le InputStream (fileName)) ;
d isplay . s e t T e x t (”Name Age Pay\n”) ;
t r y {

while (t rue) { // I n f i n i t e l o o p

S t r i n g name = inStream . readUTF () ; // R e a d a r e c o r d

i n t age = inStream . readInt () ;
double pay = inStream . readDouble () ;
d isplay . append (name + ” ” + age + ” ” + pay + ”\n”) ;

} // w h i l e

} catch (EOFException e) { // U n t i l EOF e x c e p t i o n

} f i n a l l y {
inStream . c l o s e () ; // C l o s e t h e s t r e a m

}
} catch (FileNotFoundException e) {

display . s e t T e x t (”IOERROR : F i l e NOT Found : ” + fileName + ”\n”) ;
} catch (IOException e) {

display . s e t T e x t (”IOERROR : ” + e . getMessage () + ”\n”) ;
}

} // r e a d R e c o r d s ()
 	
Figure 11.25: Part I of the BinaryIO class, which illustrates simple input
and output from a binary file.

SECTION 11.5 • Example: Reading and Writing Binary Files 529� �
private void writeRecords (S t r i n g fileName) {

t r y {
DataOutputStream outStream // O p e n s t r e a m

= new DataOutputStream (new FileOutputStream (fileName)) ;
for (i n t k = 0 ; k < 5 ; k++) { // O u t p u t 5 d a t a r e c o r d s

S t r i n g name = ”Name” + k ; // o f name , a g e , p a y r a t e

outStream . writeUTF (”Name” + k) ;
outStream . w r i t e I n t ((i n t) (2 0 + Math . random () ∗ 2 5)) ;
outStream . writeDouble (5 . 0 0 + Math . random () ∗ 1 0) ;

} // f o r

outStream . c l o s e () ; // C l o s e t h e s t r e a m

} catch (IOException e) {
display . s e t T e x t (”IOERROR : ” + e . getMessage () + ”\n”) ;

}
} // w r i t e R e c o r d s ()

public void actionPerformed (ActionEvent evt) {
S t r i n g fileName = nameField . getText () ;
i f (evt . getSource () == read)

readRecords (fileName) ;
e lse

writeRecords (fileName) ;
} // a c t i o n P e r f o r m e d ()

public s t a t i c void main (S t r i n g args []) {
BinaryIO bio = new BinaryIO () ;
bio . s e t S i z e (4 0 0 , 2 0 0) ;
bio . s e t V i s i b l e (t rue) ;
bio . addWindowListener (new WindowAdapter () { // Q u i t

public void windowClosing (WindowEvent e) {
System . e x i t (0) ;

}
}) ;

} // m a i n ()

} // B i n a r y I O
 	
Figure 11.25: (continued) The BinaryIO class, Part II.

how to find the boundaries between each character. That’s why any text
editor can read a text file, no matter what program created it.

On the other hand, binary files are also just a long sequence of 0’s and
1’s, but we can’t tell where one data element begins and another one ends.
For example, the 64-bit sequence� �

010100110011001001010100110011000
010100110011001011010100110011000
 	

could represent two 32-bit ints or two 32-bit floats or one 64-bit
double or four 16-bit chars or a single String of 8 ASCII characters.

530 CHAPTER 11 • Files and Streams: Input/Output Techniques

We can’t tell what data we have unless we know exactly how the data
were written.

JAVA DEBUGGING TIP Interpreting Binary Data. The fact that you
can read the data in a binary file is no guarantee that you are
interpreting it correctly. To interpret it correctly, you must read it the
same way it was written.

JAVA EFFECTIVE DESIGN Data Abstraction. Binary data are
“raw.” They have no inherent structure. It is only the programs that
read and write the data that provide them with structure. A string of
64 0’s and 1’s can be interpreted as two ints or one long or even as
some kind of object, so an int, long or an object is an abstraction
imposed upon the data by the program.

11.6 Object Serialization: Reading and Writing
Objects

The examples in the previous sections showed how to perform I/O op-
erations on simple binary data or text. The java.io package also pro-
vides methods for reading and writing objects, a process known as ob-
ject serialization. Objects can be converted into a sequence of bytes, or
serialized, by using the ObjectOutputStream class, and they can be de-
serialized, or converted from bytes into a structured object, by using the
ObjectInputStream class (Fig. 11.26). Despite the complexity of the
serialization/deserialization processes, the methods in these classes make
the task just as easy as reading and writing primitive data.

+writeObject(in o : Object)

ObjectOutputStream

+readObject() : Object

ObjectInputStream

OutputStream

InputStream

Figure 11.26: Classes used for per-
forming I/O on objects.

To illustrate object serialization, let’s begin by defining a Student class
(Fig. 11.27). In order to serialize an object, it must be a member of a class
that implements the Serializable interface. The Serializable inter-
face is a marker interface, an interface that doesn’t define any methods or
constants but just serves to designate whether an object can be serialized
or not.

The Student class contains its own I/O methods, readFromFile()
and writeToFile(). This is an appropriate object-oriented design. The
Student class encapsulates all the relevant information needed to read
and write its data.

JAVA EFFECTIVE DESIGN I/O Design. If an object is going to be
input and output to and from files, it should define its own I/O
methods. An object contains all the relevant information needed to
perform I/O correctly.

Note the definition of the writeToFile() method, which performs
the output task. This method’s FileOutputStream parameter is used
to create an ObjectOutputStream, whose writeObject() method

Object serialization

SECTION 6 • Object Serialization 531� �
import j ava . io . ∗ ;

public c l a s s Student implements S e r i a l i z a b l e {
private S t r i n g name ;
private i n t year ;
private double gpa ;

public Student () {}

public Student (S t r i n g nameIn , i n t yr , double gpaIn) {
name = nameIn ;
year = yr ;
gpa = gpaIn ;

}

public void wri teToFi le (FileOutputStream outStream)
throws IOException{

ObjectOutputStream ooStream = new ObjectOutputStream (outStream) ;
ooStream . wri teObjec t (t h i s) ;
ooStream . f l u s h () ;

} // w r i t e T o F i l e ()

public void readFromFile (F i le InputStream inStream)
throws IOException , ClassNotFoundException {

ObjectInputStream oiStream = new ObjectInputStream (inStream) ;
Student s = (Student) oiStream . readObject () ;
t h i s . name = s . name ;
t h i s . year = s . year ;
t h i s . gpa = s . gpa ;

} // r e a d F r o m F i l e ()

public S t r i n g t o S t r i n g () {
return name + ”\ t ” + year + ”\ t ” + gpa ;

}
} // S t u d e n t
 	

Figure 11.27: The serializable Student class.

writes the object into the file. To output a Student object, we merely
invoke the writeObject() method. This method writes out the current
values of all the object’s public and private fields. In this case, the method
would write a String for the object’s name, an int for the object’s year,
and a double for the object’s gpa.

Although our example doesn’t require it, the writeObject() method
can also handle fields that refer to other objects. For example, suppose our
Student object provided a field for courses that contained a reference
to an array of objects, each of which described a course the student has
taken. In that case, the writeObject()method would serialize the array
and all its objects (assuming they are serializable). Thus, when a complex
object is serialized, the result would be a complex structure that contains
all the data linked to that root object.

532 CHAPTER 11 • Files and Streams: Input/Output Techniques

Object deserialization, as shown in the readFromFile() method,
is simply the reverse of the serialization process. The readObject()

Object deserialization

method reads one serialized object from the ObjectInputStream. Its
result type is Object, so it is necessary to cast the result into the proper
type. In our example we use a local Student variable to store the object
as it is input. We then copy each field of the local object to this object.

Note that the readFromFile()method throws both the IOException
and ClassNotFoundException. An IOExceptionwill be generated if
the file you are attempting to read does not contain serialized objects of the
correct type. Objects that can be input by readObject() are those that
were output by writeObject(). Thus, just as in the case of binary I/O,
it is best to design an object’s input and output routines together so that
they are compatible. The ClassNotFoundException will be thrown if
the Student class cannot be found. This is needed to determine how to
deserialize the object.

JAVA PROGRAMMING TIP Object Serialization. Java’s
serialization classes, ObjectOutputStream and
ObjectInputStream, should be used whenever an object needs to
be input or output from a stream.

11.6.1 The ObjectIO Class

Given the Student class, let’s now write a user interface that can read
and write Student objects. We can use the same interface we used in the
BinaryIO program. The only things we need to change are the write-
Records() and readRecords() methods. Everything else about this
program will be exactly the same as in BinaryIO.

Figure 11.28 provides the full implementation of the ObjectIO class.
Note that the writeRecords() method will still write five random
records to the data file. The difference in this case is that we will call the
Student.writeToFile() method to take care of the actual output op-
erations. The revised algorithm will create a new Student object, using
randomly generated data for its name, year, and GPA and then invoke its
writeToFile() to output its data. Note how a FileOutputStream is
created and passed to the Student.writeToFile() method.

The readRecords() method (Fig. 11.28, Part II) will read data from
a file containing serialized Student objects. To do so, it first cre-
ates a Student object and then invokes its readFromFile() method,
passing it a FileInputStream. Note how the FileInputStream is
created and, unlike in BinaryIO, the inner try block is exited by an
IOException rather than an EOFException.

SECTION 6 • Java Library : JFileChooser 533� �
import j avax . swing . ∗ ; // S w i n g c o m p o n e n t s

import j ava . awt . ∗ ;
import j ava . io . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s ObjectIO extends JFrame implements Act ionLis tener {
private JTextArea display = new JTextArea () ;
private JButton read = new JButton (”Read From F i l e ”) ,

wri te = new JButton (” Write to F i l e ”) ;
private J T e x t F i e l d nameField = new J T e x t F i e l d (1 0) ;
private JLabe l prompt = new JLabe l (” Filename : ” , JLabe l . RIGHT) ;
private JPanel commands = new JPanel () ;

public ObjectIO () {
super (” ObjectIO Demo”) ; // S e t w i n d o w t i t l e

read . addActionListener (t h i s) ;
wri te . addActionListener (t h i s) ;
commands . setLayout (new GridLayout (2 , 2 , 1 , 1)) ;
commands . add (prompt) ; // C o n t r o l p a n e l

commands . add (nameField) ;
commands . add (read) ;
commands . add (wri te) ;
d isplay . setLineWrap (t rue) ;
t h i s . getContentPane () . setLayout (new BorderLayout ()) ;
t h i s . getContentPane () . add (”North” ,commands) ;
t h i s . getContentPane () . add (new J S c r o l l P a n e (display)) ;
t h i s . getContentPane () . add (” Center ” , display) ;

} // O b j e c t I O

public void actionPerformed (ActionEvent evt) {
S t r i n g fileName = nameField . getText () ;
i f (evt . getSource () == read)

readRecords (fileName) ;
e lse

writeRecords (fileName) ;
} // a c t i o n P e r f o r m e d ()
 	

Figure 11.28: Part I of the ObjectIO class, which provides an interface to
reading and writing files of Students.

SELF-STUDY EXERCISE
EXERCISE 11.6 Given the following definition, would a binary file con-

sisting of several SomeObjects be readable by either the BinaryIO or
the ObjectIO programs? Explain.� �
public c l a s s SomeObject {

private S t r i n g s t r ;
private short n1 ;
private short n2 ;
private long n3 ;

}
 	

534 CHAPTER 11 • Files and Streams: Input/Output Techniques

� �
private void readRecords (S t r i n g fileName) {

t r y {
Fi le InputStream inStream = new Fi le InputStream (fileName) ; // O p e n a s t r e a m

display . s e t T e x t (”Name\ tYear\tGPA\n”) ;
t r y {

while (t rue) { // I n f i n i t e l o o p

Student student = new Student () ; // C r e a t e a s t u d e n t i n s t a n c e

student . readFromFile (inStream) ; // a n d h a v e i t r e a d a n o b j e c t

display . append (student . t o S t r i n g () + ”\n”) ; // a n d d i s p l a y i t

}
} catch (IOException e) { // U n t i l I O E x c e p t i o n

}
inStream . c l o s e () ; // C l o s e t h e s t r e a m

} catch (FileNotFoundException e) {
display . append (”IOERROR : F i l e NOT Found : ” + fileName + ”\n”) ;

} catch (IOException e) {
display . append (”IOERROR : ” + e . getMessage () + ”\n”) ;

} catch (ClassNotFoundException e) {
display . append (”ERROR: Class NOT found ” + e . getMessage () + ”\n”) ;

}
} // r e a d R e c o r d s ()

private void writeRecords (S t r i n g fileName) {
t r y {

FileOutputStream outStream = new FileOutputStream (fileName) ; // O p e n s t r e a m

for (i n t k = 0 ; k < 5 ; k++) { // G e n e r a t e 5 r a n d o m o b j e c t s

S t r i n g name = ”name” + k ; // Name

i n t year = (i n t) (2 0 0 0 + Math . random () ∗ 4) ; // C l a s s y e a r

double gpa = Math . random () ∗ 1 2 ; // GPA

Student student = new Student (name , year , gpa) ; // C r e a t e t h e o b j e c t

display . append (”Output : ”+ student . t o S t r i n g () +”\n”) ; // a n d d i s p l a y i t

student . wr i teToFi l e (outStream) ; // a n d t e l l i t t o w r i t e d a t a

} // f o r

outStream . c l o s e () ;
} catch (IOException e) {

display . append (”IOERROR : ” + e . getMessage () + ”\n”) ;
}

} // w r i t e R e c o r d s ()

public s t a t i c void main (S t r i n g args []) {
ObjectIO io = new ObjectIO () ;
io . s e t S i z e (4 0 0 , 2 0 0) ;
io . s e t V i s i b l e (t rue) ;
io . addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent e) {
System . e x i t (0) ; // Q u i t t h e a p p l i c a t i o n

}
}) ;

} // m a i n ()

} // O b j e c t I O
 	
Figure 11.28: (continued) The ObjectIO class, Part II.

SECTION 11.7 • From the Java Libraryjavax.swing.JFileChooser 535

11.7 From the Java Library
javax.swing.JFileChooser

java.sun.com/j2se/1.5.0/docs/api/
THE javax.swing.JFileChooser class is useful for dealing with files
and directories in a GUI environment. You are probably already familiar
with JFileChoosers, although you may not have known them by that
name. A JFileChooser provides a dialog box that enables the user to
select a file and a directory when opening or saving a file. Figure 11.30
shows an example.

A JFileChooser is designed primarily to be used in conjunction with
menu-based programs. The JFileChooser class (Fig. 11.29) contains
methods that support the Open File and Save As options which often ap-
pear in GUI applications either in a menu or attached to buttons. In this
section we provide the basics for using a JFileChooser. Options for

JComponent

+JFileChooser()

+JFileChooser(in currentDirectory : File)

+JFileChooser(in path : String)

+getCurrentDirectory() : File

+getSelectedFile() : File

+getSelectedFiles() : File[]

+showOpenDialog(in c : Component) : int

+showSaveDialog(in c : Component) : int

+setCurrentDirectory(in dir : File)

+APPROVE_OPTION : int

+CANCEL_OPTION : int

JFileChooser

Figure 11.29: The
javax.swing.JFileChooser
class.

opening a file or saving a file can be added to the kind of GUI applications
that we encountered earlier in the text by using buttons. In Chapter 13, we
will discuss the use of JMenus which will provide a more natural means
of using the JFileChooser dialogs.

A JFileChooser is not itself the dialog window, but rather the object
that manages the dialog. After creating a JFileChooser instance, its
showOpenDialog() or showSaveDialog() methods are used to open
a dialog window. Note that these methods require a Component parame-
ter, usually a JFrame or a JApplet. Thus, JFileChoosers can be used
only in GUI applications and applets.

To illustrate how to use a JFileChooser, let’s consider the case where
the user has selected an Open File menu item or clicked a button labeled
Open File. In this case, executing the following code will cause an “Open
File” dialog to appear:� �

JF i leChooser chooser = new JF i leChooser () ;
i n t r e s u l t = chooser . showOpenDialog (t h i s) ;

i f (r e s u l t == JF i leChooser . APPROVE OPTION) {
F i l e f i l e = chooser . g e t S e l e c t e d F i l e () ;
// I n s e r t c o d e h e r e t o r e a d d a t a f r o m f i l e

S t r i n g fileName = f i l e . getName () ;
d isplay . s e t T e x t (”You s e l e c t e d ” + fileName) ;

} e lse
display . s e t T e x t (”You c a n c e l l e d the f i l e dia log ”) ;
 	

We begin by creating a JFileChooser and then telling it to showOpen- Opening a file
Dialog(). If we were saving a file rather than opening one, we would
tell it to showSaveDialog(). In either case, a dialog window will pop
up on the screen. The dialog assists the user in navigating through the file
system and selecting a file (Fig. 11.30).

The dialog contains two buttons, one labeled Open and the other la-
beled Cancel. If the user selects a file, that choice will correspond to
APPROVE OPTION. If the user cancels the dialog, that will correspond to
CANCEL OPTION. After opening a dialog, the code should check which
option resulted. In this case, if the user opened a file, the code gets a

536 CHAPTER 11 • Files and Streams: Input/Output Techniques
Figure 11.30: The Open File dialog
window.

reference to the file and then simply uses that to print the file’s path name
to a text area named display. In an actual application, code would be
inserted at that spot which uses the file reference to read data from the
file.

11.8 Using File Data in Programs

This chapter’s examples have provided explicit details for several ways
of writing data to files and reading data from files. In actual programs,
deciding if and how files might be useful in the program are worked out
as part of the design process. Choosing between text files, binary files, and
reading and writing objects is part of this process.

To illustrate how we can apply what we’ve learned about file I/O, let’s
modify the WordGuess class (which is listed in Fig. 8.27) so that it reads
a list of possible words for players to guess from a file. The Chapter 8
version of the class contains a method, getSecretWord(), which usesmodifying WordGuess
a switch statement to randomly choose and return a word from a fixed
list of ten words. Reading the words from a text file would allow a user
to modify the list of possible words by adding or changing words without
needing to recompile the program.
Let’s modify the WordGuess class in three ways:

1. adding two new instance variables, an array of type String and a
variable to store the size of the array;

2. adding code at the beginning of the class’s constructor to read words
from the file and store them in the array;

3. rewrite the getSecretWord() method so that it randomly chooses
a word from the array.

Let us first choose descriptive names for declaring the two new instanceNew instance variables
variables:� �

private S t r i n g [] wordArray ;
private i n t a r r a y S i z e ;
 	

Note that it will be useful to store the number of words in the file
in its first line so that this information can be used to allocate mem-
ory for the array. For example, let us assume the text file will be

SECTION 11.8 • Using File Data in Programs 537

named secretwords.txt, it will be located in the same directory as the
WordGuess class, it will have the number of words in the file as its first
line, and it will have a single word per line after that. Thus, a small file Format for the text file
might look like:� �

3
STREAMS
CONDUIT
DIALOGS
 	

We can use the body of the readTextFile() method of the TextIO
class as a model for the Java code that needs to be added to the
WordGuess constructor. Pseudocode for this code will look like: Code to add to constructor� �

Use f i l e name to open a BufferedReader stream
Read f i r s t l i n e and convert to an i n t e g e r
S tore the i n t e g e r as the s i z e of the array
A l l o c a t e memory for the array
Read second l i n e of f i l e
While a word i s read

Store the word in the next array element
Read next l i n e of f i l e

Close the BufferedReader stream
 	
When this pseudocode is translated into Java and inserted into a
try-catch statement we get the code fragment in Figure 11.31.

� �
t r y {

Fi leReader f r = new Fi leReader (” secretwords . t x t ”) ;
BufferedReader inStream

= new BufferedReader (f r) ;
S t r i n g l i n e = inStream . readLine () ;
a r r a y S i z e = I n t e g e r . p a r s e I n t (l i n e) ;
wordArray = new S t r i n g [a r r ay S i z e] ;
l i n e = inStream . readLine () ;
i n t k = 0 ;
while ((l i n e != null) && (k < a r r a y S i z e)) {

wordArray [k] = l i n e ;
l i n e = inStream . readLine () ;
k++;

}// w h i l e

inStream . c l o s e () ;
} catch (FileNotFoundException e){

e . p r i n t S t a c k T r a c e () ;
} catch (IOException e){

e . p r i n t S t a c k T r a c e () ;
} // c a t c h
 	

Figure 11.31: Code added at beginning of the WordGuess constructor.

The new getSecretWord() method merely needs to generate a ran- New code for getSecretWord

538 CHAPTER 11 • Files and Streams: Input/Output Techniques

dom array index and return the corresponding array element:� �
private S t r i n g getSecretWord () {

i n t num = (i n t) (Math . random () ∗ a r r a y S i z e) ;
return wordArray [num] ;

} // g e t S e c r e t W o r d ()
 	
The only other modification that is needed for to complete new
WordGuess class is to add an initial import java.io.*; statement so
that the file IO classes can be accessed.

The earlier examples in this chapter can be used as models to enhance
numerous practical applications. GUI applications that involve a user’s
choice to load data from a file or save data in a file should make use of the
JFileChooser dialogs to initiate the file operations.

Special Topic: Databases and Personal Privacy

During a typical day we all come in contact with lots of electronic
databases that store information about us. If you use a supermarket dis-
count card, every purchase you make is logged against your name in the
supermarket’s database. When you use your bank card at the ATM ma-
chine, your financial transaction is logged against your account. When
you charge gasoline or buy dinner, those transactions are logged against
your credit card account. If you visit the doctor or dentist, a detailed
record of your visit is transmitted to your medical insurance company’s
database. If you receive a college loan, detailed financial information
about you is entered into several different credit service bureaus. And
so on.

Should we be worried about how this information is used? Many pri-
vacy advocates say yes. With the computerization of medical records,
phone records, financial transactions, driving records, and many other
records, there is an enormous amount of personal information held in
databases. At the same time, there are pressures from a number of sources
for access to this information. Law-enforcement agencies want to use this
information to monitor individuals. Corporations want to use it to help
them market their products. Political organizations want to use it to help
them market their candidates.

Recently there has been pressure from government and industry in the
United States to use the social security number (SSN) as a unique identi-
fier. Such an identifier would make it easy to match personal information
across different databases. Right now, the only thing your bank records,
medical records, and supermarket records may have in common is your
name, which is not a unique identifier. If all online databases were based
on your SSN, it would be much simpler to create a complete profile. While
this might improve services and reduce fraud and crime, it might also
pose a significant threat to our privacy.

The development of online databases serve many useful purposes.
They help fight crime and reduce the cost of doing business. They help
improve government and commercial services on which we have come
to depend. On the other hand, databases can be and have been misused.

CHAPTER 11 • Chapter Summary 539

They can be used by unauthorized individuals or agencies or in unautho-
rized ways. When they contain inaccurate information, they can cause
personal inconvenience or even harm.

There are a number of organizations that have sprung up to address
the privacy issues raised by online databases. If you’re interested in learn-
ing more about this issue, a good place to start would be the Web site
maintained by the Electronic Privacy Information Center (EPIC) at� �

http : //www. epic . org/
 	

CHAPTER SUMMARYTechnical Terms
absolute path name
binary file
buffering
database
data hierarchy
directory

end-of-file character
field
file
filtering
input
object serialization

output
path
record
relative path name
Unicode Text Format

(UTF)

Summary of Important Points
• A file is a collection of data stored on a disk. A stream is an object that

delivers data to and from other objects.

• An InputStream is a stream that delivers data to a program from an
external source—such as the keyboard or a file. System.in is an exam-
ple of an InputStream. An OutputStream is a stream that delivers
data from a program to an external destination—such as the screen or
a file. System.out is an example of an OutputStream.

• Data can be viewed as a hierarchy. From highest to lowest, a database
is a collection of files. A file is a collection of records. A record is a
collection of fields. A field is a collection of bytes. A byte is a collection
of 8 bits. A bit is one binary digit, either 0 or 1.

• A binary file is a sequence of 0s and 1s that is interpreted as a sequence
of bytes. A text file is a sequence of 0s and 1s that is interpreted as a
sequence of characters. A text file can be read by any text editor, but
a binary file cannot. InputStream and OutputStream are abstract
classes that serve as the root classes for reading and writing binary data.
Reader and Writer serve as root classes for text I/O.

• Buffering is a technique in which a buffer, a temporary region of mem-
ory, is used to store data while they are being input or output.

• A text file contains a sequence of characters divided into lines by the
\n character and ending with a special end-of-file character.

• The standard algorithm for performing I/O on a file consists of three
steps: (1) Open a stream to the file, (2) perform the I/O, and (3) close
the stream.

540 CHAPTER 11 • Files and Streams: Input/Output Techniques

• Designing effective I/O routines answers two questions: (1) What
streams should I use to perform the I/O? (2) What methods should I
use to do the reading or writing?

• To prevent damage to files when a program terminates abnormally,
streams should be closed when they are no longer needed.

• Most I/O operations generate an IOException that should be caught
in the I/O methods.

• Text input uses a different technique to determine when the end of a
file has been reached. Text input methods return null or -1 when
they attempt to read the special end-of-file character. Binary files
don’t contain an end-of-file character, so binary read methods throw
an EOFException when they attempt to read past the end of the file.

• The java.io.File class provides methods that enable a program to
interact with a file system. Its methods can be used to check a file’s
attributes, including its name, directory, and path.

• Streams can be joined together to perform I/O. For example, a
DataOutputStream and a FileOutputStream can be joined to per-
form output to a binary file.

• A binary file is “raw” in the sense that it contains no markers within it
that allow you to tell where one data element ends and another begins.
The interpretation of binary data is up to the program that reads or
writes the file.

• Object serialization is the process of writing an object to an output
stream. Object deserialization is the reverse process of reading a serial-
ized object from an input stream. These processes use the java.io.-
ObjectOutputStream and java.io.ObjectInputStream classes.

• The JFileChooser class provides a dialog box that enables the user
to select a file and directory when opening or saving a file.

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 11.1 Because FileWriter contains a constructor that takes a file
name argument, FileWriter(String), it can be used with PrintWriter to
perform output to a text file:� �
P r i n t W r i t e r outStream = // C r e a t e o u t p u t s t r e a m

new P r i n t W r i t e r (new F i l e W r i t e r (fileName)) ; // O p e n f i l e

outStream . p r i n t (display . getText ()) ; // D i s p l a y t e x t

outStream . c l o s e () ; // C l o s e o u t p u t s t r e a m
 	
SOLUTION 11.2 An empty file doesn’t affect this loop. If the file is empty, it
will print a null line. The test line != null, should come right after the
readLine(), as it does in the while loop.

SOLUTION 11.3 This loop won’t work on an empty text file. In that case, ch
would be set to −1, and the attempt to cast it into a char would cause an error.

CHAPTER 11 • Exercises 541

SOLUTION 11.4� �
public void g e t F i l e A t t r i b u t e s (S t r i n g fileName) {

F i l e f i l e = new F i l e (fileName) ;
System . out . p r i n t l n (f i lename) ;
System . out . p r i n t l n (” abso lute path : ”

+ f i l e . getAbsolutePath ()) ;
System . out . p r i n t l n (” length : ” + f i l e . length ()) ;
i f (f i l e . i s D i r e c t o r y ())

System . out . p r i n t l n (” Direc tory ”) ;
e lse

System . out . p r i n t l n (”Not a Direc tory ”) ;
} // g e t F i l e A t t r i b u t e s ()
 	
SOLUTION 11.5 The inStream.close() statement is misplaced in read-
Integers(). By placing it inside the same try/catch block as the read loop, it
will get skipped and the stream will not be closed. The EOFException should be
caught in a separate try/catch block from other exceptions, and it should just
cause the read loop to exit.

SOLUTION 11.6 Yes, a binary file containing several SomeObjects would be
“readable” by the BinaryIO program because the program will read a String
followed by 64 bytes. However, BinaryIO would misinterpret the data, be-
cause it will assume that n1 and n2 together comprise a single int, and n3
(64 bits) will be interpreted as a double. A file of SomeObjects could not be
read by the ObjectIO program, because SomeObject does not implement the
Serializable interface.

EXERCISES
Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

EXERCISE 11.1 Explain the difference between each of the following pairs of
terms:
a. System.in and System.out.
b. File and directory.
c. Buffering and filtering.
d. Absolute and relative path name.
e. Input stream and output stream.

f. File and database.
g. Record and field.
h. Binary file and text file.
i. Directory and database.

EXERCISE 11.2 Fill in the blanks.

a. Unlike text files, binary files do not have a special character.

b. In Java, the String array parameter in the main() method is used for

.

c. files are portable and platform independent.

d. A file created on one computer can’t be read by another

computer.

EXERCISE 11.3 Arrange the following kinds of data into their correct hierar-
chical relationships: bit, field, byte, record, database, file, String,
char.

542 CHAPTER 11 • Files and Streams: Input/Output Techniques

EXERCISE 11.4 In what different ways can the following string of 32 bits be
interpreted?� �
00010101111000110100000110011110
 	
EXERCISE 11.5 When reading a binary file, why is it necessary to use an infinite
loop that’s exited only when an exception occurs?

EXERCISE 11.6 Is it possible to have a text file with 10 characters and 0 lines?
Explain.

EXERCISE 11.7 In reading a file, why is it necessary to attempt to read from the
file before entering the read loop?

EXERCISE 11.8 When designing binary I/O, why is it especially important to
design the input and output routines together?

EXERCISE 11.9 What’s the difference between ASCII code and UTF code?

EXERCISE 11.10 Could the following string of bits possibly be a Java object?
Explain.� �
00010111000111101010101010000111001000100
11010010010101010010101001000001000000111
 	
EXERCISE 11.11 Write a method that could be added to the TextIO program to
read a text file and print all lines containing a certain word. This should be a void
method that takes two parameters: The name of the file and the word to search
for. Lines not containing the word should not be printed.

EXERCISE 11.12 Write a program that reads a text file and reports the number
of characters and lines contained in the file.

EXERCISE 11.13 Modify the program in the previous exercise so that it also
counts the number of words in the file. (Hint: The StringTokenizer class might
be useful for this task.)

EXERCISE 11.14 Modify the ObjectIO program so that it allows the user to
designate a file and then input Student data with the help of a GUI. As the user
inputs data, each record should be written to the file.

EXERCISE 11.15 Write a program that will read a file of ints into memory, sort
them in ascending order, and output the sorted data to a second file.

EXERCISE 11.16 Write a program that will read two files of ints, which are
already sorted into ascending order, and merge their data. For example, if one file
contains 1, 3, 5, 7, 9, and the other contains 2, 4, 6, 8, 10, then the merged file should
contain 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

EXERCISE 11.17 Suppose you have a file of data for a geological survey. Each
record consists of a longitude, a latitude, and an amount of rainfall, all represented
by doubles. Write a method to read this file’s data and print them on the screen,
one record per line. The method should be void and it should take the name of
the file as its only parameter.

EXERCISE 11.18 Suppose you have the same data as in the previous exercise.
Write a method that will generate 1,000 records of random data and write them to
a file. The method should be void and should take the file’s name as its parameter.
Assume that longitudes have values in the range +/− 0 to 180 degrees, latitudes
have values in the range +/− 0 to 90 degrees, and rainfalls have values in the
range 0 to 20 inches.

CHAPTER 11 • Exercises 543

EXERCISE 11.19 Design and write a file copy program that will work for either
text files or binary files. The program should prompt the user for the names of
each file and copy the data from the source file into the destination file. It should
not overwrite an existing file, however. (Hint: Read and write the file as a file of
byte.)

EXERCISE 11.20 Design a class, similar to Student, to represent an Address.
It should consist of street, city, state, and zip code and should contain its own
readFromFile() and writeToFile() methods.

EXERCISE 11.21 Using the class designed in the previous exercise, modify the
Student class so that it contains an Address field. Modify the ObjectIO pro-
gram to accommodate this new definition of Student and test your program.

EXERCISE 11.22 Write a program called Directory, which provides a listing
of any directory contained in the current directory. This program should prompt
the user for the name of the directory. It should then print a listing of that directory.
The listing should contain the following information: The full path name of the
directory, and then include the file name, length, and last modified date, and a
read/write code for each file. The read/write code should be an r if the file is
readable and a w if the file is writeable, in that order. Use a “-” to indicate not
readable or not writeable. For example, a file that is readable but not writable will
have the code r-. Here’s an example listing:� �
L i s t i n g for d i r e c t o r y : myf i les

name length modified code
index . html 548 129098 rw
index . g i f 78 129190 rw
me. html 682 128001 r−
private . t x t 1001 129000 −−
 	

Note that the File.lastModified() returns a long, which gives the modifi-
cation time of the file. This number can’t easily be converted into a date, so just
report its value.

EXERCISE 11.23 Challenge: Modify the OneRowNimGUI class that is listed in
Chapter 4’s Figure 4-25 so that the user can save the position of the game to a file
or open and read a game position from a file. You should add two new JButtons
to the GUI interface. Use the object serialization example as a model for your input
and output streams.

EXERCISE 11.24 Challenge: In Unix systems, there’s a program named grep
that can list the lines in a text file containing a certain string. Write a Java version
of this program that prompts the user for the name of the file and the string to
search for.

EXERCISE 11.25 Challenge: Write a program in Java named Copy to copy
one file into another. The program should prompt the user for two file names,
filename1 and filename2. Both filename1 and filename2 must exist or
the program should throw a FileNotFoundException. Although filename1
must be the name of a file (not a directory), filename2 may be either a file or a
directory. If filename2 is a file, then the program should copy filename1 to
filename2. If filename2 is a directory, then the program should simply copy
filename1 into filename2. That is, it should create a new file with the name
filename1 inside the filename2 directory, copy the old file to the new file, and
then delete the old file.

544 CHAPTER 11 • Files and Streams: Input/Output Techniques

OBJECTIVES
After studying this chapter, you will

• Understand the concept of recursion.
• Know how to use recursive programming techniques.
• Have a better understanding of recursion as a problem-solving technique.

OUTLINE
Outline
12.1 Introduction
12.2 Recursive Definition
12.3 Recursive String Methods
12.4 Recursive Array Processing
12.5 Example: Drawing (Recursive) Fractals
12.6 Object-Oriented Design: Tail Recursion
12.7 Object-Oriented Design: Recursion or Iteration?

Special Topic: Exploring the Mandelbrot Set
12.8 From the Java Library: javax.swing.JComboBox

Java Language Summary
Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 12

Recursive Problem Solving

545

546 CHAPTER 12 • Recursive Problem Solving

12.1 Introduction

The pattern in Figure 12.1 is known as the Sierpinski gasket. Its overall
shape is that of an equilateral triangle. But notice how inside the outer
triangle there are three smaller triangles that are similar to the overall pat-
tern. And inside each of those are three even smaller triangles, and so
on. The Sierpinski gasket is known as a fractal because when you divide it
up, you end up with a smaller version of the overall pattern. The overall
gasket pattern is repeated over and over, at smaller and smaller scales,
throughout the figure.

Figure 12.1: The Sierpinski gasket.

How would you draw this pattern? If you try to use some kind of
nested loop structure, you’ll find that it is very challenging. It can be done
using loops, but it isn’t easy. On the other hand, if you use an approach
known as recursion, this problem is much easier to solve. It’s a little bit like
the representation issue we discussed in Chapter 5. Your ability to solve
a problem often depends on how you represent the problem. Recursion
gives you another way to approach problems that involve repetition, such
as the problem of drawing the Sierpinski gasket.

The main goal of this chapter is to introduce recursion as both a
problem-solving technique and as alternative to loops (which we dis-
cussed in Chapter 6) for implementing repetition. We begin with the no-
tion of a recursive definition, a concept used widely in mathematics and
computer science. We then introduce the idea of a recursive method, which
is the way recursion is implemented in a program.

Recursion is a topic that is taken up in considerable detail in upper-
level computer science courses, so our goal here is mainly to introduce
the concept and give you some idea of its power as a problem-solving
approach. To illustrate recursion, we use a number of simple examples
throughout the chapter. One risk in using simple examples, though, is
that you might be tempted to think that recursion is only good for “toy
problems.” Nothing could be further from the truth. Recursion is often
used for some of the most difficult algorithms. Some of the exercises at
the end of the chapter are examples of more challenging problems.

12.1.1 Recursion as Repetition

A recursive method is a method that calls itself. An iterative method is
a method that uses a loop to repeat an action. In one sense, recursion is
an alternative to the iterative (looping) control structures we studied in
Chapter 6. In this sense, recursion is just another way to repeat an action.

For example, consider the following iterative method for sayingIterative method
“Hello” N times:� �

public void h e l l o (i n t N) {
for (i n t k = 0 ; k < N; k++)

System . out . p r i n t l n (” Hello ”) ;
} // h e l l o ()
 	

A recursive version of this method would be defined as follows:Recursive method

SECTION 12.1 • Introduction 547

� �
public void h e l l o (i n t N) {

i f (N > 0) \verb ! { !
System . out . p r i n t l n (” Hello ”) ;
h e l l o (N − 1) ; // R e c u r s i v e c a l l

} // h e l l o ()
 	
This method is recursive because it calls itself when N is greater than 0.
However, note that when it calls itself, it passes N− 1 as the value for its
parameter. If this method is initially called with N equal to 5, the follow-
ing is a trace of what happens. The indentations indicate each time the
method calls itself:� �

h e l l o (5)
P r i n t ” Hello ”
h e l l o (4)

P r i n t ” Hello ”
h e l l o (3)

P r i n t ” Hello ”
h e l l o (2)

P r i n t ” Hello ”
h e l l o (1)

P r i n t ” Hello ”
h e l l o (0)
 	

Thus, “Hello” will be printed five times, just as it would be in the iterative
version of this method.

So, in one sense, recursion is just an alternative to iteration. In fact,
there are some programming languages, such as the original versions of
LISP and PROLOG, that do not have loop structures. In these languages,
all repetition is done by recursion. In contrast, if a language contains
loop structures, it can do without recursion. Anything that can be done
iteratively can be done recursively, and vice versa.

Moreover, it is much less efficient to call a method five times than to re-
peat a for loop five times. Method calls take up more memory than loops
and involve more computational overhead—for such tasks as passing pa- Computational overhead
rameters, allocating storage for the method’s local variables, and return-
ing the method’s results. Therefore, because of its reliance on repeated
method calls, recursion is often less efficient than iteration as a way to
code a particular algorithm.

JAVA EFFECTIVE DESIGN Efficiency. Iterative algorithms and
methods are generally more efficient than recursive algorithms that do
the same thing.

548 CHAPTER 12 • Recursive Problem Solving

SELF-STUDY EXERCISES
EXERCISE 12.1 What would be printed if we call the following method

with the expression mystery(0)?� �
public void mystery (i n t N) {

System . out . p r i n t (N + ” ”) ;
i f (N <= 5)

mystery (N + 1) ;
} // m y s t e r y ()
 	
What about mystery(100)?

EXERCISE 12.2 What would be printed if we call the following method
with the expression mystery(5)?� �
public void mystery (i n t N) {

System . out . p r i n t (N + ” ”) ;
i f (N <= 5)

mystery (N − 1) ;
} // m y s t e r y ()
 	
12.1.2 Recursion as a Problem-Solving Approach
Given that recursion is not really necessary—if a programming language
has loops—and is not more efficient than loops, why is it so important?
The answer is that, in a broader sense, recursion is an effective approach
to problem solving. It is a way of viewing a problem. It is mostly in this
sense that we want to study recursion.

Recursion is based on two key problem-solving concepts: divide and
conquer and self-similarity. In recursive problem solving we use the
divide-and-conquer strategy repeatedly to break a big problem into a se-
quence of smaller and smaller problems until we arrive at a problem that
is practically trivial to solve.

What allows us to create this series of subproblems is that each sub-Subproblems
problem is similar to the original problem—that is, each subproblem is
just a smaller version of the original problem. Look again at the task of
saying “Hello” N times. Solving this task involves solving the similar task
of saying “Hello” N−1 times, which can be divided into the similar task of
saying “Hello” N−2 times. And so on.

The ability to see a problem as being composed of smaller, self-similar
problems is at the heart of the recursive approach. And although youSelf-similarity
might not have thought about this before, a surprising number of pro-
gramming problems have this self-similarity characteristic. Let’s illustrate
these ideas with some simple examples.

JAVA PROGRAMMING TIP Divide and Conquer. Many
programming problems can be solved by dividing them into smaller,
simpler problems. For recursive solutions, finding the key to the
subproblem often holds the solution to the original problem.

SECTION 12.2 • Recursive Definition 549

12.2 Recursive Definition

One place you might have already seen recursion is in mathematics. A
recursive definition consists of two parts: a recursive part in which the
nth value is defined in terms of the (n− 1)st value, and a nonrecursive,
boundary or base case, which defines a limiting condition.

12.2.1 Factorial: N!
For example, consider the problem of calculating the factorial of n—that
is, n! for n≥ 0. As you may recall, n! is calculated as follows:� �

n ! = n ∗ (n−1) ∗ (n−2) ∗ . . . ∗ 1 , for n > 0
 	
In addition, 0! is defined as 1. Let’s now look at some examples for
different values of n:� �

4 ! = 4 ∗ 3 ∗ 2 ∗ 1 = 24
3 ! = 3 ∗ 2 ∗ 1 = 6
2 ! = 2 ∗ 1 = 2
1 ! = 1
0 ! = 1
 	

As these examples suggest, n! can always be calculated in terms of (n−1)!
This relationship might be clearer if we rewrite the previous calculations
as follows:� �

4 ! = 4 ∗ 3 ∗ 2 ∗ 1 = 4 ∗ 3 ! = 24
3 ! = 3 ∗ 2 ∗ 1 = 3 ∗ 2 ! = 6
2 ! = 2 ∗ 1 = 2 ∗ 1 ! = 2
1 ! = 1 ∗ 0 ! = 1
0 ! = 1
 	

The only case in which we can’t calculate n! in terms of (n−1)! is when n
is 0. Otherwise, in each case we see that� �

n ! = n ∗ (n−1)!
 	
This leads to the following recursive definition:� �

n ! = 1 i f n = 0 // B o u n d a r y (o r b a s e) c a s e

n ! = n ∗ (n−1)! i f n > 0 // R e c u r s i v e c a s e
 	
Note that if we had omitted the base case, the recursion would have
continued to (−1)! and (−2)! and so on.

JAVA DEBUGGING TIP Bounding the Repetition. An infinite
repetition will result if a recursive definition is not properly bounded.

The recursive case uses divide and conquer to break the problem into a
smaller problem, but the smaller problem is just a smaller version of the

550 CHAPTER 12 • Recursive Problem Solving

original problem. This combination of self-similarity and divide and con-
quer is what characterizes recursion. The base case is used to stop or limit
the recursion.

JAVA EFFECTIVE DESIGN Recursive Definition. For recursive
algorithms and definitions, the base case serves as the bound for the
algorithm. The recursive case defines the nth case in terms of the
(n−1)st case.

12.2.2 Drawing a Nested Pattern

As another example, consider the problem of drawing the nested boxes
pattern in Figure 12.2. The self-similarity occurs in the fact that for this
pattern, its parts resemble the whole. The basic shape involved is a square,
which is repeated over and over at an ever-smaller scale. A recursive
definition for this pattern would be

Figure 12.2: The nested squares
pattern.

� �
Base case : i f s ide < 5 do nothing
Recursive case : i f s ide >= 5

draw a square
decrease the s ide and draw a smal ler

pat te rn i n s i d e the square
 	
This definition uses the length of the square’s side to help define the pat-
tern. If the length of the side is greater than or equal to 5, draw a square
with dimensions side×side. Then decrease the length of the side and draw
a smaller version of the pattern inside that square. In this case, the side
variable will decrease at each level of the drawing. When the length of the
side becomes less than 5, the recursion stops. Thus, the length of the side
serves as the limit or bound for this algorithm.

You should note that the length of the side functions here like a param-
eter in a method definition: It provides essential information for the defi-
nition, just as a method parameter provides essential data to the method.
Indeed, this is exactly the role that parameters play in recursive meth-
ods. They provide essential information that determines the method’s
behavior.

SECTION 12.3 • Recursive String Methods 551

Figure 12.3 illustrates how we would apply the definition. Suppose the

nestedBoxes(5)

5

5

nestedBoxes(10)

10

10

nestedBoxes(15)

15

15

nestedBoxes(20)

20

20

Figure 12.3: A trace of the nested
boxes definition starting with a
side of 20 and decreasing the side
by 5 each time.

side starts out at 20 and decreases by 5 at each level of recursion. Note that
as you move from top to bottom across the four patterns, each pattern
contains the one below it. A nestedBoxes(20) can be drawn by first
drawing a 20×20 square and then drawing a nestedBoxes(15) pattern
inside it. Similarly, a nestedBoxes(15) can be drawn by first drawing a
15× 15 square and then drawing a nestedBoxes(10) pattern inside it.
And so on.

These examples illustrate the power of recursion as a problem-solving
technique for situations that involve repetition. Like the iterative (looping)
control structures we studied in Chapter 6, recursion is used to implement
repetition within a bound. For recursive algorithms, the bound is defined
by the base case, whereas for loops, the bound is defined by the loop’s
entry condition. In either case, repetition stops when the bound is reached.

SELF-STUDY EXERCISES
EXERCISE 12.3 You can calculate 2n by multiplying 2 by itself n times.

For example, 23 is 2×2×2. Note also that 20 = 1. Given these facts, write
a recursive definition for 2n, for n≥ 0.

EXERCISE 12.4 Generalize your solution to the previous exercise by
giving a recursive definition for xn, where x and n are both integers ≥ 0.

EXERCISE 12.5 Is the recursive definition given earlier for the nested
boxes equivalent to the following recursive definition? Explain.� �
Draw a square . // i n e v e r y c a s e

I f s ide > 5
draw a smal ler nested boxes i n s i d e the square
 	

In this case, the base case (side <= 5) is implicit.

EXERCISE 12.6 Write a recursive definition for the recursive pattern
shown in Figure 12.4.

JAVA DEBUGGING TIP Infinite Recursion. An unbounded or
incorrectly bounded recursive algorithm will lead to infinite
repetition. Care must be taken to get the bound right.

12.3 Recursive String Methods

Remember that a recursive method is a method that calls itself. Like re-
cursive definitions, recursive methods are designed around the divide-
and-conquer and self-similarity principles. Defining a recursive method
involves a similar analysis to the one we used in designing recursive defi-
nitions. We identify a self-similar subproblem of the original problem plus
one or more limiting cases.

The idea of a method calling itself seems a bit strange at first. It’s per-

Figure 12.4: Write a recursive def-
inition for this pattern.

haps best understood in terms of a clone or a copy. When a method calls
itself, it really calls a copy of itself, one that has a slightly different internal

552 CHAPTER 12 • Recursive Problem Solving

state. Usually the difference in state is the result of a difference in the
invoked method’s parameters.How can a method call itself?

12.3.1 Printing a String
To illustrate the concept of a recursive method, let’s define a recursive
method for printing a string. This is not intended to be a practical
method—we already have the println() method for printing strings.
But pretend for a moment that you only have a version of println()
that works for characters, and your task is to write a version that can be
used to print an entire string of characters.

A little terminology will help us describe the algorithm. Let’s call the
first letter of a string the head of the string, and let’s refer to all the remain-
ing letters in the string as the tail of the string. Then the problem of print-
ing a string can be solved using a head-and-tail algorithm, which consistsHead-and-tail algorithm
of two parts: printing the head of the string and recursively printing its
tail. The limiting case here is when a string has no characters in it. It’s
trivial to print the empty string—there is nothing to print! This leads to
the method definition shown in Figure 12.5.� �

/∗ ∗
∗ p r i n t S t r i n g () p r i n t s e a c h c h a r a c t e r o f t h e s t r i n g s

∗ P r e : s i s i n i t i a l i z e d (non − n u l l)

∗ P o s t : n o n e

∗/

public void p r i n t S t r i n g (S t r i n g s) {
i f (s . length () == 0)

return ; // B a s e c a s e : d o n o t h i n g

e lse { // R e c u r s i v e c a s e :

System . out . p r i n t (s . charAt (0)) ; // P r i n t h e a d

p r i n t S t r i n g (s . subs t r ing (1)) ; // P r i n t t a i l

}
} // p r i n t S t r i n g ()
 	

Figure 12.5: The recursive printString() method.

The base case here provides a limit and bounds the recursion when the
length of s is 0—that is, when the string is empty. The recursive case solves
the problem of printing s by solving the smaller, self-similar problem of
printing a substring of s. Note that the recursive case makes progress to-
ward the limit. On each recursion, the tail will get smaller and smaller
until it becomes the empty string.

JAVA EFFECTIVE DESIGN Recursive Progress. In a recursive
algorithm, each recursive call must make progress toward the bound,
or base case.

Let’s now revisit the notion of a method calling itself. Obviously this isRecursive call
what happens in the recursive case, but what does it mean—what actions
does this lead to in the program? Each recursive call to a method is really a
call to a copy of that method, and each copy has a slightly different internal
state. We can define printString()’s internal state completely in terms

SECTION 12.3 • Recursive String Methods 553

of its recursion parameter, s, which is the string that’s being printed. A
recursion parameter is a parameter whose value is used to control the
progress of the recursion. In this case, if s differs in each copy, then so will
s.substring(1) and s.charAt(0).

JAVA EFFECTIVE DESIGN Recursion and Parameters. Recursive
methods use a recursion parameter to distinguish between self-similar
instances of the method call. The parameter controls the progress of
the recursion toward its bound.

Figure 12.6 illustrates the sequence of recursive method calls and the
output that results when printString("hello") is invoked. Each box

printString("hello")

System.out.print('h');

printString("ello");

printString("ello")

System.out.print('e');

printString("llo");

printString("llo")

System.out.print('l');

printString("lo");

printString("lo")

System.out.print('l');

printString("o");

printString("o")

System.out.print('o');

printString("");

printString("")

Base

case

Output Produced

return;

printString("hello")

h e l l o

Figure 12.6: A recursive method
call invokes a copy of the method,
each with a slightly different in-
ternal state. As this is done re-
peatedly, a stack of method calls
is created.

represents a separate instance of the printString() method, with its
own internal state. In this illustration, its state is represented by its pa- Self-similar instances
rameter, s. Because each instance has a different parameter, behaviors
differ slightly. Each box shows the character that will be printed by that

554 CHAPTER 12 • Recursive Problem Solving

instance (s.charAt(0)), and the string that will be passed on to the next
instance (s.substring(1)).

JAVA DEBUGGING TIP Off-by-One Error. The expressions
s.charAt(0) and s.substring(1) will generate exceptions if s is
the empty string.

The arrows represent the method calls and returns. Note that the first
return executed is the one in the base case. Each instance of the method
must wait for the instance it called to return before it can return. That’s
why the instances “pile up” in a cascade-like structure. The arrowless
lines trace the order in which the output is produced.

Each instance of printString() is similar to the next in that each
will print one character and then pass on a substring, but each performs
its duties on a different string. Note how the string, the recursion param-
eter in this case, gets smaller in each instance of printString(). ThisProgress toward the bound
represents progress toward the method’s base case s.length() == 0.
When the empty string is passed as an argument, the recursion will stop.
If the method does not make progress toward its bound in this way, the
result will be an infinite recursion.

JAVA EFFECTIVE DESIGN Bounding the Recursion. For recursive
algorithms, the recursion parameter is used to express the algorithm’s
bound or base case. In order for the algorithm to terminate, each
recursive call should make progress toward the bound.

Note also the order in which things are done in this method. First
s.charAt(0) is printed, and then s.substring(1) is passed toSelf-similarity
printString() in the recursion. This is a typical structure for a head-
and-tail algorithm. What makes this work is that the tail is a smaller,
self-similar version of the original structure.

JAVA EFFECTIVE DESIGN Head-and-Tail Algorithm. Many
recursive solutions involve breaking a sequential structure, such as a
string or an array, into its head and tail. An operation is performed on
the head, and the algorithm recurses on the tail.

SECTION 12.3 • Recursive String Methods 555

SELF-STUDY EXERCISE

EXERCISE 12.7 What would be printed by the following version of the
printString2()method, if it is called with printString2("hello")?� �
public void p r i n t S t r i n g 2 (S t r i n g s) {

i f (s . length () == 1)
System . out . p r i n t (s . charAt (0)) ; // B a s e c a s e :

e lse {
// P r i n t l a s t c h a r

System . out . p r i n t (s . charAt (s . length () − 1)) ;
// P r i n t r e s t o f s t r i n g

p r i n t S t r i n g 2 (s . subs t r ing (0 , s . length () − 1)) ;
}
} // p r i n t S t r i n g 2 ()
 	
12.3.2 Printing the String Backward

What do you suppose would happen if we reversed the order of the state-
ments in the printString() method? That is, what if the recursive call
came before s.charAt(0) is printed, as in the following method:� �

/∗ ∗
∗ p r i n t R e v e r s e () p r i n t s e a c h c h a r a c t e r s i n r e v e r s e o r d e r

∗ P r e : s i s i n i t i a l i z e d (non − n u l l)

∗ P o s t : n o n e

∗/

public void printReverse (S t r i n g s) {
i f (s . length () > 0) { // R e c u r s i v e c a s e :

printReverse (s . subs t r ing (1)) ; // P r i n t t a i l

System . out . p r i n t (s . charAt (0)) ; // P r i n t f i r s t c h a r

}
} // p r i n t R e v e r s e ()
 	

As its name suggests, this method will print the string in reverse
order. The trace in Figure 12.7 shows how this works. Before
printReverse("hello") can print h, it calls printReverse("ello")
and must wait for that call to complete its execution and return. But
printReverse("ello") calls printReverse("llo") and so must
wait for that call to complete its execution and return.

This process continues until printReverse("") is called. While the
base case is executing, the other five instances of printReverse() must
each wait for the instance that they called to complete its execution. It
is only after the base case returns, that printReverse("o") can print
its first character and return. So the letter o will be printed first. After
printReverse("o") has returned, then printReverse("lo") can
print its first character. So the letter l will be printed next, and so on, until
the original call to printReverse("hello") is completed and returns.
Thus, the string will be printed in reverse order.

Note that the method call and return structure in this example follows a
last-in–first-out (LIFO) protocol. That is, the last method called is always Last-in–first-out protocol

556 CHAPTER 12 • Recursive Problem Solving
Figure 12.7: A trace of print-
Reverse(s), which prints its
string argument in reverse order.

printReverse("hello")

printReverse("ello");

System.out.print('h');

printReverse("ello")

printString("llo");

System.out.print('e');

printReverse("llo")

printReverse("lo");

System.out.print('l');

printReverse("lo")

printReverse("o");

System.out.print('l');

printReverse("o")

printReverse("");

System.out.print('o');

printReverse("")

Base

case Output producedreturn;

printReverse("hello")

o l l e h

the first method to return. This is the protocol used by all method calls,
recursive or otherwise.

JAVA LANGUAGE RULE LIFO. All programming languages,
including Java, use a last-in-first-out protocol for procedure call and
return.

For example, compare the order in which things happen in Figure 12.7
with the method stack trace in Figure 10.12. The only real difference
between the two figures is that here the method stack is represented as
growing downward, whereas in Figure 10.12 it grows upward. As each
method call is made, a representation of the method call is placed on the
method call stack. When a method returns, its block is removed from theMethod call stack
top of the stack. The only difference between recursive and nonrecursive
method calls is that recursive methods call instances of the same method
definition. Of course, as we’ve seen, the instances are all slightly different
from each other.

SECTION 12.3 • Recursive String Methods 557

SELF-STUDY EXERCISES

EXERCISE 12.8 Write a recursive method called countDown() that
takes a single int parameter, N ≥ 0, and prints a countdown, such as
“5, 4, 3, 2, 1, blastoff.” In this case, the method would be called with
countDown(5).

EXERCISE 12.9 Revise the method in the previous exercise so that
when it’s called with countDown(10), it will print “10 8 6 4 2 blastoff”;
if it’s called with countDown(9), it prints “9 7 5 3 1 blastoff.”

12.3.3 Counting Characters in a String

Suppose you’re writing an encryption program and you need to count the
frequencies of the letters of the alphabet. Let’s write a recursive method Problem statement
for this task.

This method will have two parameters: a String to store the string
that will be processed and a char to store the target character—the one
we want to count. The method should return an int, representing the
number of occurrences of the target character in the string:� �

// G o a l : c o u n t t h e o c c u r r e n c e s o f c h i n s

public i n t countChar (S t r i n g s , char ch) {
. . .

}
 	
Here again our analysis must identify a recursive step that breaks the

problem into smaller, self-similar versions of itself, plus a base case or
limiting case that defines the end of the recursive process. Because the
empty string will contain no target characters, we can use it as our base Base case
case. So, if it is passed the empty string, countChar() should just return
0 as its result.

For the recursive case, we can divide the string into its head and tail. Recursive case
If the head is the target character, then the number of occurrences in the
string is (1 + the number of occurrences in its tail). If the head of the
string is not the target character, then the number of occurrences is (0 +
the number of occurrences in its tail). Of course, we’ll use recursion to
calculate the number of occurrences in the tail.

This analysis leads to the recursive method shown in Figure 12.8. Note
that for both recursive cases the same recursive call is used. In both cases
we pass the tail of the original string, plus the target character. Note also
how the return statement is evaluated:� �

return 1 + countChar (s . subs t r ing (1) , ch) ; // H e a d = c h
 	
Before the method can return a value, it must receive the result of call-
ing countChar(s.substring(1),ch) and add it to 1. Only then can Evaluation order is crucial

558 CHAPTER 12 • Recursive Problem Solving� �
/∗ ∗
∗ P r e : s i s a non − n u l l S t r i n g , c h i s a n y c h a r a c t e r

∗ P o s t : c o u n t C h a r () == t h e n u m b e r o f o c c u r r e n c e s o f c h i n s t r

∗/

public i n t countChar (S t r i n g s , char ch) {
i f (s . length () == 0) // B a s e c a s e : e m p t y s t r i n g

return 0 ;
e lse i f (s . charAt (0) == ch) // R e c u r s i v e c a s e 1

return 1 + countChar (s . subs t r ing (1) , ch) ; // H e a d = c h

e lse // R e c u r s i v e c a s e 2

return 0 + countChar (s . subs t r ing (1) , ch) ; // H e a d ! = c h

} // c o u n t C h a r ()
 	
Figure 12.8: The recursive countChar() method.

a result be returned to the calling method. This leads to the following
evaluation sequence for countChar("dad",’d’):� �

countChar (”dad” , ’d ’) ;
1 + countChar (”ad” , ’d ’) ;
1 + 0 + countChar (”d” , ’d ’) ;
1 + 0 + 1 + countChar (”” , ’d ’) ;
1 + 0 + 1 + 0 = 2 // F i n a l r e s u l t
 	

In this way, the final result of calling countChar("dad",’d’) is built
up recursively by adding together the partial results from each separate
instance of countChar(). The evaluation process is shown graphically
in Figure 12.9.

Figure 12.9: A trace of
countChar("dad",’d’),
which returns the value 2.

countChar("dad",'d');

return 1 + countChar("ad",'d');

countChar("ad",'d');

return 0 + countChar("d",'d');

countChar("d",'d');

return 1 + countChar("",'d');

countChar("",'d');

return 0;
Base

case

1+ 0 + 1 + 0 = 2

0 + 1 + 0

1 + 0

0

countChar("dad",'d');
Result

SECTION 12.3 • Recursive String Methods 559

JAVA DEBUGGING TIP Return Type. A common error with
nonvoid recursive algorithms is forgetting to make sure that those
return statements that contain a recursive call yield the correct data
type.

SELF-STUDY EXERCISE

EXERCISE 12.10 Here’s a numerical problem. Write a recursive
method to compute the sum of 1 to N, given N as a parameter.

12.3.4 Translating a String
A widely used string-processing task is to convert one string into another
string by replacing one character with a substitute throughout the string.
For example, suppose we want to convert a Unix path name, which uses
the forward slash “/” to separate one part of the path from another, into a
Windows path name, which uses the backslash character “\” as a separa- Problem statement
tor. For example, we want a method that can translate the following two
strings into one another:� �

/unix system/myfolder/ java
\Windows system\myfolder\ j ava
 	
Thus, we want a method that takes three parameters: a String, on

which the conversion will be performed, and two char variables, the first Method design
being the original character in the string and the second being its substi-
tute. The precondition for this method is simply that each of these three
parameters has been properly initialized with a value. The postcondi-
tion is that all occurrences of the first character have been replaced by the
second character.

As in our previous string-processing methods, the limiting case in this Head-and-tail algorithm
problem is the empty string, and the recursive case will divide the string
into its head and its tail. If the head is the character we want to replace,
we concatenate its substitute with the result we obtain by recursively
converting its tail.

This analysis leads to the definition shown in Figure 12.10. This method
has more or less the same head and tail structure as the preceding exam-
ple. The difference is that here the operation we perform on the head of
the string is concatenation rather than addition.

The base case is still the case in which str is the empty string. The
first recursive case occurs when the character being replaced is the head
of str. In that case, its substitute (ch2) is concatenated with the result
of converting the rest of the string and returned as the result. The second
recursive case occurs when the head of the string is not the character be-
ing replaced. In this case, the head of the string is simply concatenated
with the result of converting the rest of the string. Figure 12.11 shows an
example of its execution.

560 CHAPTER 12 • Recursive Problem Solving� �
/∗ ∗
∗ P r e : s t r , c h 1 , c h 2 h a v e b e e n i n i t i a l i z e d

∗ P o s t : t h e r e s u l t c o n t a i n s a c h 2 e v e r y w h e r e t h a t c h 1

∗ h a d o c c u r r e d i n s t r

∗/

public s t a t i c S t r i n g convert (S t r i n g s t r , char ch1 , char ch2) {
i f (s t r . length () == 0) // B a s e c a s e : e m p t y s t r i n g

return s t r ;
e lse i f (s t r . charAt (0) == ch1) // R e c u r s i v e 1 : c h 1 a t h e a d

// R e p l a c e c h 1 w i t h c h 2

return ch2 + convert (s t r . subs t r ing (1) , ch1 , ch2) ;
e lse // R e c u r s i v e 2 : c h 1 n o t a t h e a d

return s t r . charAt (0) + convert (s t r . subs t r ing (1) , ch1 , ch2) ;
} // c o n v e r t ()
 	

Figure 12.10: The convert()method replaces one character with another
in a string.

Figure 12.11: A trace of
convert("bad",’d’,’m’),
which returns “bam.”

convert("bad",'d','m');

return 'b' + convert("ad",'d','m');

convert("ad",'d','m');

return 'a' + convert("d",'d','m');

convert("d",'d','m');

return 'm' + convert("",'d','m');

convert("",'d','m');

return "";
Base

case

Result

'b' + 'a' + 'm' + "" = "bam"

'a' + 'm' + ""

'm' + ""

""

convert("bad",'d','m');

SELF-STUDY EXERCISE
EXERCISE 12.11 Write a recursive method that changes each blank

in a string into two consecutive blanks, leaving the rest of the string
unchanged.

12.3.5 Printing all Possible Outcomes when Tossing N
Coins

Suppose that a student who is studying probability wishes to have a Java
program that, for any positive integer N, will print out a list of all possible
outcomes when N coins are tossed. For purposes of analyzing the prob-
lem, it is assumed that the coins are numbered 1 through N and that they
are tossed one at a time. An outcome will be represented by a string of

SECTION 12.3 • Recursive String Methods 561

Hs and Ts corresponding to heads and tails. Thus, if N = 2, the string HT
represents a head on the first coin and a tail on the second coin. What we
need is a method which, when given the number of coins, will print out A coin tossing experiment
all strings of this type. In case of two coins the output should be:� �

HH
HT
TH
TT
 	
Let’s devise a strategy, given any positive integer N, for printing the

strings that correspond to all possible outcomes when tossing N coins. Designing a recursive algorithm
Clearly, for N = 1, the method needs to print an H on one line and a T on
the next line. For an arbitrary number of coins N, one way to generate all
outcomes is to think of two kinds of strings—those that start with an H and
those that start with a T. The strings that start with H can be generated by
inserting an H in front of each of the outcomes that occur when N−1 coins
are tossed. The strings beginning with T can be generated in a similar
manner. Thus, using the outcomes for two coins above, we know that the
outcomes for three coins for which the first coin is H are:� �

HHH
HHT
HTH
HTT
 	
Using an argument similar to the one above, we can generalize this to a

description of the recursive case for an algorithm. We want an algorithm
that generates all those outcomes for N coins where we are given a string
STR representing one particular outcome for all but the last K coins where
0 < K <= N. To print out all such outcomes, just print all outcomes with a
fixed outcome corresponding to STR + "H" for all but the last K−1 coins
and then print all outcomes with the fixed outcome STR + "T" for all but
the last K−1 coins. The base case is the special case K = 1 when you just
need STR + "H" on one line and STR + "T" on the next. If you start the
algorithm with STR = "" and K = N, this algorithm will print out all the
outcomes for tossing N coins.

To translate this into Java code we can create a class called Coin-
Toss which has a single static method called printOutcomes(String
str,int N). The above recursive description easily translates into code
for the method in Figure 12.12.

To print out all outcomes when tossing, say, seven coins, just make the
method call CoinToss.printOutcomes("",7). This particular call
would generate the desired output:� �

HHHHHHH
HHHHHHT
.

TTTTTTH
TTTTTTT
 	

562 CHAPTER 12 • Recursive Problem Solving� �
/∗ ∗
∗ p r i n t O u t c o m e s (s t r , N) p r i n t s o u t a l l p o s s i b l e o u t c o m e s

∗ b e g i n n i n g w i t h s t r when N m o r e c o i n s a r e t o s s e d .

∗ P r e : s t r i s a s t r i n g o f Hs a n d T s .

∗ P r e : N i s a p o s i t i v e i n t e g e r .

∗ P o s t : n o n e

∗/

public s t a t i c void printOutcomes (S t r i n g s t r , i n t N){
i f (N == 1){ // T h e b a s e c a s e

System . out . p r i n t l n (s t r + ”H”) ;
System . out . p r i n t l n (s t r + ”T”) ;

} e lse { // T h e r e c u r s i v e c a s e

printOutcomes (s t r + ”H” , N − 1) ;
printOutcomes (s t r + ”T” , N − 1) ;

} // e l s e

}// p r i n t O u t c o m e s ()
 	
Figure 12.12: The method printOutcomes() prints all outcomes given
the results on some initial coins.

To better understand how the recursive method definition generates its
output, it might be helpful to trace the order of recursive calls and output
to System.out that occurs when executing printOutcomes("",3) as
shown in Figure 12.13.

Notice that the recursive case in the method implementation makes two
calls to itself and as a result it is not so clear how this method would be

Figure 12.13: The order in
which the recursive calls
and output occur when
printOutcomes("",3) is
executed.

written using a loop instead of recursion. This example is more typical of
the type of problem for which a recursive method is shorter and clearer
than a method that solves the same problem without using recursion.

SELF-STUDY EXERCISE

EXERCISE 12.12 Modify the above printOutcomes() method so
that it will print out all possible outcomes when a chess player plays a
series of N games. The outcome of each game is to be represented by a W,
L, or D corresponding to the player winning, losing, or drawing the game.

SECTION 12.4 • Recursive Array Processing 563

12.4 Recursive Array Processing

Like strings, arrays also have a recursive structure. Just as each substring
of a string is similar to the string as a whole, each portion of an array is
similar to the array as a whole. Similarly, just as a string can be divided
into a head and a tail, an array can be divided into its head, the first ele-
ment, and its tail, the rest of its elements (Fig. 12.14). Because the tail of an

6 8 1 0 10 15 2 32 7 71

Head
Tail

Figure 12.14: An array of int is
a recursive structure whose tail is
similar to the array as a whole.

array is itself an array, it satisfies the self-similarity principle. Therefore,
arrays have all the appropriate characteristics that make them excellent
candidates for recursive processing.

12.4.1 Recursive Sequential Search

Let’s start by developing a recursive version of the sequential search al-
gorithm that we discussed in Chapter 9. Recall that the sequential search
method takes two parameters: the array being searched and the key, or Method design
target value, being searched for. If the key is found in the array, the
method returns its index. If the key is not found, the method returns
−1, thereby indicating that the key was not contained in the array. The
iterative version of this method has the following general form:� �

/∗ ∗
∗ P e r f o r m s a s e q u e n t i a l s e a r c h o f a n i n t e g e r a r r a y

∗ @ p a r a m a r r i s t h e a r r a y o f i n t e g e r s

∗ @ p a r a m k e y i s t h e e l e m e n t b e i n g s e a r c h e d f o r

∗ @ r e t u r n t h e k e y ’ s i n d e x i s r e t u r n e d i f t h e k e y i s

∗ f o u n d o t h e r w i s e −1 i s r e t u r n e d

∗ P r e : a r r i s n o t n u l l

∗ P o s t : e i t h e r −1 o r t h e k e y ’ s i n d e x i s r e t u r n e d

∗/

public i n t s e q u en t i a l S e a rc h (i n t a r r [] , i n t key) {
return −1; // f a i l u r e i f t h i s i s r e a c h e d

}
 	
If we divide the array into its head and tail, then one way to describe a

recursive search algorithm is as follows:� �
I f the array i s empty , return −1
I f the array ’ s head matches the key , re turn i t s index
I f the array ’ s head doesn ’ t match the key ,

re turn the r e s u l t of searching the t a i l of the array
 	
This algorithm clearly resembles the approach we used in recursive string
processing: Perform some operation on the head of the array and recurse
on the tail of the array.

The challenge in developing this algorithm is not so much knowing
what to do but knowing how to represent concepts like the head and the How do we represent head and tail?
tail of the array. For strings, we had methods such as s.charAt(0) to
represent the head of the string and s.substring(1) to represent the
string’s tail. For an array named arr, the expression arr[0] represents
the head of the array. Unfortunately, we have no method comparable to

564 CHAPTER 12 • Recursive Problem Solving

the substring() method for strings that lets us represent the tail of the
array.

To help us out of this dilemma, we can use an integer parameter to rep-
resent the head of the array. Let’s have the int parameter, head, represent
the current head of the array (Fig. 12.15). Then head+1 represents the start
of the tail, and arr.length-1 represents the end of the tail. Our method
will always be passed a reference to the whole array, but it will restrict the
search to the portion of the array starting at head. If we let head vary from
0 to arr.length on each recursive call, the method will recurse through
the array in head/tail fashion, searching for the key. The method will stop
when head = arr.length.

Figure 12.15: A parameter, head,
can represent the head of some
portion of the array. 6 8 1 0 10 15 2 32 7 71

0 N-1

Head
Tail

First call

6 8 1 0 10 15 2 32 7 71

Head
Tail

Second call

6 8 1 0 10 15 2 32 7 71

Head
Tail

Third call

6 8 1 0 10 15 2 32 7 71

0 N-1

Head

Last call

JAVA PROGRAMMING TIP Subarray Parameter. For methods that
take an array argument, an int parameter can be used to designate
the portion of the array that should be processed in the method.

This leads to the definition for recursive search shown in Figure 12.16.
Note that the recursive search method takes three parameters: the array
to be searched, arr, the key being sought, and an integer head that gives
the starting location for the search. The algorithm is bounded when head
= arr.length. In effect, this is like saying the recursion should stop
when we have reached a tail that contains 0 elements. This underscores
the point we made earlier about the importance of parameters in design-
ing recursive methods. Here the head parameter serves as the recursion
parameter. It controls the progress of the recursion.Recursion parameter

Note also that for the search algorithm we need two base cases. One
represents the successful case, where the key is found in the array. The
other represents the unsuccessful case, which comes about after we have
looked at every possible head in the array and not found the key. This

SECTION 12.4 • Recursive Array Processing 565� �
/∗ ∗
∗ s e a r c h (a r r , h e a d , k e y)−−− R e c u r s i v e l y s e a r c h a r r f o r k e y

∗ s t a r t i n g a t h e a d

∗ P r e : a r r ! = n u l l a n d 0 <= h e a d <= a r r . l e n g t h

∗ P o s t : i f a r r [k] == k e y f o r k , 0 <= k < a r r . l e n g t h ,

∗ r e t u r n k e l s e r e t u r n −1

∗/

private i n t search (i n t a r r [] , i n t head , i n t key) {
i f (head == a r r . length) // B a s e : e m p t y l i s t − f a i l u r e

return −1;
e lse i f (a r r [head] == key) // B a s e : k e y f o u n d −−− s u c c e s s

return head ;
e lse // R e c u r s i v e : s e a r c h t h e t a i l

return search (arr , head + 1 , key) ;
}
 	
Figure 12.16: The recursive search method takes three parameters. The
head parameter points to the beginning of that portion of the array that is
being searched.

case will arise through exhaustion—that is, when we have exhausted all
possible locations for the key.

JAVA DEBUGGING TIP Recursive Search. For the recursive search
method to work properly, it must be called with the correct value for
the head parameter.

12.4.2 Information Hiding

Note that in order to use the search() method, you would have to know
that you must supply a value of 0 as the argument for the head parameter.
This is not only awkward but also impractical. After all, if we want to
search an array, we just want to pass two arguments, the array and the
key we’re searching for. It’s unreasonable to expect users of a method to Design issue
know that they also have to pass 0 as the head in order to get the recursion
started. This design is also prone to error, because it’s quite easy for a
mistake to be made when the method is called.

For this reason, it is customary to provide a nonrecursive interface to
the recursive method. The interface hides the fact that a recursive algo-
rithm is being used, but this is exactly the kind of implementation detail
that should be hidden from the user. This is an example of the principle
of information hiding that we introduced in Chapter 0. A more appropri- Hide implementation details
ate design would make the recursive method a private method that’s
called by the public method, as shown Figure 12.17 and implemented in
the Searcher class (Fig. 12.18).

566 CHAPTER 12 • Recursive Problem Solving
Figure 12.17: The public
search() method serves as
an interface to the private recur-
sive method, search(). Note
that the methods have different
signatures.

+search(in arr[] : int, in key : int) : int

-search(in arr[] : int, in head : int, in key : int) : int

Searcher

� �
public c l a s s Searcher {

/∗ ∗
∗ s e a r c h (a r r , k e y) −− s e a r c h e s a r r f o r k e y .

∗ P r e : a r r ! = n u l l a n d 0 <= h e a d <= a r r . l e n g t h

∗ P o s t : i f a r r [k] == k e y f o r k , 0 <= k < a r r . l e n g t h ,

∗ r e t u r n k , e l s e r e t u r n −1

∗/

public i n t search (i n t a r r [] , i n t key) {
return search (arr , 0 , key) ; // C a l l r e c u r s i v e s e a r c h

}
/∗ ∗
∗ s e a r c h (a r r , h e a d , k e y) −− R e c u r s i v e l y s e a r c h a r r f o r k e y

∗ s t a r t i n g a t h e a d

∗ P r e : a r r ! = n u l l a n d 0 <= h e a d <= a r r . l e n g t h

∗ P o s t : i f a r r [k] == k e y f o r k , 0 <= k < a r r . l e n g t h , r e t u r n k

∗ e l s e r e t u r n −1

∗/

private i n t search (i n t a r r [] , i n t head , i n t key) {
i f (head == a r r . length) // B a s e c a s e : e m p t y l i s t − f a i l u r e

return −1;
e lse i f (a r r [head] == key) // B a s e c a s e : k e y f o u n d −− s u c c e s s

return head ;
e lse // R e c u r s i v e c a s e : s e a r c h t h e t a i l

return search (arr , head + 1 , key) ;
} // s e a r c h ()

public s t a t i c void main (S t r i n g args []) {
i n t numbers [] = {0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 1 8} ;
Searcher searcher = new Searcher () ;
for (i n t k = 0 ; k <= 2 0 ; k++) {

i n t r e s u l t = searcher . search (numbers , k) ;
i f (r e s u l t != −1)

System . out . p r i n t l n (k + ” found at ” + r e s u l t) ;
e lse

System . out . p r i n t l n (k + ” i s not in the array ”) ;
} // f o r

} // m a i n ()

} // S e a r c h e r
 	
Figure 12.18: Information hiding principle: The public search()
method calls the private, recursive search(), thereby hiding the fact
that a recursive algorithm is used.

JAVA EFFECTIVE DESIGN Information Hiding. Unnecessary
implementation details, such as whether a method uses a recursive or
iterative algorithm, should be hidden within the class. Users of a class
or method should be shown only those details that they need to know.

SECTION 12.4 • Recursive Array Processing 567

SELF-STUDY EXERCISE
EXERCISE 12.13 Write a main() method for the Searcher class to

conduct the following test of search(). Create an int array of ten el-
ements, initialize its elements to the even numbers from 0 to 18, and then
use a for loop to search the array for each of the numbers from 0 to 20.

12.4.3 Recursive Selection Sort
Next we want you to think back to Chapter 9, where we introduced the
selection sort algorithm. To review the concept, suppose you have a deck
of 52 cards. Lay them out on a table, face up, one card next to the other.
Starting at the last card, look through the deck, from last to first, find the Sorting a deck of cards
largest card and exchange it with the last card. Then go through the deck
again starting at the next to the last card, find the next largest card, and
exchange it with the next to the last card. Go to the next card, and so on.
If you repeat this process 51 times, the deck will be completely sorted.

JAVA DEBUGGING TIP Off-by-One Error. Sorting algorithms are
particularly susceptible to an off-by-one error. To sort an array with N
elements, you generally need to make N−1 passes.

Let’s design a recursive version of this algorithm. The algorithm we
just described is like a head-and-tail algorithm in reverse, where the last
card in the deck is like the head, and the cards before it are like the tail.
After each pass or recursion, the last card will be in its proper location,
and the cards before it will represent the unsorted portion of the deck. If
we use parameter to represent last, then it will be moved one card to the
left at each level of the recursion.

Figure 12.19 illustrates this process for an array of integers. The base
case is reached when the last parameter is pointing to the first element in
the array. An array with one element in it is already sorted. It needs no re-
arranging. The recursive case involves searching an ever-smaller portion
of the array. This is represented in our design by moving last down one
element to the left.

6 8 1 0 10 15 2 32 7 71

LastUnsorted

After one

pass

6 8 1 0 10 15 2 7 32 71

LastUnsorted

After two

passes

6 8 1 0 10 7 2 15 32 71

LastUnsorted

After three

passes

0 1 2 6 7 8 10 15 32 71

Last

After last

pass

Figure 12.19: Selection sort: Us-
ing a head-and-tail algorithm in
reverse to sort an integer array.

568 CHAPTER 12 • Recursive Problem Solving� �
/∗ ∗
∗ s e l e c t i o n S o r t (a r r , l a s t)−− R e c u r s i v e l y s o r t a r r s t a r t i n g

∗ a t l a s t e l e m e n t

∗ P r e : a r r ! = n u l l a n d 0 <= l a s t < a r r . l e n g t h

∗ P o s t : a r r w i l l b e a r r a n g e d s o t h a t a r r [j] <= a r r [k] ,

∗ f o r a n y j < k

∗/

private void s e l e c t i o n S o r t (i n t a r r [] , i n t l a s t) {
i f (l a s t > 0) {

i n t maxLoc = findMax (arr , l a s t) ; // F i n d t h e l a r g e s t

swap (arr , l a s t , maxLoc) ; // Swa p i t w i t h l a s t

s e l e c t i o n S o r t (arr , l a s t − 1) ;
// Move down t h e a r r a y

}
} // s e l e c t i o n S o r t ()
 	
Figure 12.20: The selection- Sort()method uses the findMax() and
swap() methods to help it sort an array.

Figure 12.20 provides a partial implementation of selection sort for an
array of int. In this definition, the array is one parameter. The second
parameter, int last, defines that portion of the array, from right to
left, that is yet to be sorted. On the first call to this method, last will be
arr.length − 1. On the second, it will be arr.length − 2, and so
on. When last gets to be 0, the array will be sorted. Thus, in terms of the
card deck analogy, last represents the last card in the unsorted portion of
the deck.

Note how simply the selectionSort() method can be coded. Of
course, this is because we have used separate methods to handle the tasksTask decomposition
of finding the largest element and swapping the last element and the
largest. This not only makes sense in terms of the divide-and-conquer
principle, but we also already defined a swap() method in Chapter 9. So
here is a good example of reusing code:� �

/∗ ∗
∗ s w a p (a r r , e l 1 e l 2) s w a p s e l 1 a n d e l 2 i n t h e a r r a y , a r r

∗ P r e : a r r i s n o n n u l l , 0 <= e l 1 < a r r . l e n g t h ,

0 <= e l 2 < a r r . l e n g t h

∗ P o s t : t h e l o c a t i o n s o f e l 1 a n d e l 2 a r e s w a p p e d i n a r r

∗/

private void swap (i n t a r r [] , i n t el1 , i n t e l 2) {
i n t temp = a r r [e l 1] ; // A s s i g n t h e f i r s t e l e m e n t t o t e m p

a r r [e l 1] = a r r [e l 2] ; // O v e r w r i t e f i r s t w i t h s e c o n d

a r r [e l 2] = temp ; // O v e r w r i t e s e c o n d w i t h f i r s t (t e m p)

} // s w a p ()
 	

SECTION 12.5 • Example: Drawing (Recursive) Fractals 569

The definition of the findMax() method is left as a self-study exercise.

JAVA PROGRAMMING TIP Method Decomposition. A task can be
simplified by breaking it up into simpler subtasks, especially if you
already have methods for solving one or more of the subtasks.

SELF-STUDY EXERCISES
EXERCISE 12.14 As in the case of the search() method, we need to

provide a public interface to the recursive selectionSort() method.
We want to enable the user to sort an array just by calling sort(arr),
where arr is the name of the array to be sorted. Define the sort()
method.

EXERCISE 12.15 Define an iterative version of the findMax(arr,N)
method that is used in selectionSort(). Its goal is to return the
location (index) of the largest integer between arr[0] and arr[N].

12.5 Example: Drawing (Recursive) Fractals

A fractal is a geometric shape that exhibits a recursive structure. When it
is divided into parts, each part is a smaller version of the whole. Fractal Fractal patterns
patterns occur in many situations and places. For example, if you look
at a graph of the Dow Jones Industrial Average (DJIA) over the past year,
the graph for each day is similar to the graph of each month, which is
similar to the graph of each year, and so on. Each part is a reduced-scale
version of the whole. Fractals also occur throughout nature. If you look
at a coastline from an airplane, the shape of each part of the coastline, no
matter how small the scale, resembles the shape of the whole coastline. If
you look at a tree, each branch of the tree is similar in shape to the whole
tree.

So, fractal patterns are all around us. Because of their self-similarity and
divisibility, fractals are well-suited for recursive programming. Drawing
recursive patterns is also an excellent way to illustrate how to use parame-
ters to create generality in method design. In this section, we will develop
two simple patterns and incorporate them into a GUI.

12.5.1 Nested Squares
Earlier in this chapter, we developed a recursive definition for drawing a
nested squares pattern (Fig. 12.2). Now let’s develop a recursive method
that actually draws the pattern. For this pattern, the base case is the draw-
ing of the square. The recursive case, if more divisions are desired, is the
drawing of smaller patterns within the square:� �

Draw a square .
I f more d i v i s i o n s are desired

draw a smal ler vers ion of pat tern within square .
 	
An important consideration for this algorithm is to specify precisely

what we mean by “if more divisions are desired.” In other words, how

570 CHAPTER 12 • Recursive Problem Solving

exactly do we control the recursion? In our earlier definition of the pattern, How should we represent the
problem?we used the length of the side to control the algorithm. When side≥ 5, we

recursed.
Another more general way to do this is to describe the fractal structure

in terms of its levels. For nested squares, the level-zero pattern would beLevels of recursion
just the basic square shape (Fig. 12.21). A level-one pattern would be the
basic square shape plus an inner square, and so on. The higher the level,

Level 4

Level 1

Level 0

Figure 12.21: Levels 0, 1, and 4 of
the nested squares pattern.

the more subdividing we do. Therefore, one way to control the recursion
is to use a level parameter as the recursion parameter—as the parameter that
controls the recursion:� �

Draw a square .
I f the l e v e l i s g r e a t e r than 0 ,

draw a smal ler vers ion of pat tern within square .
 	
What other parameters will we need for this method? If we’re going to

draw a rectangle, we’ll need parameters for its x- and y-coordinates. We’ll
also need a parameter for the length of sides of the square. Another issue
we need to decide is how much the length of the sides should change at
each level. Should length change by a fixed amount, by a fixed ratio, or
by some other factor? In order to allow this kind of flexibility, let’s use
another parameter for this value.

These design considerations suggest the method shown in Figure 12.22.
Note that we must also provide a Graphics parameter so the method
can use the drawRect() method to draw the square. As we decided, the
level parameter controls the recursion. Note that its value is decreased
by 1 in the recursive call. This will ensure that levelwill eventually reach
0, and recursion will stop.� �
/∗ ∗
∗ d r a w B o x e s ()−−− r e c u r s i v e l y d r a w s p a t t e r n o f n e s t e d

∗ s q u a r e s w i t h t o p l e f t c o r n e r o f o u t e r s q u a r e a t

∗ (l o c X , l o c Y) a n d d i m e n s i o n s o f l e n g t h s i d e .

∗ l e v e l (>= 0) i s t h e r e c u r s i o n p a r a m e t e r (b a s e : = 0)

∗ d e l t a i s u s e d t o a d j u s t t h e l e n g t h o f t h e s i d e .

∗/

private void drawBoxes (Graphics g , i n t l e v e l ,
i n t locX , i n t locY , i n t side , i n t d e l t a) {

g . drawRect (locX , locY , side , s ide) ;
i f (l e v e l > 0) {

i n t newLocX = locX + d e l t a ; i n t newLocY = locY + d e l t a ;
drawBoxes (g , l e v e l − 1 , newLocX , newLocY ,

s ide − 2 ∗ del ta , d e l t a) ;
} // i f

} // d r a w B o x e s ()
 	
Figure 12.22: The drawBoxes() method.

Finally, note the use of the delta parameter, which is used to change
the length of the sides by a fixed amount, 2 * delta, at each level. It
is also used to calculate the x- and y-coordinates for the location of the

SECTION 12.5 • Example: Drawing (Recursive) Fractals 571

next level of boxes (locX + delta, locY + delta). But delta’s value remains
constant through all the levels. This will lead to a pattern where the “gap”
between nested squares is constant.

JAVA EFFECTIVE DESIGN Levels of Recursion. Many recursive
algorithms use a level parameter as the recursion parameter.

SELF-STUDY EXERCISES
EXERCISE 12.16 Trace through the drawBoxes() method and draw

the level-four and level-five versions of the nested boxes pattern. Assume
that the initial values for side and delta are 100 and 5, respectively, and
the initial coordinates for (locX,locY) are (20,20).

EXERCISE 12.17 The pattern shown in Figure 12.23 can be drawn by
using delta as a fixed ratio of the length of the side, for example, 10
percent. Modify the drawBoxes() method to use delta in this way.

EXERCISE 12.18 Write an iterative version of the drawBoxes()
method. (Hint: On each iteration, you must change the x- and y-
coordinates of the square’s location and the length of its side.)

Figure 12.23: This version of
nested boxes can be drawn by us-
ing delta as a fixed percentage of
the length of the side.

12.5.2 The Sierpinski Gasket
Let’s return now to the Sierpinski gasket pattern that we introduced at
the start of this chapter. This is a much more interesting fractal pattern
(Fig. 12.24). The overall shape of the pattern is that of a triangle, but notice
how the outer triangle is divided into three smaller triangles. Then each
of those triangles are divided into three smaller triangles. If you continue
this process of dividing and shrinking, you get the level-seven pattern
shown here.

Figure 12.24: Levels 0, 1, and 7 of
the Sierpinski gasket fractal pat-
tern.

Let’s develop a recursive method to draw this pattern. If we follow
the same strategy we used in the nested squares example, we get the
following algorithm:� �

Base case : Draw a t r i a n g l e .
Recursive Case : I f more d i v i s i o n s are desired ,

draw three smal ler gaskets within the t r i a n g l e .
 	
For this pattern the base case is the drawing of the basic triangle. The
recursive cases, if more divisions are desired, are the drawing of smaller
gaskets within the triangle. Again we will use a level parameter to con-
trol the depth of the recursion. The higher the level, the more divisions
will be drawn.

572 CHAPTER 12 • Recursive Problem Solving� �
/∗ ∗
∗ d r a w G a s k e t ()−−− r e c u r s i v e l y d r a w s t h e S i e r p i n s k i g a s k e t

∗ p a t t e r n , w i t h p o i n t s (p1X , p 1 Y) , (p2X , p 2 Y) , (p3X , p 3 Y)

∗ r e p r e s e n t i n g t h e v e r t i c e s o f i t s e n c l o s i n g t r i a n g l e .

∗ l e v e l (>= 0) i s t h e r e c u r s i o n p a r a m e t e r (b a s e : = 0)

∗/

private void drawGasket (Graphics g , i n t lev , i n t p1X , i n t p1Y ,
i n t p2X , i n t p2Y , i n t p3X , i n t p3Y) {

g . drawLine (p1X , p1Y , p2X , p2Y) ; // Draw a t r i a n g l e

g . drawLine (p2X , p2Y , p3X , p3Y) ;
g . drawLine (p3X , p3Y , p1X , p1Y) ;
i f (lev > 0) { // I f m o r e l e v e l s , d r a w 3 s m a l l e r g a s k e t s

i n t q1X = (p1X + p2X) / 2 ; i n t q1Y = (p1Y + p2Y) / 2 ;
i n t q2X = (p1X + p3X) / 2 ; i n t q2Y = (p1Y + p3Y) / 2 ;
i n t q3X = (p2X + p3X) / 2 ; i n t q3Y = (p2Y + p3Y) / 2 ;
drawGasket (g , lev − 1 , p1X , p1Y , q1X , q1Y , q2X , q2Y) ;
drawGasket (g , lev − 1 , p2X , p2Y , q1X , q1Y , q3X , q3Y) ;
drawGasket (g , lev − 1 , p3X , p3Y , q2X , q2Y , q3X , q3Y) ;

} // i f

} // d r a w G a s k e t ()
 	
Figure 12.25: The drawGasket() method.

If we’re going to draw a triangle shape, we need the coordinates of its What other parameters do we need?
three vertices—that is, an x- and y-coordinate for each vertex. Taken to-
gether, these design considerations suggest the method definition shown
in Figure 12.25.

As we described earlier, we use the level parameter as the recursion
parameter for this method, which controls the recursion. Note that eachLevels of recursion
of the three recursive calls decreases the level by 1. This will ensure that
eventually level will equal 0, and recursion will stop.

Note also how the three pairs of coordinates are used. Drawing a tri-
angle is simple. Just draw three lines from (p1X,p1Y) to (p2X,p2Y),
from (p2X,p2Y) to (p3X,p3Y), and from (p3X,p3Y) back to (p1X,
p1Y). The most complicated part of the method is calculating the vertices
for the three inner gaskets. If you look at Figure 12.24 again, you’ll no-
tice that each of the inner triangles uses one of the vertices of the main
triangle, plus the midpoints of the two adjacent sides. Thus, the triangle
on the “left” uses the left vertex (p1X,p1Y), and the midpoints of the
other two lines from (p1X,p1Y) to (p2X,p2Y) and from (p1X,p1Y) to
(p3X,p3Y). As you might remember from high school math, the formula
for computing the midpoint of the line segment (x1,y1) to (x2,y2) isMidpoint of a line � �

((x1 + x2) / 2 , (y1 + y2) / 2)
 	
This formula is used repeatedly to calculate the vertices of the three
smaller gaskets.

SECTION 12.6 • OBJECT-ORIENTED DESIGN: Tail Recursion 573

12.6 OBJECT-ORIENTED DESIGN:
Tail Recursion

Although the drawBoxes() method is relatively simple to convert into
an iterative version (see Self-Study Exercise 12.18), the same cannot be said
for the drawGasket() method. It is clearly a case where the recursive
approach makes the problem easier to solve.

One difference between drawBoxes() and drawGasket() is that
drawBoxes() is an example of a tail-recursive method. A method is tail
recursive if all of its recursive calls occur as the last action performed in Tail recursion
the method. You have to be a bit careful about this definition. The recur-
sive call in a tail-recursive method has to be the last executed statement. It
needn’t be the last statement appearing in the method’s definition.

For example, the following method will print “Hello” N times. This
method is tail recursive even though its last statement is not a recursive
call:� �

public void pr in tHel lo (i n t N) {
i f (N > 1) {

System . out . p r i n t l n (” Hello ”) ;
pr in tHel lo (N − 1) ; // T h e l a s t e x e c u t e d s t a t e m e n t

} e lse
System . out . p r i n t l n (” Hello ”) ;

} // p r i n t H e l l o ()
 	
This method is tail recursive because the last statement that will be exe-
cuted, in its recursive cases, is the recursive call.

A tail-recursive method is relatively easy to convert into an iterative
method. The basic idea is to make the recursion parameter into a loop
variable, taking care to make sure the bounds are equivalent. Thus, the
following iterative method will print “Hello” N times:� �

public void p r i n t H e l l o I t e r a t i v e (i n t N) {
for (i n t k = N; k > 0 ; k−−)

System . out . p r i n t l n (” Hello ”) ;
}
 	

In this case, we use the parameter N to set the initial value of the loop vari-
able, k, and we decrement k on each iteration. This is equivalent to what
happens when we decrement the recursion parameter in the recursive call.

JAVA EFFECTIVE DESIGN Tail Recursion. Tail-recursive
algorithms are relatively simple to convert into iterative algorithms
that do the same thing.

As you can see, recursive methods that are not tail recursive are much
more complex. Just compare the drawGasket() and drawBoxes()
methods. Yet it is precisely for these nontail-recursive algorithms that re-
cursion turns out to be most useful. As you might expect, if you can’t

574 CHAPTER 12 • Recursive Problem Solving

give a simple tail-recursive solution to a problem, the problem proba-
bly doesn’t have a simple iterative solution either. Thus, the problems
where we most need recursion are those where we can’t give a simple
tail-recursive or a simple iterative solution. And there are a lot of such
problems, especially when you get into nonlinear data structures such as
trees and graphs.

To gain some appreciation for this complexity, consider how difficult it
would be to draw the Sierpinski gasket using an iterative approach. We
could start by developing an outer for loop to account for the different
levels in the pattern:� �

for (i n t k = lev ; k > 0 ; k−−) {
drawGasket (g , lev − 1 , p1X , p1Y , q1X , q1Y , q2X , q2Y) ;
drawGasket (g , lev − 1 , p2X , p2Y , q1X , q1Y , q3X , q3Y) ;
drawGasket (g , lev − 1 , p3X , p3Y , q2X , q2Y , q3X , q3Y) ;
}
 	

But now each of the method calls within the body of this loop would have
to be replaced by very complex loops. That would be a daunting task.
So the lesson to be drawn from this observation is that recursion is most
useful as a problem-solving technique for problems that don’t yield to a
simple iterative solution.

JAVA EFFECTIVE DESIGN Recursion or Iteration. If you have
difficulty designing an iterative solution to a problem, try developing
a recursive solution to it.

SELF-STUDY EXERCISES
EXERCISE 12.19 Trace the drawGasket() method for levels two and

three. Pick your own values for the three vertices.

EXERCISE 12.20 Is the printReverse() method, discussed earlier,
tail recursive? Explain.

EXERCISE 12.21 Is the countChar() method, discussed earlier, tail
recursive? Explain.

12.7 OBJECT-ORIENTED DESIGN:
Recursion or Iteration?

As we mentioned at the outset of this chapter, recursive algorithms require
more computational overhead than iterative algorithms. We’re now in a
good position to appreciate why this is so.

A recursive algorithm incurs two kinds of overhead that are not in-
curred by an iterative algorithm: memory and CPU time. Both of these
are direct results of the fact that recursive algorithms do a lot of method
calling.

As we saw in our various traces, each time a method is called, a rep-Method call overhead
resentation of the method call is placed on the method call stack. These

SECTION 7 • OOD: Recursion or Iteration 575

representations often take the form of a block of memory locations, which
can be quite large. The block must contain space for the method’s local
variables, including its parameters. Also, unless the method is void, the
block must contain space for the method’s return value. In addition it
must contain a reference to the calling method, so it will know where to
go when it is done. Figure 12.26 shows what the method call block would Memory overhead
look like for the search() method.

6

search()

arr

key

head

calling

method

arr

key

head

calling

method

1

32

8 1 0 10 15 2 32 7 71

search()

0

32

Figure 12.26: A more detailed
picture of the method call stack,
showing two method blocks for
search() after two levels of re-
cursion.

In addition to the memory required, a method call also requires extra
CPU time. Each time a method is called, Java must create a method call CPU overhead
block, copy the method call arguments to the parameters in the block,
create initial values for any local variables that are used by the method,
and fill in the return address of the calling method. All of this takes time,
and in the case of a recursive method, these steps are repeated at each
level of the recursion.

Compare these memory and CPU requirements with what normally
transpires for an iterative algorithm—an algorithm involving a loop. The
loop structure usually occurs entirely within a method, so it doesn’t incur
either the memory or CPU overhead involved in recursion. Therefore,
iterative algorithms are generally more efficient than recursive algorithms.
One useful guideline, then, is when runtime performance and efficiency
are of prime importance, you should use iteration instead of recursion.

JAVA EFFECTIVE DESIGN Iteration or Recursion. Use an iterative
algorithm instead of a recursive algorithm whenever efficiency and
memory usage are important design factors.

On the other hand, recursive algorithms are much easier to design than
the corresponding iterative algorithms for many problems. We tried to
illustrate this point in our development of the Sierpinski gasket algorithm,
but there are many other examples that we could have used. Given that
programmer and designer time is the most expensive resource involved in Efficiency of development
software development, a recursive solution may be easier to develop and
maintain than a corresponding iterative solution. And given the great cost
of software development, a less efficient solution that is easier to develop,
easier to understand, and easier to maintain may be preferable to a highly

576 CHAPTER 12 • Recursive Problem Solving

efficient algorithm that’s difficult to understand. For some problems then,
such as the Sierpinski gasket, a recursive algorithm may provide the best
solution.

JAVA EFFECTIVE DESIGN Keep It Simple. When all other factors
are equal, choose the algorithm (recursive or iterative) that is easiest to
understand, develop, and maintain.

One final point that’s worth making is that some optimizing compilers
are able to convert recursive methods into iterative methods when they
compile the program. The algorithms for doing this are well known. They
are often subjects for study in a data structures course, so we won’t goOptimizing compiler
into them here. The resulting runtime programs will be just as efficient, in
CPU time and memory, as if you had written iterative methods. The point
is that if you have such a compiler, you really get the best of both worlds.
You get the advantage of using recursion as a problem-solving and soft-
ware development approach, and the compiler takes care of producing an
efficient object program.

Special Topic: Exploring the Mandelbrot Set

The Mandelbrot set is one of the most fascinating fractals. It is named after
its discover, IBM mathematician Benoit Mandelbrot. The Mandelbrot set
itself is the black, heart-shaped image shown in Figure 12.27. What makes
the Mandelbrot set so interesting is that with the help of a Java GUI you
can explore the set as if you were taking a trip through outer space. The
most interesting regions to explore are those just along the boundary of
the set. For example, notice that the boundary contains numerous cir-
cular shapes, each of which is itself studded with circular shapes. This
is an example of the scaled self-similarity that we found to be so preva-
lent in recursive structures. By continually expanding the regions around
the boundary, you’ll find an infinite recursion of fascinating images and
shapes. In some regions of the set you’ll even find miniature replications
of the set itself.

Figure 12.27: The Mandelbrot set.

The Mandelbrot set is generated by an iterated function system. The
mathematics underlying this fascinating object is quite accessible, and
there are a number of online tutorials that explain how the set is generated
and how the pictures are produced. Many of the Mandelbrot and fractal
Web sites contain excellent Java applets that let you explore the Mandel-
brot set as well as related sets. An excellent place to start your exploration
would be David Joyce’s award-winning Web site,� �

http : //aleph0 . c larku . edu/˜ djoyce/ j u l i a /
 	
which contains references to a number of other good sites. For a tutorial
on how the various Mandelbrot set-generating Java programs work, see� �

http : //storm . shodor . org/mteach/
 	

SECTION 12.8 • From the Java Library: javax.swing.JComboBox 577

12.8 From the Java Library:
javax.swing.JComboBox

A JComboBox is a Swing component that combines a text field and
a drop-down list (Fig. 12.28). It lets the user either type in a selec-
tion or choose a selection from a list that appears when the user re-
quests it—a JComboBox’s drop-down behavior is somewhat similar to a
java.awt.Choice box.

JComponent

+JComboBox()

+JComboBox(in items[] : Object)

+JComboBox(in items : Vector)

+addActionListener(in l : ActionListener)

+addItem(in item : Object)

+addItemListener(in l : ItemListener)

+getItemAt(in index : int) : Object

+getSelectedItem() : Object

+setSelectedIndex(in index : int)

+setSelectedItem(in item : Object)

JComboBox

«interface»

ActionListener

«interface»

ItemListener

«interface»

ItemSelectable

Figure 12.28: A JComboBox re-
sponds to action events and item
events.

A JComboBox can be used to represent a drop-down menu. When the
user clicks on a JComboBox, a list of options drops down, and the user
can select a particular option that is stored in the box’s internal state
(Fig. 12.29). The list of options associated with a JComboBox can be built
beforehand and inserted into the component in a constructor, or items can
be inserted one at a time by repeatedly using its addItem() method.

As Figure 12.28 shows, either an array or a vector of items can be passed
to a constructor method to initialize the box’s menu. The items stored in a
JComboBox box are references to Objects, most commonly Strings that
represent the name of the menu item. They are stored in the (zero indexed)
order in which they are added. The addItem() method is used to add an
individual Object to a JComboBox. By default, the first item added to a
JComboBox will be the selected item until the user selects another item.

When the user makes a selection in a JComboBox, the item selected
can be gotten either by its reference (getSelectedItem()) or by its po-
sition within the menu (getSelectedIndex()). There are also meth-
ods to setSelectedItem() and setSelectedIndex() that let you
select an individual item either by its reference or its position. The
addItemListener() method is used to designate some object as the
listener for the ItemEvents that are generated whenever the user selects
a menu option. Alternatively, the addActionListener() method lets
you handle action events, such as when the user types a value into the
box.

12.8.1 A JComboBox Example

As a simple example, let’s design an graphical interface that can be used
to display the fractal patterns we developed earlier. We want an inter-
face that lets the user select from among the available patterns—we’ll use
the Sierpinski gasket and nested boxes for starters. In addition, the user
should also be able to select different levels for the drawings, from 0 to 9.
We want to present these options in two menus, with one JComboBox for
each menu.

The first step is to declare and instantiate the JComboBoxes as instance
variables:� �

private S t r i n g items [] =
{” S i e r p i n s k i Gasket ” , ”Nested Boxes” } ;

private JComboBox p a t t e r n s = new JComboBox (items) ;
private JComboBox l e v e l s = new JComboBox () ;
 	

Note that in this case we pass the constructor for the patterns menu

Figure 12.29: Using a JComboBox
box.

an entire array of items. If we hadn’t done it this way, we would

578 CHAPTER 12 • Recursive Problem Solving

add individual items to the combo box in the JFrame’s constructor
RecursivePatterns(). In fact, that’s how we’ll initialize the levels
menu:� �

for (i n t k =0; k < 1 0 ; k++) // Add 1 0 l e v e l s

l e v e l s . addItem (k + ””) ;
l e v e l s . s e t S e l e c t e d I t e m (”4”) ; // S e l e c t d e f a u l t l e v e l
 	

This loop would be placed in the JFrame’s constructor, RecursivePatterns().
It adds strings representing levels 0 to 9 to the menu and initializes the box
so that level four is showing as the default option.

Our next step is to designate the JFrame as the ItemListener for
both menus—that is, the JFrame is named as the object that will handle
the events that occur in the JComboBoxes. Then we add the JComboBox
component to the JFrame:� �

c o n t r o l s . add (l e v e l s) ; // C o n t r o l p a n e l f o r m e n u s

c o n t r o l s . add (p a t t e r n s) ;
// Add t h e c o n t r o l s

getContentPane () . add (cont ro l s , ”North”) ;
// And t h e d r a w i n g p a n e l

getContentPane () . add (canvas , ” Center ”) ;
// R e g i s t e r t h e m e n u s w i t h a l i s t e n e r

l e v e l s . addItemListener (t h i s) ;
p a t t e r n s . addItemListener (t h i s) ;
 	

Note that we use a separate controls panel (a JPanel) for the two
menus and a canvas panel (another JPanel) for the drawings.

The next step is to implement the itemStateChanged() method to
handle the user’s selections. Whenever the user selects an item from a
JComboBox menu, an ItemEvent is generated. In order to handle these
events, the program must implement the ItemListener interface, which
consists of the single method itemStateChanged(). This method is
invoked automatically whenever the user selects an item from one of the
JComboBoxes:� �

public void itemStateChanged (ItemEvent e) {
canvas . s e t P a t t e r n (p a t t e r n s . ge tSe lec tedIndex () ,

l e v e l s . ge tSe lec tedIndex ()) ;
r e p a i n t () ;

}
 	
The itemStateChanged() method has the same general form as
the actionPerformed() method, except that its parameter is an
ItemEvent. For this example, the program uses the getSelected-
Index()method to get the selected pattern and the selected level by their
respective item numbers within the menus. It then passes these values
along to the canvas object, which takes care of the drawing. Finally,
the method invokes the repaint() method. Because the JFrame is a
container, this will cause all of its components to be repainted as well.

SECTION 12.8 • From the Java Library: javax.swing.JComboBox 579

User

applet : ItemListener

: Canvas

select

JVM

SelectEvent

itemStateChanged(e:ItemEvent)

setPattern()

: JComboBox

Figure 12.30: This UML sequence
diagram shows the interaction
between the various objects in-
cluded in the action of selecting an
item from a JComboBox.

Figure 12.30 illustrates the sequence of events that occurs when an
item is selected from a JComboBox. The complete implementation for
the program is given in Figure 12.31.

The actual drawing of the fractal patterns is handled by the canvas
JPanel component, whose design is shown in Figure 12.32 and whose
implementation is given in Figure 12.33. All of the drawing is done
in the paintComponent() method. Because the canvas is contained
within the JFrame, the paintComponent() method is called automati-
cally whenever the JFrame repaints itself. Notice how the switch state-
ment uses the pattern that the user chose to call the corresponding draw- Zero indexing
ing method. You can see from this switch statement that a JComboBox’s
items are zero indexed.

580 CHAPTER 12 • Recursive Problem Solving� �
import j ava . awt . ∗ ;
import j avax . swing . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s Recurs ivePat te rns extends JFrame implements I t emLis tener {
private S t r i n g choices [] = {” S i e r p i n s k i Gasket ” , ”Nested Boxes” } ;
private JComboBox p a t t e r n s = new JComboBox (cho ices) ; // P a t t e r n c h o i c e s

private JComboBox l e v e l s = new JComboBox () ; // L e v e l c h o i c e s

private Canvas canvas = new Canvas () ; // D r a w i n g p a n e l

private JPanel c o n t r o l s = new JPanel () ;

public Recurs ivePat terns () {
for (i n t k =0; k < 1 0 ; k++) // Add 1 0 l e v e l s

l e v e l s . addItem (k + ””) ;
p a t t e r n s . s e t S e l e c t e d I t e m (choices [0]) ; // I n i t i a l i z e m e n u s

l e v e l s . s e t S e l e c t e d I t e m (”4”) ;

canvas . setBorder (BorderFactory . c r e a t e T i t l e d B o r d e r (”Drawing Canvas”)) ;
c o n t r o l s . add (l e v e l s) ; // C o n t r o l p a n e l f o r m e n u s

c o n t r o l s . add (p a t t e r n s) ;
getContentPane () . add (cont ro l s , ”North”) ; // Add c o n t r o l s

getContentPane () . add (canvas , ” Center ”) ; // Add d r a w i n g p a n e l

l e v e l s . addItemListener (t h i s) ; // R e g i s t e r m e n u s w i t h l i s t e n e r

p a t t e r n s . addItemListener (t h i s) ;
s e t S i z e (canvas .WIDTH, canvas .HEIGHT+ c o n t r o l s . g e t S i z e () . width) ;

} // i n i t ()

public void itemStateChanged (ItemEvent e) {
canvas . s e t P a t t e r n (p a t t e r n s . ge tSe lec tedIndex () ,

l e v e l s . ge tSe lec tedIndex ()) ;
r e p a i n t () ; // R e p a i n t t h e J F r a m e

} // i t e m S t a t e C h a n g e d ()

public s t a t i c void main (S t r i n g args [])
{

JFrame f = new Recurs ivePat te rns () ;
f . s e t V i s i b l e (t rue) ;

}
} // R e c u r s i v e P a t t e r n s
 	

Figure 12.31: The RecursivePatterns program.

CHAPTER SUMMARY Technical Terms
base case
computational

overhead
head-and-tail

algorithm

iterative method
last-in-first-out

(LIFO)
method call stack
recursion parameter

recursive case
recursive definition
recursive method
self-similarity
tail recursive

CHAPTER 12 • Chapter Summary 581
Figure 12.32: Design of a drawing
Canvas class.

� �
import j avax . swing . ∗ ;
import j ava . awt . ∗ ;

public c l a s s Canvas extends JPanel {
private s t a t i c f i n a l i n t GASKET = 0 , BOXES = 1 ;
public s t a t i c f i n a l i n t WIDTH=400 , HEIGHT=400;
private f i n a l i n t HBOX=10 , VBOX=50 , BOXSIDE=200 , BOXDELTA=10;
private f i n a l i n t gP1X = 1 0 ; private f i n a l i n t gP1Y = 2 8 0 ; // I n i t i a l

private f i n a l i n t gP2X = 2 9 0 ; private f i n a l i n t gP2Y = 2 8 0 ; // g a s k e t

private f i n a l i n t gP3X = 1 5 0 ; private f i n a l i n t gP3Y = 1 1 0 ; // p o i n t s

private i n t pat te rn = 0 ; // C u r r e n t p a t t e r n

private i n t l e v e l = 4 ; // C u r r e n t l e v e l

public Canvas () {
s e t S i z e (WIDTH, HEIGHT) ;

}

public void s e t P a t t e r n (i n t pat , i n t l ev) {
pat tern = pat ;
l e v e l = lev ;

}
 	
Figure 12.33: The Canvas class is a drawing panel, Part I.

Summary of Important Points

• A recursive definition is one that defines the nth case of a concept in
terms of the (n− 1)st case plus a limiting condition. It is based on the
idea of breaking a problem up into smaller, self-similar problems.
• A recursive method is one that calls itself. It is usually defined in terms of

a base case or limiting case, which stops the recursive process, and a re-
cursive case, which breaks the method into a smaller, self-similar copy
of itself. A recursion parameter is generally used to control the recursion.
• An iterative algorithm is one that uses some kind of loop as its control

structure. Any algorithm that can be done iteratively can also be done
recursively, and vice versa.

582 CHAPTER 12 • Recursive Problem Solving

� �
public void paintComponent (Graphics g) {

g . se tColor (getBackground ()) ; // R e d r a w t h e p a n e l ’ s b a c k g r o u n d

g . drawRect (0 , 0 , WIDTH, HEIGHT) ;
g . se tColor (getForeground ()) ;
switch (pa t te rn) {
case GASKET:

drawGasket (g , l e v e l , gP1X , gP1Y , gP2X , gP2Y , gP3X , gP3Y) ;
break ;

case BOXES :
drawBoxes (g , l e v e l , HBOX, VBOX, BOXSIDE , BOXDELTA) ;
break ;

} // s w i t c h

} // p a i n t C o m p o n e n t ()

/∗ ∗ d r a w G a s k e t ()−−− r e c u r s i v e l y d r a w s t h e S i e r p i n s k i

∗ g a s k e t p a t t e r n , w i t h p o i n t s (p1X , p 1 Y) , (p2X , p 2 Y) , (p3X , p 3 Y)

∗ r e p r e s e n t i n g t h e v e r t i c e s o f i t s e n c l o s i n g t r i a n g l e .

∗ l e v e l (>= 0) i s t h e r e c u r s i o n p a r a m e t e r (b a s e c a s e : l e v e l 0)

∗/

private void drawGasket (Graphics g , i n t lev , i n t p1X , i n t p1Y ,
i n t p2X , i n t p2Y , i n t p3X , i n t p3Y) {

g . drawLine (p1X , p1Y , p2X , p2Y) ; // Draw a t r i a n g l e

g . drawLine (p2X , p2Y , p3X , p3Y) ;
g . drawLine (p3X , p3Y , p1X , p1Y) ;
i f (lev > 0) { // I f m o r e l e v e l s , d r a w 3 s m a l l e r g a s k e t s

i n t q1X = (p1X + p2X) / 2 ; i n t q1Y = (p1Y + p2Y) / 2 ;
i n t q2X = (p1X + p3X) / 2 ; i n t q2Y = (p1Y + p3Y) / 2 ;
i n t q3X = (p2X + p3X) / 2 ; i n t q3Y = (p2Y + p3Y) / 2 ;
drawGasket (g , lev − 1 , p1X , p1Y , q1X , q1Y , q2X , q2Y) ;
drawGasket (g , lev − 1 , p2X , p2Y , q1X , q1Y , q3X , q3Y) ;
drawGasket (g , lev − 1 , p3X , p3Y , q2X , q2Y , q3X , q3Y) ;

}
} // d r a w G a s k e t ()

/∗ ∗ d r a w B o x e s ()−−− r e c u r s i v e l y d r a w s p a t t e r n o f n e s t e d s q u a r e s

∗ w i t h (l o c X , l o c Y) t h e t o p l e f t c o r n e r o f o u t e r t h e s q u a r e a n d

∗ s i d e b e i n g t h e l e n g t h s q u a r e ’ s s i d e .

∗ l e v e l (>= 0) i s t h e r e c u r s i o n p a r a m e t e r (b a s e c a s e : l e v e l 0)

∗ d e l t a i s u s e d t o a d j u s t t h e l e n g t h o f t h e s i d e .

∗/

private void drawBoxes (Graphics g , i n t l e v e l ,
i n t locX , i n t locY , i n t side , i n t d e l t a) {

g . drawRect (locX , locY , side , s ide) ;
i f (l e v e l > 0) {

i n t newLocX = locX + d e l t a ; i n t newLocY = locY + d e l t a ;
drawBoxes (g , l e v e l − 1 , newLocX , newLocY ,

s ide − 2 ∗ del ta , d e l t a) ;
}

} // d r a w B o x e s ()

} // C a n v a s
 	
Figure 12.33: The Canvas class, Part II.

CHAPTER 12 • Solutions to Self-Study Exercises 583

• Because method calling is relatively costly both in terms of memory
used and CPU time involved, a recursive algorithm is generally less
efficient than an iterative one that does the same thing.
• In designing recursive algorithms, the base case defines a limit. Each

level of recursion should make progress toward the limit, and the algo-
rithm should eventually reach the limit. The limit is usually expressed
in terms of the recursion parameter.
• A recursive method is tail recursive if and only if each of its recursive

calls is the last action executed by the method.
• A Swing JComboBox component is used to represent a GUI drop-

down menu.

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 12.1 The output produced by mystery(0) would be 0 1 2 3 4 5 6.
The output produced by mystery(100) would be 100.

SOLUTION 12.2 The output produced by mystery(5) would be: 5 4 3, and so
on. In other words, this is an infinite recursion.

SOLUTION 12.3� �
D e f i n i t i o n : twoToN(N) , N >= 0

1 , i f N == 0 // B a s e c a s e

2 ∗ twoToN(N − 1) , N > 0 // R e c u r s i v e c a s e
 	
SOLUTION 12.4 The function xn is known as the power function:� �
D e f i n i t i o n : power (X ,N) , N >= 0

1 , i f N == 0 // B a s e c a s e

X ∗ power (X , N − 1) , N > 0 // R e c u r s i v e c a s e
 	
SOLUTION 12.5 Yes, the two definitions for nested boxes are equivalent. Sup-
pose the square starts out with a side of 20. The definition given in the exercise
will also draw squares with sides of 20, 15, 10, 5.

SOLUTION 12.6 A recursive definition for the pattern in Figure 12.4:� �
Draw a square with side , s .
I n s c r i b e a c i r c l e with diameter , s .
I f s > 5 ,

Draw a smal ler vers ion of same pat te rn . // R e c u r s i v e c a s e
 	
SOLUTION 12.7 The printString2("hello") method will print: “olleh.”

584 CHAPTER 12 • Recursive Problem Solving

SOLUTION 12.8 A definition for countDown():� �
/∗ ∗ c o u n t D o w n (N) r e c u r s i v e l y p r i n t s a c o u n t d o w n

∗ b e g i n n i n g a t N a n d e n d i n g a t 1

∗ @ p a r a m N >= 1

∗ B a s e c a s e : N == 0

∗/

void countDown (i n t N) {
i f (N == 0) // B a s e c a s e

System . out . p r i n t l n (” b l a s t o f f ”) ;
e lse {

System . out . p r i n t (N + ” , ”) ; // R e c u r s i v e c a s e

countDown (N − 1) ;
}

} // c o u n t D o w n ()
 	

SOLUTION 12.9 A revised definition for countDown():� �
/∗ ∗ c o u n t D o w n (N) r e c u r s i v e l y p r i n t s a c o u n t d o w n

∗ b e g i n n i n g a t N , c o u n t i n g e v e r y o t h e r n u m b e r , 1 0 8 6 . . .

∗ a n d e n d i n g a t ” b l a s t o f f ”

∗ @ p a r a m N >= 1

∗ B a s e c a s e : N <= 0

∗/

void countDown (i n t N) {
i f (N <= 0) // B a s e c a s e

System . out . p r i n t l n (” b l a s t o f f ”) ;
e lse {

System . out . p r i n t (N + ” , ”) ; // R e c u r s i v e c a s e

countDown (N − 2) ;
}

} // c o u n t D o w n ()
 	

SOLUTION 12.10 A method to sum the numbers from 1 to N.� �
i n t sum(i n t N) {

i f (N == 0)
return 0 ;

e lse
return N + sum(N−1) ;

}
 	

CHAPTER 12 • Solutions to Self-Study Exercises 585

SOLUTION 12.11 A method to change each blank within a string to two blanks.� �
S t r i n g addBlanks (S t r i n g s) {

i f (s . length () == 0)
return ”” ;

e lse i f (s . charAt (0) == ’ ’)
return ’ ’ + s . charAt (0) + addBlanks (s . subs t r ing (1)) ;

e lse
return s . charAt (0) + addBlanks (s . subs t r ing (1)) ;

}
 	

SOLUTION 12.12 A method to print out all possible outcomes for a chess player
playing N games. printOutcomes(str, N) will print all outcomes for the next
N games given that results for previous games are stored in the string named str.� �

public s t a t i c void printOutcomes (S t r i n g s t r , i n t N){
i f (N = 1){ // B a s e c a s e : win , l o s e , o r d r a w o n e g a m e

System . out . p r i n t l n (s t r + ”W”) ;
System . out . p r i n t l n (s t r + ”L”) ;
System . out . p r i n t l n (s t r + ”D”) ;

} e lse { // R e c u r s i v e c a s e

printOutcomes (s t r + ”W” , N − 1) ;
printOutcomes (s t r + ”L” , N − 1) ;
printOutcomes (s t r + ”D” , N − 1) ;

} // e l s e

}// p r i n t O u t c o m e s ()
 	

SOLUTION 12.13� �
public s t a t i c void main (S t r i n g args []) {

i n t numbers [] = {0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 1 8} ;
Searcher searcher = new Searcher () ;
for (i n t k = 0 ; k <= 2 0 ; k++) {

i n t r e s u l t = searcher . search (numbers , k) ;
i f (r e s u l t != −1)

System . out . p r i n t l n (k + ” found at ” + r e s u l t) ;
e lse

System . out . p r i n t l n (k + ” i s not in the array ”) ;
} // f o r

} // m a i n ()
 	

586 CHAPTER 12 • Recursive Problem Solving

SOLUTION 12.14 The sort() method is used as a public interface to the recur-
sive selectionSort() method:� �
/∗ ∗ s o r t (a r r) s o r t s t h e i n t a r r a y , a r r

∗ P r e : a r r i s n o t n u l l

∗ P o s t : a r r w i l l b e a r r a n g e d s o t h a t a r r [j] <= a r r [k]

∗ f o r a n y j < k

∗/

public void s o r t (i n t a r r []) {
s e l e c t i o n S o r t (arr , a r r . length − 1) ;

// J u s t c a l l t h e r e c u r s i v e m e t h o d

}
 	
SOLUTION 12.15 An iterative version of findMax():� �

/∗ ∗ f i n d M a x (a r r , N) r e t u r n s t h e i n d e x o f t h e l a r g e s t

∗ v a l u e b e t w e e n a r r [0] a n d a r r [N] , N >= 0 .

∗ P r e : 0 <= N <= a r r . l e n g t h −1

∗ P o s t : a r r [f i n d M a x ()] > = a r r [k] f o r k b e t w e e n 0 a n d N .

∗/

private i n t findMax (i n t a r r [] , i n t N) {
i n t maxSoFar = 0 ;
for (i n t k = 0 ; k <= N; k++)

i f (a r r [k] > a r r [maxSoFar])
maxSoFar = k ;

return maxSoFar ;
} // f i n d M a x ()
 	

Level 4

Level 5

Figure 12.34: Levels four and five
of the nested boxes pattern.

SOLUTION 12.16 Levels four and five of the nested boxes pattern are shown in
Figure 12.34.

SOLUTION 12.17 The following method will reduce the length of the side by
delta percent at each level of recursion. The spacing between the boxes will vary
by a constantly decreasing amount.� �
private void drawBoxes (Graphics g , i n t l e v e l , i n t locX ,

i n t locY , i n t side , i n t d e l t a) {
g . drawRect (locX , locY , side , s ide) ;
i f (l e v e l > 0) {

i n t dside = s ide ∗ d e l t a / 1 0 0 ; // P e r c e n t d e l t a

i n t newLocX = locX + dside ;
i n t newLocY = locY + dside ;
drawBoxes (g , l e v e l − 1 , newLocX , newLocY ,

s ide − 2 ∗ dside , d e l t a) ;
}

} // d r a w B o x e s ()
 	

CHAPTER 12 • Exercises 587
Figure 12.35: Levels two and three
of the Sierpinski gasket.

SOLUTION 12.18� �
private void drawBoxesI terat ive (Graphics g , i n t l e v e l ,

i n t locX , i n t locY , i n t side , i n t d e l t a) {
for (i n t k = l e v e l ; k >= 0 ; k−−) {

g . drawRect (locX , locY , side , s ide) ; // Draw a s q u a r e

locX += d e l t a ; // C a l c u l a t e new l o c a t i o n

locY += d e l t a ;
s ide −= 2 ∗ d e l t a ; // C a l c u l a t e new s i d e l e n g t h

}
} // d r a w B o x e s ()
 	
SOLUTION 12.19 The level two and three gaskets are shown in Figure 12.35.

SOLUTION 12.20 The printReverse() method is not tail recursive because
in that method the recursive call is not the last statement executed.

SOLUTION 12.21 The countChar() method is tail recursive. The recursive
calls are not the last statements in the method definition. However, each of the
recursive calls would be the last statement executed by the method.

EXERCISESEXERCISE 12.1 Explain the difference between the following pairs of terms:

a. Iteration and recursion.
b. Recursive method and recursive definition.
c. Base case and recursive case.
d. Head and tail.
e. Tail and nontail recursive.

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

EXERCISE 12.2 Describe how the method call stack is used during a method call
and return.

EXERCISE 12.3 Why is a recursive algorithm generally less efficient than an
iterative algorithm?

EXERCISE 12.4 A tree, such as a maple tree or pine tree, has a recursive struc-
ture. Describe how a tree’s structure displays self-similarity and divisibility.

EXERCISE 12.5 Write a recursive method to print each element of an array of
double.

EXERCISE 12.6 Write a recursive method to print each element of an array of
double from the last to the first element.

EXERCISE 12.7 Write a recursive method that will concatenate the elements of
an array of String into a single String delimited by blanks.

588 CHAPTER 12 • Recursive Problem Solving

EXERCISE 12.8 Write a recursive method that is passed a single int parameter,
N ≥ 0, and prints all the odd numbers between 1 and N.

EXERCISE 12.9 Write a recursive method that takes a single int parameter
N ≥ 0 and prints the sequence of even numbers between N down to 0.

EXERCISE 12.10 Write a recursive method that takes a single int parameter
N ≥ 0 and prints the multiples of 10 between 0 and N.

EXERCISE 12.11 Write a recursive method to print the following geometric
pattern:� �
#
#
#
#
#
 	
EXERCISE 12.12 Write recursive methods to print each of the following
patterns.� �
#

#
#

#
#

#
#

#
 	
EXERCISE 12.13 Write a recursive method to print all multiples of M up to
M * N.

EXERCISE 12.14 Write a recursive method to compute the sum of grades stored
in an array.

EXERCISE 12.15 Write a recursive method to count the occurrences of a sub-
string within a string.

EXERCISE 12.16 Write a recursive method to remove the HTML tags from a
string.

EXERCISE 12.17 Implement a recursive version of the Caesar.decode()
method from Chapter 8.

EXERCISE 12.18 The Fibonacci sequence (named after the Italian mathemati-
cian Leonardo of Pisa, ca. 1200) consists of the numbers 0,1,1,2,3,5,8,13,...
in which each number (except for the first two) is the sum of the two preced-
ing numbers. Write a recursive method fibonacci(N) that prints the first N
Fibonacci numbers.

EXERCISE 12.19 Write a recursive method to rotate a String by N characters
to the right. For example, rotateR("hello", 3) should return “llohe.”

EXERCISE 12.20 Write a recursive method to rotate a String by N characters
to the left. For example, rotateL("hello", 3) should return “lohel.”

CHAPTER 12 • Exercises 589

EXERCISE 12.21 Write a recursive method to convert a String representing a
binary number to its decimal equivalent. For example, binTodecimal("101011")
should return the int value 43.

EXERCISE 12.22 A palindrome is a string that is equal to its reverse—“mom,”
“i,” “radar” and “able was i ere i saw elba.” Write a recursive boolean method
that determines whether its String parameter is a palindrome.

Figure 12.36: A level-four binary
tree pattern.

EXERCISE 12.23 Challenge: Incorporate a drawBinaryTree() method into
the RecursivePatterns program. A level-one binary tree has two branches.
At each subsequent level, two smaller branches are grown from the endpoints of
every existing branch. The geometry is easier if you use 45-degree angles for the
branches. Figure 12.36 shows a level-four binary tree drawn upside down.

EXERCISE 12.24 Challenge: Towers of Hanoi. According to legend, some Bud-
dhist monks were given the task of moving 64 golden disks from one diamond
needle to another needle, using a third needle as a backup. To begin with, the
disks were stacked one on top of the other from largest to smallest (Fig. 12.37).
The rules were that only one disk can be moved at a time and that a larger disk
can never go on top of a smaller one. The end of the world was supposed to occur
when the monks finished the task!

Write a recursive method, move(int N, char A, char B, char C), that
will print out directions the monks can use to solve the towers of Hanoi problem.
For example, here’s what it should output for the three-disk case, move(3, "A",
"B", "C"):

A B C

Figure 12.37: The towers of Hanoi
problem. Move all the disks from
needle A to needle B. Only one
disk can be moved at a time, and
a larger disk can never go on top
of a smaller one.

� �
Move 1 disk from A to B .
Move 1 disk from A to C.
Move 1 disk from B to C.
Move 1 disk from A to B .
Move 1 disk from C to A.
Move 1 disk from C to B .
Move 1 disk from A to B .
 	

590 CHAPTER 12 • Recursive Problem Solving

OBJECTIVES
After studying this chapter, you will

• Gain more experience with the Swing component set.
• Understand the relationship between the AWT and Swing.
• Learn more about Java’s event model.
• Be able to design and build useful Graphical User Interfaces (GUIs).
• Appreciate how object-oriented design principles were used to extend Java’s GUI capabilities.

OUTLINE
13.1 Introduction
13.2 Java GUIs: From AWT to Swing
13.3 The Swing Component Set
13.4 Object-Oriented Design: Model-View-Controller Architecture
13.5 The Java Event Model
13.6 Case Study: Designing a Basic GUI
13.7 Containers and Layout Managers
13.8 Checkboxes, Radio Buttons, and Borders
13.9 Menus and Scroll Panes

Special Topic: Are Computers Intelligent?
Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 13

Graphical User Interfaces

591

592 CHAPTER 13 • Graphical User Interfaces

13.1 Introduction

As we have seen, a Graphical User Interface (GUI) creates a certain way of
interacting with a program. It is what gives a program its look and feel.
In preceding chapters, we have already used the basic components from
which GUIs are created, including buttons, text fields, labels, and text
areas. Throughout this chapter, we will focus on designing and build-
ing GUIs that are easy for users to navigate. However, Java’s GUI li-
braries are so large that we will concentrate on only a handful of addi-
tional components, including containers, check boxes, radio buttons, and
menus.

We will try to identify design principles that can be applied to the de-
sign of more advanced interfaces. Also, because Java’s GUI classes pro-
vide an excellent example of object-oriented design, we will highlight
some of the important design decisions and principles that have influ-
enced the development of Java’s GUI classes in both the AWT and Swing.
Let’s begin with a brief history Java’s GUI libraries.

13.2 Java GUIs: From AWT to Swing

java.sun.com/j2se/1.5.0/docs/api/
EVER SINCE THE RELEASE of version 1.2 of the Java Development Kit

(JDK) in 2000, Java has contained two distinct libraries of GUI compo-
nents. The Abstract Windowing Toolkit (AWT) has been part of Java since
the original 1.0 version of the JDK 1.0. The more advanced Swing compo-
nent set was first introduced in JDK 1.1 and was extensively revised in JDK
1.2.

Although the original version of the AWT was suitable for developing
Java applets, it wasn’t powerful enough to support full-fledged applica-
tions. Commonly used programs, such as word processors and spread-
sheets, have GUI requirements that were just too much for the original
AWT. The main problem was that the AWT was dependent on the under-
lying operating system. That meant that Java GUI programs were forced
to rely on GUI elements that were part of the underlying operating system.
A Java GUI program running on a Windows platform had to depend on
Windows code for implementations of its buttons and text fields. A Java
program running on Unix depended upon underlying Unix code for its
GUI components. Such dependence on the underlying operating system
made the AWT less portable and less efficient.

In contrast, the Swing GUI components are part of the Java Foundation
Classes (JFC), a collection of classes that do not depend as much on the
underlying platform. The Swing library makes it possible to write GUI
programs entirely in Java. Because they are rendered entirely by Java
code, Swing components make it possible to design GUIs that are truly
platform independent. Such programs are much more portable than those
which rely on AWT components and the underlying platform. A program
that uses Swing components will have the same look and feel on a Mac,
Windows, or Unix platform.

SECTION 13.2 • Java GUIs: From AWT to Swing 593

java.applet

java.awt

java.lang

Object

Component

Container

Window

Dialog

Panel

JWindow

JFrame

JDialog

JApplet

javax.swing

Applet

Frame

Figure 13.1: Swing classes, part
1: Relationship between the AWT
and the top-level Swing win-
dows. REVISION: JWindow ex-
tends Window.

13.2.1 Heavyweight Versus Lightweight Components
AWT components are based on the peer model, a design in which every
AWT component has a corresponding class (a peer) written in the underly-
ing system’s code. For example, the java.awt.Button class has a peer The AWT peer model
named java.awt.peer.Button. The peer class serves as the interface
between the Java code and the computer’s underlying windowing system.
The methods in the peer class are written in so-called native code–that is,
the non-Java code of the underlying operating system. Therefore, AWT
components are inherently platform dependent.

AWT components are called heavyweight because they depend on the
native (peer) system for their drawing and rendering. Since every AWT
component has an associated peer component, a Java AWT component
would look just like the peer component. This is why an AWT button on
a Windows platform looks just like a Windows button. In effect, the AWT
button, via its peer, creates and uses a Windows button. When you change
the Java button’s label, it must call a method in the peer class that changes
the label of the peer button. This interaction between Java and the native
windowing system requires a good deal of overhead, thereby affecting the
overall efficiency of the system.

By contrast, a lightweight component is one that is written entirely
in Java. Instead of depending on a native component for its rendering, Lightweight components
a lightweight component is drawn and rendered entirely by Java code.
Because they do not depend on underlying system code, Swing com-
ponents are more efficient and more portable than corresponding AWT
components.

Figures 13.1 and 13.2 show the relationship between AWT and Swing
classes. The top-level Swing classes—the JApplet, JDialog, JFrame,
and JWindow—are direct subclasses of their corresponding AWT coun-
terparts. These are the top-level GUI windows. The remaining Swing

594 CHAPTER 13 • Graphical User Interfaces
Figure 13.2: Swing classes, part
2: Swing GUI components are de-
rived from the JComponent class.

Object

Component

Container

JLabel

JPanel

JScrollPane

JToggleButton

JButton

JMenuItem JMenu

JCheckbox

JRadioButton

JTextArea

JTextField JPasswordField

java.awt

java.lang

javax.swing

JComponent

JMenuBar

JList

JOptionPane

JPopupMenu

JTextComponent

AbstractButton

components (Fig. 13.2) are subclasses of java.awt.Component and
java.awt.Container. As you can see, the names of Swing and AWT
components are very similar. Swing components that have corresponding
AWT components have names that begin with “J.”

One might think that because Swing components are superior to their
AWT counterparts, the AWT package will eventually be dropped. How-
ever, this is not likely. Even if a Java program uses Swing components
exclusively, that will still not break the dependence on the AWT.

There are several reasons for this dependence. First, Swing’s top-level
window classes—JApplet, JDialog, JFrame, and JWindow—are de-
fined as extensions to their AWT counterparts. This means that Swing-
based GUIs are still dependent on the AWT. Java programs need to have
some way to map their windows to the windowing system used on the
native (Windows, Unix, or Macintosh) platform. The AWT’s top-level
windows—Window, Frame, Dialog, and Panel—provide that map-
ping.

Second, the JComponent class, which is the basis for all Swing com-
ponents, is derived from java.awt.Container. There are many more
such dependencies. Fundamentally, Swing components are based on the
AWT.

Finally, all GUI applications and applets use layout managers (java.-
awt.FlowLayout), fonts (java.awt.Font), colors (java.awt.Color),
and other non-component classes that are defined in the AWT. There is
just no way to design a GUI without using AWT classes. Therefore, the

SECTION 13.3 • The Swing Component Set 595

programs presented in this and subsequent chapters will use Swing com-
ponents instead of corresponding AWT components, but they also will
use layouts and other elements from the AWT.

JAVA PROGRAMMING TIP Swing Documentation. Complete
documentation of the Swing classes is available for downloading or
browsing on Sun’s Web site at
http://java.sun.com/reference/api/index.html

13.3 The Swing Component Set

Java’s Swing components are defined in a collection of packages named
javax.swing.*, which is imported by the code shown in this and sub-
sequent chapters. Swing packages include the following:� �

j avax . swing . event .∗
j avax . swing . t e x t .∗
j avax . swing . p l a f .∗
 	

The javax.swing.event package defines the various Swing events and
their listeners, such as the MenuEvent and the MenuListener. (In the
AWT, the AWT events and listeners were defined in java.awt.event.)

The javax.swing.text package contains the classes for JTextField
and JTextComponent. The Swing text components are more complex
than their AWT counterparts. For example, one of their important features
is the ability to undo changes made to the text they contain. This feature
is crucial for building sophisticated word-processing applications.

The javax.swing.plaf package contains Swing’s look-and-feel
classes. The term plaf is an acronym for pluggable look and feel. It refers Look and feel
to the fact that changing an application’s look and feel is a simple matter
of “plugging in” a different plaf model. Changing how a program looks
does not change what it does.

Swing’s platform-independent look and feel is achieved by placing all
the code responsible for drawing a component in a class that is separate
from the component itself. For example, in addition to JButton, the class
that defines the button control, there will be a separate class responsible
for drawing the button on the screen. The drawing class will control the
button’s color, shape, and other characteristics of its appearance.

There are several look-and-feel packages built into Swing. For exam-
ple, the javax.swing.plaf.motif package contains the classes that
implement the Motif interface, a common Unix-based interface. The
javax.swing.plaf.windows packages contains classes that support a
Windows look and feel, and the javax.swing.plaf.metal package
provides classes that support the Metal interface, a Java look and feel.
These classes know how to draw each component and how to react to
mouse, keyboard, and other events associated with these components.

596 CHAPTER 13 • Graphical User Interfaces
Figure 13.3: The model-view- con-
troller architecture.

Mouse

Keyboard

Events

Java

Method

Calls

Controller

User Interface (UI)

Behavior

monitor

Change

state

View

Outward

appearance

Look

and

feel

Model

Internal

state

State

changed

event

13.4 OBJECT-ORIENTED DESIGN:
Model-View-Controller Architecture

Java’s Swing components have been implemented using an object-
oriented design known as the model-view-controller (MVC) model. Any
Swing component can be considered in terms of three independent as-
pects: what state it’s in (its model), how it looks (its view), and what it
does (its controller).

For example, a button’s role is to appear on the interface waiting to
be clicked. When it is clicked, the button’s appearance changes. It looks
pushed in or it changes color briefly, and then it changes back to its orig-
inal (unclicked) appearance. In the MVC model, this aspect of the button
is its view. If you were designing an interface for a button, you wouldView
need visual representations for both the clicked and the unclicked button
(as well as other possible states).

When you click a button, its internal state changes from pressed to un-
pressed. You’ve also probably seen buttons that were disabled—that is,
in a state where they just ignore your clicks. Whether a button is enabled
or disabled and whether it is pressed or not are properties of its internalModel
state. Taken together, such properties constitute the button’s model. Of
course, a button’s view—how it looks—depends on its model. When a
button is pressed, it has one appearance, and when it is disabled, it has
another.

Because a button’s state will change when it is clicked or when it is
enabled by the program, some object needs to keep track of these changes.
That part of the component is its controller.Controller

Figure 13.3 shows how the button’s model, view, and controller inter-
act with each other. Suppose the user clicks the button. This action is
detected by the controller. Whenever the mouse button is pressed, the
controller tells the model to change into the pressed state. The model, in
turn, generates an event that is passed to the view. The event tells the view
that the button needs to be redrawn to reflect its change in state.

When the mouse button is released, a similar sequence of events occurs.
The model is told to change to the unpressed state. It in turn generates an
event, handled by the view, which changes the button’s appearance.

SECTION 13.4 • OBJECT-ORIENTED DESIGN:Model-View-Controller Architecture 597

A change in the button’s appearance does not necessarily depend on di-
rect action by the user. For example, the program itself could call a method
that disables the button. In this case, the program issues a command
directly to the model, which in turn generates an event that causes the
view to change the object’s appearance.

For some Swing components, such as the text components, this three-
part model is implemented almost exactly as we just described. For others,
such as JButton, one class is used to implement both the view and the
controller. The JButton model is defined in the DefaultButtonModel
class, and its view and controller are defined in the BasicButtonUI class
(The UI acronym stands for User Interface). The point is that for some
components, Swing has organized the view and control—the look and the
feel—into a single class.

13.4.1 Pluggable Look and Feel

The MVC model uses a clear division of labor to implement a GUI com-
ponent. The main advantage of this design is the independence between
the model, the view, and the controller. If you want to give a button a
different look and feel, you can redefine its view and its controller.

By combining the view and controller into a single class, Swing makes
it even easier to change a component’s look and feel. For example, to
design your own look and feel for a JButton, you would define a class
that implemented all of the methods in the BasicButtonUI. Of course,
this is a job for an experienced software developer.

However, if you just want to set your program to use one of the pre-
defined look and feel models, you can simply use the UIManager.set-
LookAndFeel() method:� �

public s t a t i c void main (S t r i n g args []) {
t r y {

UIManager . setLookAndFeel (
” javax . swing . p l a f . metal . MetalLookAndFeel”) ;

} catch (Exception e) {
System . out . e r r (” Exception : ” + e . getMessage ()) ;

}
}// m a i n ()
 	
Java’s default, the Metal look and feel, has been designed specifically for

Java applications. For a Windows look, you can use the following argu-
ment: com.sun.java.swing.plaf.windows.WindowsLookAndFeel.

Figure 13.4 shows how the simple application would appear under the

Figure 13.4: The same Java appli-
cation using the Motif, Windows,
and Metal look and feel.

three different look-and-feel styles.

SELF-STUDY EXERCISE

EXERCISE 13.1 The MVC architecture is a model of object-oriented de-
sign. But if a JButton is really composed of three separate parts, how can
we still call it a component? Isn’t it really three things?

598 CHAPTER 13 • Graphical User Interfaces

13.5 The Java Event Model

As we saw in Chapter 4, whatever happens while the computer is running
is classified as an event. Every keystroke and mouse click, every time a
disk is inserted into a disk drive, an event is generated. The handling of
events are an important element of GUI programming. Therefore, before
we begin discussing how to design GUIs, it will be useful to review the
main concepts of Java’s event model.

When a Java program is running, events generated by the hardware
are passed up through the operating system (and through the browser, for
applets) to the program. Those events that belong to the program must
be handled by the program (refer to Fig. 4.18 in Chapter 4). For example,
if you click your browser’s menu bar, that event will be handled by the
browser itself. If you click a button contained in the Java program, that
event should be handled by the program.

In Java, whenever something happens within a GUI component, an
event object is generated and passed to the event listener that has been
registered to handle that component’s events. You’ve seen numerous ex-
amples of this process in earlier chapters, but we’ve included a simple
example to serve as a reminder.

Suppose you create a JButton in a GUI as follows:� �
private JButton clickme = new JButton (”ClickMe”) ;
 	

Whenever the user clicks the JButton, an ActionEvent is generated.
In order to handle these events, the GUI must register the JButton with
a listener object that listens for action events. This can be done in an ap-
plet’s init()method or in an application’s constructor method, as in this
example:� �

public MyGUI() {
// Add c l i c k m e t o t h e GUI a n d a s s i g n i t a l i s t e n e r

add (cl ickme) ;
cl ickme . addActionListener (t h i s) ;

}
 	
In this case, we have designated the GUI itself (this) as an ActionListener
for clickme (Fig. 13.5). A listener is any object that implements a listener

clickme : JButton

: MyApplet

>Listener

Figure 13.5: The GUI listens for
action events on the JButton.

interface, which is one of the interfaces derived from java.util.Event-
Listener. An ActionListener is an object that listens for and receives
ActionEvents.

SECTION 13.5 • The Java Event Model 599

In order to complete the event-handling code, the GUI must imple-
ment the ActionListener interface. As Figure 13.6 shows, implement-
ing an interface is a matter of declaring the interface in the class heading
and implementing the methods contained in the interface, in this case the
actionPerformed() method.

� �
import j avax . swing . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s MyGUI extends JFrame
implements Act ionLis tener {

private JButton clickme = new JButton (”ClickMe”) ;

public MyGUI() {
// Add c l i c k m e t o t h e GUI a n d a s s i g n i t a l i s t e n e r

getContentPane () . add (cl ickme) ;
cl ickme . addActionListener (t h i s) ;
s e t S i z e (2 0 0 , 2 0 0) ;
s e t V i s i b l e (t rue) ;

} // i n i t ()

public void actionPerformed (ActionEvent e) {
i f (e . getSource () == clickme) {

cl ickme . s e t T e x t (cl ickme . getText () + ”∗”) ;
}

} // a c t i o n P e r f o r m e d ()

public s t a t i c void main (S t r i n g args []) {
MyGUI gui = new MyGUI () ;

}
} // MyGUI
 	
Figure 13.6: A simple GUI application that handles action events on a
JButton.

Now that we have implemented the code in Figure 13.6, whenever the
user clicks clickme, that action is encapsulated within an ActionEvent
object and passed to the actionPerformed() method. This method
contains Java code that will handle the user’s action in an appropriate
way. For this example, it modifies the button’s label by appending an
asterisk to it each time it is clicked. Figure 13.7 depicts the sequence of
actions and events that occur when the the user clicks a button.

600 CHAPTER 13 • Graphical User Interfaces
Figure 13.7: A UML depiction of
the sequence of actions and events
that take place when a button is
clicked. The vertical lines repre-
sent time lines, with time running
from top to bottom. The arrows
between lines represent messages
passing between objects.

actionPerformed(e:ActionEvent)

User

clickMe : JButton

Click

jvm : JVM

ClickEvent

: ActionEvent

create()

Object1 : MyApplet

showStatus(s:String)

The methods used to handle the ActionEvent are derived from the
java.util.EventObject class, the root class for all events (Fig. 13.8).

+EventObject(in src : Object)

+getSource() : Object

+toString() : String

EventObject

Figure 13.8: An EventObject.
The getSource() method is
used to get the object that caused
the event.

Our example (Fig. 13.6) uses the getSource() method to get a reference
to the object that generated the event. To see what information is con-
tained in an event object, we can use the toString() method to print
a string representation of the event that was generated. Here’s what it
displays:� �

j ava . awt . event . ActionEvent [ACTION PERFORMED, cmd=ClickMe]
on javax . swing . JButton [, 5 8 , 5 , 8 3 x27 ,
layout=javax . swing . OverlayLayout]
 	

As you can see, the event generated was an ACTION PERFORMED event,
in response to the ClickMe command. The source of the event was the
JButton.

13.5.1 Event Classes
Although the event model is the same for both AWT and Swing classes,
the Swing package introduces many additional events. Table 13.1 lists
the events that are generated by both AWT and Swing components. You
already have worked with some of these. We have written GUIs that
handled ActionEvents for JButtons and JTextFields in preceding
chapters.

In viewing Table 13.1, it’s important to remember that the classes listed
there are arranged in a hierarchy. This will affect the events that a par-
ticular object can generate. For example, a JButton is a JComponent
(Fig. 13.2), so in addition to generating ActionEvents when the user
clicks on it, it can also generate MouseEvents when the user moves the
mouse over it. Similarly, because a JTextField is also a JComponent, it
can generate KeyEvents as well as ActionEvents.

Note that the more generic events, such as those that involve moving,
focusing, or resizing a component, are associated with the more generic
components. For example, the JComponent class contains methods that
are used to manage ComponentEvents. Because they are subclasses
of JComponent, JButtons and JTextFields can also use these meth-

SECTION 13.5 • The Java Event Model 601

TABLE 13.1 Java’s AWTEvents for each Component type (Original source: David Flanagan,
Java in a Nutshell, 2d ed., O’Reilly Associates, 1997. Modified for Swing components.)

Components Events Description

Button, JButton ActionEvent User clicked button
CheckBox, JCheckBox ItemEvent User toggled a checkbox
CheckboxMenuItem, JCheckboxMenuItem ItemEvent User toggled a checkbox
Choice, JPopupMenu ItemEvent User selected a choice
Component, JComponent ComponentEvent Component was moved or resized

FocusEvent Component acquired or lost focus
KeyEvent User typed a key
MouseEvent User manipulated the mouse

Container, JContainer ContainerEvent Component added/removed from container
List, JList ActionEvent User double-clicked a list item

ItemEvent User clicked a list item
Menu, JMenu ActionEvent User selected menu item
Scrollbar, JScrollbar AdjustmentEvent User moved scrollbar
TextComponent, JTextComponent TextEvent User edited text
TextField, JTextField ActionEvent User typed Enter key
Window, JWindow WindowEvent User manipulated window

ods. Defining the more generic methods in the JComponent superclass is
another example of the effective use of inheritance.

JAVA EFFECTIVE DESIGN Inheritance. The higher a method is
defined in the inheritance hierarchy, the broader is its use.

Table 13.2 lists events that are new with the Swing classes. Some of
the events apply to new components. For example, JTable and JTree
do not have AWT counterparts. Other events provide Swing components
with capabilities that are not available in their AWT counterparts. For ex-
ample, a CaretEvent allows the programmer to have control over mouse
clicks that occur within a text component.

TABLE 13.2 Some of the events that are defined in the Swing library.

Component Events Description

JPopupMenu PopupMenuEvent User selected a choice
JComponent AncestorEvent An event occurred in an ancestor
JList ListSelectionEvent User double-clicked a list item

ListDataEvent List’s contents were changed
JMenu MenuEvent User selected menu item
JTextComponent CaretEvent Mouse clicked in text

UndoableEditEvent An undoable edit has occurred
JTable TableModelEvent Items added/removed from table

TableColumnModelEvent A table column was moved
JTree TreeModelEvent Items added/removed from tree

TreeSelectionEvent User selected a tree node
TreeExpansionEvent User expanded or collapsed a tree node

JWindow WindowEvent User manipulated window

602 CHAPTER 13 • Graphical User Interfaces

Tables 13.1 and 13.2 provide only a brief summary of these classes and
Swing components. For further details you should consult the JDK online
documentation at� �

http : //java . sun . com/ j 2 s e /1 .5 .0/ docs/api/
 	
SELF-STUDY EXERCISES
EXERCISE 13.2 Is it possible to register a component with more than

one listener?

EXERCISE 13.3 Is it possible for a component to have two different
kinds of listeners?

13.6 CASE STUDY: Designing a Basic GUI

What elements make up a basic user interface? If you think about all of
the various interfaces you’ve encountered—and don’t just limit yourself
to computers—they all have the following elements:

• Some way to provide help/guidance to the user.
• Some way to allow input of information.
• Some way to allow output of information.
• Some way to control the interaction between the user and the device.

Think about the interface on a beverage machine. Printed text on the ma-
chine will tell you what choices you have, where to put your money, and
what to do if something goes wrong. The coin slot is used to input money.
There’s often some kind of display to tell you how much money you’ve
inserted. And there’s usually a bunch of buttons and levers that let you
control the interaction with the machine.

These same kinds of elements make up the basic computer interface.
Designing a Graphical User Interface is primarily a process of choos-
ing components that can effectively perform the tasks of input, output,
control, and guidance.

JAVA EFFECTIVE DESIGN User Interface. A user interface must
effectively perform the tasks of input, output, control, and guidance.

In the programs we designed in the earlier chapters, we used two dif-
ferent kinds of interfaces. In the command-line interface, we used printed
prompts to inform the user, typed commands for data entry and user
control, and printed output to report results. Our GUI interfaces used
JLabels to guide and prompt the user, JTextFields and JTextAreas
as basic input and output devices, and either JButtons or JTextFields
for user control.

Let’s begin by building a basic GUI in the form of a Java applica-
tion. To keep the example as close as possible to the GUIs we’ve already
used, we will build it out of the following Swing components: JLabel,
JTextField, JTextArea, and JButton.

SECTION 13.6 • CASE STUDY: Designing a Basic GUI 603

13.6.1 The Metric Converter Application
Suppose the coach of the cross-country team asks you to write a Java ap-
plication that can be used to convert miles to kilometers. The program
should let the user input a distance in miles, and the program should
report the equivalent distance in kilometers. +milesToKm(in mi : double) : double

MetricConverter

Figure 13.9: The
MetricConverter class has
a single method to convert miles
to kilometers.

Before we design the interface for this, let’s first define a Metric-
Converter class that can be used to perform the conversions (Fig. 13.9).
For now at least, this class’s only task will be to convert miles to kilo-
meters, for which it will use the formula that 1 kilometer equals 0.62
miles:� �

public c l a s s MetricConverter {
public s t a t i c double milesToKm (double miles) {

return miles / 0 . 6 2 ;
}

}
 	
Note that the method takes a double as input and returns a double.
Also, by declaring the method static, we make it a class method, so it
can be invoked simply by� �

MetricConverter . milesToKm (1 0) ;
 	
Choosing the Components

Let’s now design a GUI to handle the interaction with the user. First, let’s
choose Swing components for each of the four interface tasks of input, Which components do we need?
output, control, and guidance. For each component, it might be useful to
refer back to Figure 13.2 to note its location in the Swing hierarchy.

• A JLabel is a display area for a short string of text, an image, or both.
Its AWT counterpart, the Label, cannot display images. A JLabel
does not react to input. Therefore, it is used primarily to display a
graphic or small amounts of static text. It is perfectly suited to serve
as a prompt, which is what we will use it for in this interface.
• A JTextField is a component that allows the user to edit a single line

of text. It is identical to its AWT counterpart, the TextField. By using
its getText() and setText() methods, a JTextField can be used
for either input or output, or both. For this problem, we’ll use it to
perform the interface’s input task.
• A JTextArea is a multiline text area that can be used for either input or

output. It is almost identical to the AWT TextArea component. One
difference, however, is that a JTextArea does not contain scrollbars
by default. For this program, we’ll use the JTextArea for displaying
the results of conversions. Because it is used solely for output in this
program, we’ll make it uneditable to prevent the user from typing in it.
• Let’s use a JButton as our main control for this interface. By im-

plementing the ActionListener interface we will handle the user’s
action events.

604 CHAPTER 13 • Graphical User Interfaces

Choosing the Top-Level Window

The next issue we must decide is what kind of top-level window to use forWhat top-level window to use?
this interface. For applet interfaces, the top-level component would be a
JApplet. For Java applications, you would typically use a JFrame as the
top-level window. Both of these classes are subclasses of Container, so
they are suitable for holding the components that make up the interface
(Fig. 13.1).

Also, as noted earlier, JApplets and JFrames are both examples of
heavyweight components, so they both have windows associated with
them. To display a JFrame we just have to give it a size and make it visi-
ble. Because a frame runs as a stand-alone window, not within a browser
context, it should also be able to exit the application when the user closes
the frame.

Designing a Layout

The next step in designing the interface is deciding how to arrange the
components so that they will be visually appealing and comprehensible,How should the components be

arranged? as well as easy to use.
Figure 13.10 shows a design for the layout. The largest component is the

output text area, which occupies the center of the JFrame. The prompt,
input text field, and control button are arranged in a row above the text
area. This is a simple and straightforward layout.

Figure 13.10 also provides a containment hierarchy, also called a wid-
get hierarchy, which shows the containment relationships among the var-
ious components. Although it might not seem so for this simple layout,
the containment hierarchy plays an important role in showing how the
various components are grouped in the interface. For this design, we have
a relatively simple hierarchy, with only one level of containment. All of
the components are contained directly in the JFrame.

Figure 13.10: A design and layout
for the Metric Converter GUI. The
containment hierarchy (also called
a widget hierarchy) shows the con-
tainment relationships among the
components.

JFrame JLabel JTextField JButton

prompt:

JTextArea for displaying file

JFrame

Prompt JLabel

Input JTextField

Display JTextArea

Convert JButton

Containment Hierarchy
Convert

SECTION 13.6 • CASE STUDY: Designing a Basic GUI 605

Figure 13.11 shows the design of the Converter class, which extends
the JFrame class and implements the ActionListener interface. As a
JFrame subclass, a Converter can contain GUI components. As an im-
plementor of the ActionListener interface, it also will be able to handle
action events through the actionPerformed() method.

JFrame
+actionPerformed()

«interface»

ActionListener

+Converter()

+actionPerformed()

+main()

-prompt : JLabel

-input : JTextField

-display : JTextArea

-convert : JButton

Converter

Figure 13.11: The Converter
class is a subclass of
JFrame and implements the
ActionListener interface.

Figure 13.12 gives the implementation of the Converter class. Note
the three packages that are imported. The first contains definitions of the
Swing classes, and the other two contain definitions of AWT events and
layout managers that are used in the program.

� �
import j avax . swing . ∗ ; // P a c k a g e s u s e d

import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s Converter extends JFrame
implements Act ionLis tener {

private JLabe l prompt =
new JLabe l (” Distance in miles : ”) ;

private J T e x t F i e l d input = new J T e x t F i e l d (6) ;
private JTextArea display = new JTextArea (1 0 , 2 0) ;
private JButton convert = new JButton (”Convert ! ”) ;

public Converter () {
getContentPane () . setLayout (new FlowLayout ()) ;
getContentPane () . add (prompt) ;
getContentPane () . add (input) ;
getContentPane () . add (convert) ;
getContentPane () . add (display) ;
d isplay . setLineWrap (t rue) ;
d isplay . s e t E d i t a b l e (f a l s e) ;
convert . addActionListener (t h i s) ;

} // C o n v e r t e r ()

public void actionPerformed (ActionEvent e) {
double miles =

Double . valueOf (input . getText ()) . doubleValue () ;
double km = MetricConverter . milesToKm (miles) ;
d isplay . append (miles + ” miles equals ” +

km + ” ki lometers \n”) ;
} // a c t i o n P e r f o r m e d ()

public s t a t i c void main (S t r i n g args []) {
Converter f = new Converter () ;
f . s e t S i z e (4 0 0 , 3 0 0) ;
f . s e t V i s i b l e (t rue) ;
f . addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent e) {
System . e x i t (0) ; // Q u i t t h e a p p l i c a t i o n

}
}) ;

} // m a i n ()

} // C o n v e r t e r
 	
Figure 13.12: The Converter class implements a simple GUI interface.

606 CHAPTER 13 • Graphical User Interfaces

We have to do all initializing tasks in the constructor. First, we have to
set the JFrame’s layout to FlowLayout. A layout manager is the object
that is responsible for sizing and arranging the components in a container
so that the elements are organized in the best possible manner. A flow
layout is the simplest arrangement: The components are arranged left to
right in the window, wrapping around to the next “row” if necessary.

Second, note the statements used to set the layout and to add compo-
nents directly to the JFrame. Instead of adding components directly to
the JFrame, we must add them to its content pane:� �

getContentPane () . add (input) ;
 	
A content pane is a JPanel that serves as the working area of the
JFrame. It contains all of the frame’s components. Java will raise an
exception if you attempt to add a component directly to a JFrame.

JAVA DEBUGGING TIP Content Pane A JFrame cannot directly
contain GUI elements. Instead, they must be added to its content pane,
which can be retrieved using the getContentPane() method.

The JFrame and all the other top-level Swing windows have an inter-
nal structure made up of several distinct objects that can be manipulated
by the program. Because of this structure, GUI elements can be orga-
nized into different layers within the window to create many types of
sophisticated layouts. Also, one layer of the structure makes it possible
to associate a menu with the frame.

Finally, note how the Converter frame is instantiated, made visible,
and eventually exited in the application’s main() method:� �

public s t a t i c void main (S t r i n g args []) {
Converter f = new Converter () ;
f . s e t S i z e (4 0 0 , 3 0 0) ;
f . s e t V i s i b l e (t rue) ;
f . addWindowListener (new WindowAdapter () {

// Q u i t t h e a p p l i c a t i o n

public void windowClosing (WindowEvent e) {
System . e x i t (0) ;

}
}) ;

} // m a i n ()
 	
It is necessary to set both the size and visibility of the frame, since these
are not set by default. Because we are using a FlowLayout, it is especially
important to give the frame an appropriate size. Failure to do so can cause
the components to be arranged in a confusing way and might even cause
some components to not appear in the window. These are limitations we
will fix when we learn how to use some of the other layout managers.

13.6.2 Inner Classes and Adapter Classes
In this section we introduce two new language features, inner classes and
adapter classes, which are used in the main() method shown above to

SECTION 13.6 • CASE STUDY: Designing a Basic GUI 607

handle the closing of the Converter application’s window when the
program is exited:� �

f . addWindowListener (new WindowAdapter () {
public void windowClosing (WindowEvent e) {

System . e x i t (0) ;
}

}) ;
 	
This code segment provides a listener that listens for window closing Inner classes
events. When such an event occurs, it exits the application by calling
System.exit().

The syntax used here is an example of an anonymous inner class. An
inner class is a class defined within another class. The syntax is some-
what ugly, because it places the class definition right where a reference
to a window listener object would go. In effect what the code is doing is
defining a subclass of WindowAdapter and creating an instance of it to
serve as a listener for window closing events.

Anonymous inner classes provide a useful way of creating classes and
objects on the fly to handle just this kind of listener task. The syntax used
actually enables us to write one expression that both defines a class and
creates an instance of it to listen for window closing events. The new
subclass has local scope limited here to the main() method. It is anony-
mous, meaning we aren’t even giving it a name, so you can’t create other
instances of it in the program. Note that the body of the class definition is
placed right after the new keyword, which takes the place of the argument
to the addWindowListener() method. For more details on the inner
and anonymous classes, see Appendix F.

JAVA LANGUAGE RULE Inner Class. An inner class is a class de-
fined within another class. Inner classes are mostly used to handle a
task that supports the work of the containing class.

An adapter class is a wrapper class that implements trivial versions of Adapter class
the abstract methods that make up a particular interface. (Remember from
Chapter 4 that a wrapper class contains methods for converting primitive
data into objects and for converting data from one type to another.)

The WindowAdapter class implements the methods of the Window-
Listener interface. When you implement an interface, such as
ActionListener, you must implement all the abstract methods de-
fined in the interface. For ActionListener there’s just one method, the
actionPerformed() method, so we can implement it as part of our ap-
plet or frame class. However, we want to use only one of the seven meth-
ods available in the WindowListener interface, the windowClosing()
method, which is the method implemented in the anonymous inner class:� �

public void windowClosing (WindowEvent e) {
System . e x i t (0) ;

}
 	

608 CHAPTER 13 • Graphical User Interfaces

The WindowAdapter is defined simply as� �
public a b s t r a c t c l a s s WindowAdapter

implements WindowListener {
public void windowActivated (WindowEvent e) {}
public void windowClosed (WindowEvent e) {}
. . .
// F i v e o t h e r w i n d o w l i s t e n e r m e t h o d s

}
 	
Note that each method is given a trivial implementation (). To create a
subclass of WindowAdapter, you must override at least one of its trivially
implemented methods.

Another way to manage the application’s window closing event is to
define a subclass of WindowAdapter:� �

import j avax . swing . ∗ ;
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;
public c l a s s WindowCloser extends WindowAdapter {

public void windowClosing (WindowEvent e) {
System . e x i t (0) ;

}
}
 	

Given this class, we can then place the following statement in
Converter’s main() method:� �

f . addWindowListener (new WindowCloser ()) ;
 	
This is somewhat more familiar looking than the inner class construct. If
you prefer this way of handling things, you can use this method in place
of the inner classes here and in other examples.

JAVA EFFECTIVE DESIGN Anonymous Adapter
Classes. Anonymous adapter classes provide a useful way of creating
an object to handle one particular kind of event within a program.

SECTION 13.6 • CASE STUDY: Designing a Basic GUI 609

13.6.3 GUI Design Critique
Figure 13.13 shows the converter interface. Although our basic GUI de-

Figure 13.13: The first version of
the metric converter GUI.

sign satisfies the demands of input, output, control, and guidance, it has a
few significant design flaws.

First, it forces the user to manually clear the input field after each con-
version. Unless it is important that the user’s input value remain dis-
played until another value is entered, this is just an inconvenience to the
user. In this case, the user’s input value is displayed along with the result
in the JTextArea, so there’s no reason not to clear the input text field:� �

input . s e t T e x t (””) ; // C l e a r t h e i n p u t f i e l d
 	
JAVA EFFECTIVE DESIGN Reduce the User’s Burden. A GUI
should aim to minimize the responsibility placed on the user. In
general, the program should perform any task that it can perform,
unless, of course, there is a compelling reason that the user should do
the task.

A second problem with our design is that it forces the user to switch be-
tween the keyboard (for input) and the mouse (for control). Experienced
users will find this annoying. An easy way to fix this problem is to make
both the JTextField and the JButton serve as controls. That way, to
get the program to do the conversion, the user can just press the Enter key
after typing a number into the text field.

To give the interface this type of control, we only need to add an
ActionListener to the JTextField during the initialization step:� �

input . addActionListener (t h i s) ;
 	
A JTextField generates an ActionEvent whenever the Enter key
is pressed. We don’t even need to modify the actionPerformed()
method, since both controls will generate the same action event. This will
allow users who prefer the keyboard to use just the keyboard.

JAVA EFFECTIVE DESIGN User Interface. A GUI should aim to
minimize the number of different input devices (mouse, keyboard)
that the user has to manipulate to perform a particular task.

Given that the user can now interact with the interface with just the key-
board, a question arises over whether we should keep the button at all.
In this case, it seems justifiable to keep both the button and the text field
controls. Some users dislike typing and prefer to use the mouse. Also,
having two independent sets of controls is a desirable form of redundancy.

610 CHAPTER 13 • Graphical User Interfaces

You see it frequently in menu-based systems that allow menu items to be
selected either by mouse or by special control keys.

JAVA EFFECTIVE DESIGN Desirable Redundancy. Certain forms of
redundancy in an interface, such as two sets of independent controls
(mouse and keyboard), make it a more flexible or more widely usable
program.

SELF-STUDY EXERCISES
EXERCISE 13.4 Another deficiency in the converter interface is that it

doesn’t round off its result, leading sometimes to numbers with 20 or so
digits. Develop Java code to fix this problem.

EXERCISE 13.5 Give an example of desirable redundancy in automo-
bile design.

13.6.4 Extending the Basic GUI: Button Array
Suppose the coach likes our program but complains that some of the folks
in the office are terrible typists and would prefer not to have to use the
keyboard at all. Is there some way we could modify the interface to
accommodate these users?

This gets back to the point we were just making about incorporating
redundancy into the interface. One way to satisfy this requirement wouldWhat components do we need?
be to implement a numeric keypad for input, similar to a calculator key-
pad. Regular JButtons can be used as the keypad’s keys. As a user clicks
keypad buttons, their face values—0 through 9—are inserted into the text
field. The keypad will also need a button to clear the text field and one to
serve as a decimal point.

This new feature will add 12 new JButton components to our inter-How should the components be
organized? face. Instead of inserting them into the JFrame individually, it will be

better to organize them into a separate panel and to insert the entire panel
into the frame as a single unit. This will help reduce the complexity of
the display, especially if the keypad buttons can be grouped together vi-
sually. Instead of having to deal with 16 separate components, the user
will see the keypad as a single unit with a unified function. This is an
example of the abstraction principle, similar to the way we break long
strings of numbers (1-888-889-1999) into subgroups to make them easier
to remember.

JAVA EFFECTIVE DESIGN Reducing Complexity. Organizing
elements into distinct groups by function helps to reduce the GUI’s
complexity.

Figure 13.14 shows the revised converter interface design. The contain-
ment hierarchy shows that the 12 keypad JButtons are contained within
a JPanel. In the frame’s layout, the entire panel is inserted just after the
text area.

Incorporating the keypad into the interface requires several changes
in the program’s design. Because the keypad has such a clearly de-
fined role, let’s make it into a separate object by defining a KeyPad class

SECTION 13.6 • CASE STUDY: Designing a Basic GUI 611

JFrame JLabel JTextField

1 2 3

4 5 6

7 8 9

C 0 .

JButton

prompt:

JTextArea for

displaying file

JFrame

12 JButtons

Prompt JLabel

Input JTextField

Display JTextArea

Convert JButton

KeyPad JPanel

KeyPad JPanel

Containment Hierarchy
Convert

Figure 13.14: A widget hierarchy
showing the containment rela-
tionships among the components.

(Fig. 13.15). The KeyPad will be a subclass of JPanel and will han-
dle its own ActionEvents. As we saw in Chapter 4, a JPanel is a
generic container. It is a subclass of Container via the JComponent
class (Fig. 13.2). Its main purpose is to contain and organize components

JPanel

+KeyPad()

+actionPerformed()

-NBUTTONS : int

-buttons[] : JButton

-labels[] : String

-kpc : KeyPadClient

KeyPad

+actionPerformed()

«interface»

ActionListener

Figure 13.15: A KeyPad is a
JPanel of JButtons that han-
dles its own action events.

that appear together on an interface.
In this case, we will use a JPanel to hold the keypad buttons. As you

might recall from Chapter 4, to add elements to a JPanel, you use the
add() method, which is inherited from Container. (A JApplet is also
a subclass of Container via the Panel class.)

As a subclass of JPanel, the KeyPad will take care of holding and
organizing the JButtons in the visual display. We also need some way to
organize and manage the 12 keypad buttons within the program’s mem-
ory. Clearly, this is a good job for an array. Actually, two arrays would be
even better, one for the buttons and one for their labels:� �

private JButton buttons [] ;
private S t r i n g l a b e l s [] = // An a r r a y o f b u t t o n l a b e l s

{ ”1” , ”2” , ”3” ,
”4” , ”5” , ”6” ,
”7” , ”8” , ”9” ,
”C” , ”0” , ” . ” } ;
 	

The label array stores the strings that we will use as the buttons’ labels.
The main advantage of the array is that we can use a loop to instantiate
the buttons:� �

buttons = new JButton [NBUTTONS] ; // C r e a t e t h e a r r a y

// F o r e a c h l a b e l e d b u t t o n

for (i n t k = 0 ; k < buttons . length ; k++) {
buttons [k] = new JButton (l a b e l s [k]) ; // C r e a t e b u t t o n

buttons [k] . addActionListener (t h i s) ; // a n d a l i s t e n e r

add (buttons [k]) ; // a n d a d d i t t o t h e p a n e l

} // f o r
 	
This code should be placed in the KeyPad() constructor. It begins by Algorithm design
instantiating the array itself. It then uses a for loop, bounded by the size
of the array, to instantiate each individual button and insert it into the
array. Note how the loop variable here, k, plays a dual role. It serves as
the index into both the button array (buttons) and the array of strings

612 CHAPTER 13 • Graphical User Interfaces

that serves as the buttons’ labels (labels). In that way the labels are as-
signed to the appropriate buttons. Note also how each button is assigned
an ActionListener and added to the panel:� �

buttons [k] . addActionListener (t h i s) ; // Add l i s t e n e r

add (buttons [k]) ; // Add b u t t o n t o p a n e l
 	
An important design issue for our KeyPad object concerns how it will in-
teract with the Converter that contains it. When the user clicks a keypad
button, the key’s label has to be displayed in the Converter’s text area.
But because the text area is private to the converter, the KeyPad does not
have direct access to it. To address this problem, we will use a Java inter-
face to implement a callback design. In this design, whenever a KeyPadCallback design
button is pressed, the KeyPad object calls a method in the Converter
that displays the key’s label in the text area.

Figure 13.16 provides a summary of the callback design. Note that
the association between the Converter and the KeyPad is bi-directional.
This means that each object has a reference to the other and can invoke the
other’s public methods. This will be effected by having the Converter
pass a reference to itself when it constructs the KeyPad:� �

private KeyPad keypad = new KeyPad (t h i s) ;
 	
Another important design issue is that the KeyPad needs to know the
name of the callback method and the Converter needs to have an imple-
mentation of that method. This is a perfect job for an abstract interface:� �

public a b s t r a c t i n t e r f a c e KeyPadClient {
public void keypressCal lback (S t r i n g s) ;

}
 	
Figure 13.16: In a callback design,
the Converter implements the
KeyPadClient interface. It
passes a reference to itself when
it creates the KeyPad object. The
KeyPad object can then invoke
the keypressCallback()
method whenever a keypad
button is pressed, and the
Converter can display the result
of the keypress.

+keypressCallback(in s : String)

«interface»

KeyPadClient

+Converter()

+actionPerformed()

+keypressCallback(in s : String)

+main()

-prompt : JLabel

-input : JTextField

-display : JTextArea

-convert : JButton

Converter

-kpc : KeyPadClient

KeyPadCreatesN

JFrame

+actionPerformed()

«interface»

ActionListener

SECTION 13.6 • CASE STUDY: Designing a Basic GUI 613

The KeyPad can interact with any class that implements the Key-
PadClient interface. Note that the KeyPad has a reference to the
KeyPadClient, which it will use to invoke the keypressCallback()
method.

The implementation of KeyPad is shown in Figure 13.17. Note that
its constructor takes a reference to a KeyPadClient and saves it in an
instance variable. Its actionPerformed()method then passes the key’s
label to the KeyPadClient’s callback method.

� �
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;
import j avax . swing . ∗ ;

public c l a s s KeyPad extends JPanel implements Act ionLis tener {

private f i n a l s t a t i c i n t NBUTTONS = 1 2 ;
private KeyPadClient kpc ; // O w n e r o f t h e K e y P a d

private JButton buttons [] ;
private S t r i n g l a b e l s [] = // An a r r a y o f b u t t o n l a b e l s

{ ”1” , ”2” , ”3” ,
”4” , ”5” , ”6” ,
”7” , ”8” , ”9” ,
”C” , ”0” , ” . ” } ;

public KeyPad (KeyPadClient kpc) {
t h i s . kpc = kpc ;
buttons = new JButton [NBUTTONS] ; // C r e a t e t h e a r r a y

for (i n t k = 0 ; k < buttons . length ; k++) { // F o r e a c h b u t t o n

buttons [k] = new JButton (l a b e l s [k]) ; // C r e a t e a b u t t o n

buttons [k] . addActionListener (t h i s) ; // a n d a l i s t e n e r

add (buttons [k]) ; // a n d a d d i t t o p a n e l

} // f o r

} // K e y P a d ()

public void actionPerformed (ActionEvent e) {
S t r i n g keylabe l = ((JButton) e . getSource ()) . getText () ;
kpc . keypressCal lback (key labe l) ;

} // a c t i o n P e r f o r m e d ()

} // K e y P a d
 	
Figure 13.17: The KeyPad object implements a 12-key keypad in a
JPanel. It has a reference to the KeyPadClient that contains the key-
pad.

Given the KeyPad design, we need to revise our design of the
Converter class (Fig. 13.16). The Converter will now implement the

614 CHAPTER 13 • Graphical User Interfaces

KeyPadClient interface, which means it must provide an implementa-
tion of the keypressCallback() method:� �

public void keypressCal lback (S t r i n g s) {
i f (s . equals (”C”))

input . s e t T e x t (””) ;
e lse

input . s e t T e x t (input . getText () + s) ;
}
 	

Recall that whenever the KeyPad object calls the keypressCallback()
method, it passes the label of the button that was pressed. The
Converter object simply appends the key’s label to the input text field,
just as if the user typed the key in the text field.

The complete implementation of this revised version of the interface is
shown in Figure 13.18 on the next page. The appearance of the interface
itself is shown in Figure 3.19.

13.6.5 GUI Design Critique
Figure 3.19 shows that despite our efforts to group the keypad into a rect-

Figure 13.19: The second version
of the metric converter GUI uses
a set of keypad buttons for in-
put, but they are not properly ar-
ranged.

angular array, it doesn’t appear as a single entity in the interface itself,
which indicates a layout problem. The default layout for our KeyPad
(which is a JPanel) is FlowLayout, which is not appropriate for a nu-
meric keypad that needs to be arranged into a two-dimensional grid pat-
tern, which is the kind of layout our design called for (Fig. 13.14).

Fortunately, this flaw can easily be fixed by using an appropriate layout
manager from the AWT. In the next version of the program, we employ the
java.awt.GridLayout, which is perfectly suited for a two-dimensional
keypad layout (Section 13.7.2).

The lesson to be learned from this example is that screen layout is an
important element of an effective GUI. If not done well, it can undermine
the GUI’s effort to guide the user toward the appointed tasks. If done
poorly enough, it can even keep the user from doing the task at all.

JAVA EFFECTIVE DESIGN Layout Design. The appropriate layout
and management of GUI elements is an important part of interface
design. It contributes to the interface’s ability to guide the user’s
action toward the interface’s goals.

13.7 Containers and Layout Managers

A Container is a component that can contain other components. Be-
cause containers can contain other containers, it is possible to create a
hierarchical arrangement of components, as we did in the second ver-
sion of our Converter interface. In its present form, the hierarchy for
Converter consists of a JFrame as the top-level container (Fig. 13.14).
Contained within the frame is a KeyPad (subclass of JPanel), which con-
tains 12 JButtons. Most GUIs will have a similar kind of containment
hierarchy.

+add(in c : Component) : Component

+remove(in index : int)

+remove(in c : Component)

+removeAll()

Container

Figure 13.20: A Container con-
tains Components.

SECTION 13.7 • Containers and Layout Managers 615� �
import j avax . swing . ∗ ; // P a c k a g e s u s e d

import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s Converter extends JFrame // V e r s i o n 2

implements Act ionLis tener , KeyPadClient {

private JLabe l prompt = new JLabe l (” Distance in miles : ”) ;
private J T e x t F i e l d input = new J T e x t F i e l d (6) ;
private JTextArea display = new JTextArea (1 0 , 2 0) ;
private JButton convert = new JButton (”Convert ! ”) ;
private KeyPad keypad = new KeyPad (t h i s) ;

public Converter () {
getContentPane () . setLayout (new FlowLayout ()) ;
getContentPane () . add (prompt) ;
getContentPane () . add (input) ;
getContentPane () . add (convert) ;
getContentPane () . add (display) ;
getContentPane () . add (keypad) ;
d isplay . setLineWrap (t rue) ;
d isplay . s e t E d i t a b l e (f a l s e) ;
convert . addActionListener (t h i s) ;
input . addActionListener (t h i s) ;

} // C o n v e r t e r ()

public void actionPerformed (ActionEvent e) {
double miles =

Double . valueOf (input . getText ()) . doubleValue () ;
double km = MetricConverter . milesToKm (miles) ;
d isplay . append (miles + ” miles equals ” +

km + ” ki lometers \n”) ;
input . s e t T e x t (””) ;

} // a c t i o n P e r f o r m e d ()

public void keypressCal lback (S t r i n g s) {
i f (s . equals (”C”))

input . s e t T e x t (””) ;
e lse

input . s e t T e x t (input . getText () + s) ;
}

public s t a t i c void main (S t r i n g args []) {
Converter f = new Converter () ;
f . s e t S i z e (4 0 0 , 3 0 0) ;
f . s e t V i s i b l e (t rue) ;
f . addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent e) {
System . e x i t (0) ; // Q u i t t h e a p p l i c a t i o n

}
}) ;

} // m a i n ()

} // C o n v e r t e r
 	
Figure 13.18: The second version of the Converter class, which imple-
ments the GUI shown in Figure 13.19.

616 CHAPTER 13 • Graphical User Interfaces

A Container is a relatively simple object whose main task is primarily
to hold its components in a particular order. It has methods to add and
remove components (Fig. 13.20). As you can see from these methods, a
container keeps track of the order of its elements, and it is possible to refer
to a component by its index order.

13.7.1 Layout Managers
The hard work of organizing and managing the elements within a con-
tainer is the task of the layout manager. Among other tasks, the layout
manager determines

• The overall size of the container.
• The size of each element in the container.
• The spacing between elements.
• The positioning of the elements.

Although it is possible to manage your own layouts, it is not easy to do.
For most applications you are much better off by learning to use one
of the AWT’s built-in layouts. Table 13.3 gives a brief summary of the
available layouts. We will show examples of FlowLayout, GridLayout,
and BorderLayout. Some of the widely used Swing containers have a
default layout manager assigned to them (Table 13.4).

To override the default layout for any of the JApplet, JDialog,
JFrame, and JWindow containers, you must remember to use the
getContentPane(). The correct statement is� �

getContentPane () . setLayout (new FlowLayout ()) ;
 	
JAVA DEBUGGING TIP Content Pane. Attempting to add a
component directly to a JApplet or a JFrame will cause an
exception. For these top-level containers, components must be added
to their content panes.

13.7.2 The GridLayout Manager
It is simple to remedy the layout problem that affected the keypad
in the most recent version of the Converter program. The problem

TABLE 13.3 Some of Java’s AWT and Swing layout managers.

Manager Description

java.awt.BorderLayout Arranges elements along the north, south, east, west,
and in the center of the container.

java.swing.BoxLayout Arranges elements in a single row or single column.
java.awt.CardLayout Arranges elements like a stack of cards, with one visible at a time.
java.awt.FlowLayout Arranges elements left to right across the container.
java.awt.GridBagLayout Arranges elements in a grid of variably sized cells (complicated).
java.awt.GridLayout Arranges elements into a two-dimensional grid of equally sized cells.
java.swing.OverlayLayout Arranges elements on top of each other.

SECTION 13.7 • Containers and Layout Managers 617

TABLE 13.4 Default layouts for some of the common
Swing containers.

Container Layout Manager

JApplet BorderLayout (on its content pane)
JBox BoxLayout
JDialog BorderLayout (on its content pane)
JFrame BorderLayout (on its content pane)
JPanel FlowLayout
JWindow BorderLayout (on its content pane)

was caused by the fact that as a subclass of JPanel, the KeyPad uses
a default FlowLayout, which causes its buttons to be arranged in a
row. A more appropriate layout for a numeric keypad would be a two-
dimensional grid, which is exactly the kind of layout supplied by the
java.awt.GridLayout. Therefore, to fix this problem, we need only
set the keypad’s layout to a GridLayout. This takes a single statement,
which should be added to the beginning of the KeyPad() constructor:� �

setLayout (new GridLayout (4 , 3 , 1 , 1)) ;
 	
This statement creates a GridLayout object and assigns it as the layout
manager for the keypad. It will ensure that the keypad will have four rows
and three columns of buttons (Fig. 13.21). The last two arguments in the
constructor affect the relative spacing between the rows and the columns.
The higher the number, the larger the spacing. As components are added
to the keypad, they will automatically be arranged by the manager into a
4×3 grid.

Figure 13.21: This version of the
metric converter GUI uses a key-
pad for mouse-based input. It has
an attractive overall layout.

Note that for a JPanel, the setLayout() method applies to the panel
itself. Unlike the top-level containers, such as JFrame, other containers
don’t have content panes. The same point would apply when adding
components to a JPanel: They are added directly to the panel, not to
a content pane. Confusion over this point could be the source of bugs in
your programs.

JAVA DEBUGGING TIP Content Pane. Top-level containers, such as
JFrame, are the only ones that use a content pane. For other
containers, such as JPanel, components are added directly to the
container itself.

As its name suggests, the GridLayout layout manager arranges com-
ponents in a two-dimensional grid. When components are added to the
container, the layout manager starts inserting elements into the grid at the
first cell in the first row and continues left to right across row 1, then row
2, and so on. If there are not enough components to fill all cells of the grid,
the remaining cells are left blank. If an attempt is made to add too many
components to the grid, the layout manager will try to extend the grid in
some reasonable way in order to accommodate the components. How-

618 CHAPTER 13 • Graphical User Interfaces

ever, despite its effort in such cases, it usually fails to achieve a completely
appropriate layout.

JAVA PROGRAMMING TIP Grid Layouts. Make sure the number
of components added to a GridLayout is equal to the number of
rows times the number of columns.

13.7.3 GUI Design Critique

Although the layout in Figure 13.21 is much improved, there are still some
deficiencies. One problem is that the convert button seems to be mis-
placed. It would seem to make more sense if it were grouped with the
keypad rather than with the input text field.

A more serious problem results from the fact that we are still using a
FlowLayout for the program’s main window, the JFrame. Among all of
Java’s layouts, FlowLayout gives you the least amount of control over
the arrangement of the components. Also, FlowLayout is most sensitive
to changes in the size and shape of its container.

13.7.4 The BorderLayout Manager

One way to fix these problems is to use a BorderLayout to divide the
frame into five areas: north, south, east, west, and center, as shown in
Figure 13.22. The BorderLayout class contains two constructors:

West

North

South

EastCenter

Figure 13.22: Arrangement of
components in a border layout.
The relative size of the areas will
vary.

� �
public BorderLayout () ;
public BorderLayout (i n t hgap , i n t vgap) ;
 	

The two parameters in the second version of the constructor allow you to
insert spacing between the areas.

Components are added to a BorderLayout by using the add(Compo-
nent, String) method found in the Container class. For example, to
set the application window to a border layout and to add the keypad to
its east area, we would use the following statements:� �

getContentPane () . setLayout (new BorderLayout (2 , 2)) ;
getContentPane () . add (keypad , ” East ”) ;
 	

In this version of the add() method, the second parameter must be a cap-
italized String with one of the names, “North,” “South,” “East,” “West,”
or “Center.” The order in which components are added does not matter.

One limitation of the BorderLayout is that only one component canContainment hierarchy
be added to each area. That means that if you want to add several compo-
nents to an area, you must first enclose them within a JPanel and then

SECTION 13.7 • Containers and Layout Managers 619

add the entire panel to the area. For example, let’s create a panel to contain
the prompt and the text field and place it at the north edge of the frame:� �

JPanel inputPanel = new JPanel () ; // C r e a t e p a n e l

inputPanel . add (prompt) ; // Add l a b e l

inputPanel . add (input) ; // Add t e x t f i e l d

// Add t h e p a n e l t o t h e f r a m e

getContentPane () . add (inputPanel , ”North”) ;
 	
The same point would apply if we want to group the keypad with the

convert button and place them at the east edge. There are several ways
these elements could be grouped. In this example, we give the panel a
border layout and put the keypad in the center and the convert button at
the south edge:� �

JPanel cont ro lPane l= new JPanel (new BorderLayout (0 , 0)) ;
cont ro lPane l . add (keypad , ” Center ”) ;
cont ro lPane l . add (convert , ”South”) ;

// Add t h e p a n e l t o t h e f r a m e

getContentPane . add (controlPanel , ” East ”) ;
 	
Given these details about the BorderLayout, a more appropriate de-

sign for the converter application is shown in Figure 13.23. Notice that the
border layout for the top-level JFrame uses only the center, north, and
east areas. Similarly, the border layout for the control panel uses just the
center and south areas.

JFrame

JLabelInput

JPanel

JTextField

1 2 3

4 5 6

7 8 9

C 0 .

JButtonsControl panel

prompt:N

E

C

JTextArea for

displaying file at

center of border

layout

JFrame(Border)

Containment Hierarchy

Input JPanel(Flow)

 Prompt JLabel

 Input JTextField

Control JPanel(Border)

 KeyPad JPanel(Grid)

 12 Button

 Convert JButton

Display JTextArea

KeyPad JPanel

Convert

Figure 13.23: A border layout de-
sign for the metric converter pro-
gram. The dotted lines show the
panels.

In a BorderLayout, when one (or more) border area is not used, then
one or more of the other areas will be extended to fill the unused area.
For example, if West is not used, then North, South, and Center will
extend to the left edge of the Container. If North is not used, then West,
East, and Center will extend to the top edge. This is true for all areas
except Center. If Center is unused, it is left blank.

620 CHAPTER 13 • Graphical User Interfaces

Figure 13.24 shows the results we get when we incorporate these
changes into the program. The only changes to the program itself occur in

Figure 13.24: The metric con-
verter, showing its appearance
when a border design is used.

the constructor method, which in its revised form is defined as follows:� �
public Converter () {

getContentPane () . setLayout (new BorderLayout ()) ;
keypad = new KeyPad (t h i s) ;

JPanel inputPanel = new JPanel () ; // I n p u t p a n e l

inputPanel . add (prompt) ;
inputPanel . add (input) ;
getContentPane () . add (inputPanel , ”North”) ;

JPanel cont ro lPane l= new JPanel (new BorderLayout (0 , 0)) ;
// C o n t r o l p a n e l

cont ro lPane l . add (keypad , ” Center ”) ;
cont ro lPane l . add (convert , ”South”) ;
getContentPane () . add (controlPanel , ” East ”) ;

// O u t p u t d i s p l a y

getContentPane () . add (display , ” Center ”) ;
d isplay . setLineWrap (t rue) ;
d isplay . s e t E d i t a b l e (f a l s e) ;

convert . addActionListener (t h i s) ;
input . addActionListener (t h i s) ;

} // C o n v e r t e r ()
 	
This layout divides the interface into three main panels, an input panel,
display panel, and control panel, and gives each panel its own layout. In
addition, the control panel contains the keypad panel. Thus, the contain-
ment hierarchy for this design is much more complex than in our original
design.

SELF-STUDY EXERCISES
EXERCISE 13.6 The border layout for the top window uses the north,

center, and east regions. What other combinations of areas might be used
for these three components?

EXERCISE 13.7 Why wouldn’t a flow layout be appropriate for the
control panel?

13.8 Checkboxes, Radio Buttons, and Borders

Suppose you are the software developer for your own software business
specializing in computer games. You want to develop an applet-basedProblem statement
order form that customers can use to order software over the Web. At the
moment you have three software titles—a chess game, a checkers game,
and a crossword puzzle game. The assumption is that the user will choose
one or more of these titles from some kind of menu. The user must also
indicate a payment option—either E-cash, credit card, or debit card. These
options are mutually exclusive—the user can choose one and only one.

SECTION 13.8 • Checkboxes, Radio Buttons, and Borders 621

Let’s design an applet interface for this program. Unlike the previous
problem where the input was a numeric value, in this problem the input
will be the user’s selection from some kind of menu. The result will be the
creation of an order. Let’s suppose that this part of the task happens be- Interface design
hind the scenes—that is, we don’t have to worry about creating an actual
order. The output the user sees will simply be an acknowledgment that
the order was successfully submitted.

There are several kinds of controls needed for this interface. First, a What components do we need?
conventional way to have users indicate their purchase decisions is to
have them click a Submit button. They should also have the option to
cancel the transaction at any time.

In addition to these button controls, a couple of menus must be pre-
sented, one for the software titles, and one for the payment choices. Swing
and AWT libraries provide many options for building menus.

One key requirement for this interface is the mutually exclusive pay-
ment options. A conventional way to handle this kind of selection is with
a JRadioButton—a button that belongs to a group of mutually exclu-
sive alternatives. Only one button from the group may be selected at one
time. The selection of software titles could be handled by a collection of
checkboxes. A JCheckbox is a button that can be selected and deselected
and that always displays its current state to the user. Using a checkbox
will make it obvious to the user exactly what software has been selected.

To complete the design, let’s use a JTextArea again to serve as some-
thing of a printed order form. It will confirm the user’s order and display
other messages needed during the transaction.

Given these decisions, we arrive at the design shown in Figure 13.25.
In this case, our design uses a JPanel as the main container, instead of
using the top window itself. The reason for this decision is that we want to
use Swing Borders around the various JPanels to enhance the overall
visual appeal of the design. The borders will have titles that help explain
the purpose of the various panels.

Note that the top-level window in this case is a JApplet. By default
it will have a border layout. For the main JPanel we are using a 3× 1 What top-level windows do we use?
GridLayout. The components in the main panel are the JTextArea

JApplet

Checkboxes Options panelButton panel
Choice panel RadioButtons

JTextArea for displaying the

user's order

JApplet(Border)

Main JPanel(Grid)

	 Display JTextArea

	 Center JPanel(Flow)

		 Choice JPanel(Box)

			 3 Checkboxes

		 Options JPanel(Box)

			 3 RadioButtons

	 Button JPanel(Flow)

		 Submit JButton

		 Cancel JButton

Main Panel

Containment Hierarchy

SubmitCancel

E-cash

Debit
Credit

Chess

Crossword
Checkers

Figure 13.25: A design for an on-
line order form interface.

622 CHAPTER 13 • Graphical User Interfaces

and two other JPanels. The GridLayout will take care of sizing these
so they are all of equal size.

The center panel, which uses a flow layout, contains panels for the
checkboxes and the radio buttons. These elements are grouped withinComponent layout
their own panels. Again, we can put a border around them in the final
implementation (Fig. 13.26). The button panels use a BoxLayout, which
we will discuss later. This design leads to the most complex containmentContainment hierarchy
hierarchy thus far.

13.8.1 Checkbox and Radio Button Arrays
Because we will need three checkboxes, one for each title, and three radioWhat data structures do we need?
buttons, one for each payment option, it will be useful again to use arrays
to store both the buttons and their titles:� �

private ButtonGroup optGroup = new ButtonGroup () ;
private JCheckBox t i t l e s [] = new JCheckBox [NTITLES] ;
private JRadioButton options [] = new JRadioButton [NOPTIONS] ;
private S t r i n g t i t l e L a b e l s [] =

{”Chess Master − $59 . 9 5 ” , ” Checkers Pro − $39 . 9 5 ” ,
”Crossword Maker − $19 . 9 5 ” } ;

private S t r i n g opt ionLabels [] = {” Credi t Card” ,
” Debit Card” , ”E−cash ” } ;
 	

Again, the advantage of this design is that it simplifies the instantiation
and initialization of the buttons: fig-acmescreen

FIGURE 13.26 Borders around
containers help make them stand out
more.

� �
for (i n t k = 0 ; k < t i t l e s . length ; k++) {

t i t l e s [k] = new JCheckBox (t i t l e L a b e l s [k]) ;
t i t l e s [k] . addItemListener (t h i s) ;
choicePanel . add (t i t l e s [k]) ;

}
 	
The only difference between this array of checkboxes and the keypad ar-
ray of buttons that we used in the Converter program is that checkboxes
generate ItemEvents instead ActionEvents. Therefore, each checkbox
must be registered with an ItemListener (and, of course, the applet
itself must implement the ItemListener interface). We’ll show how
ItemEvents are handled later.

The code for instantiating and initializing the radio buttons is almost
the same:� �

for (i n t k = 0 ; k < options . length ; k++) {
options [k] = new JRadioButton (opt ionLabels [k]) ;
opt ions [k] . addItemListener (t h i s) ;
optionPanel . add (opt ions [k]) ;
optGroup . add (opt ions [k]) ;

}
options [0] . s e t S e l e c t e d (t rue) ; // S e t f i r s t b u t t o n ’ o n ’
 	

Radio buttons also generate ItemEvents, so they too must be registered
with an ItemListener. Note that the first button is set on, which repre-
sents a default payment option for the user.

SECTION 13.8 • Checkboxes, Radio Buttons, and Borders 623

The difference between checkboxes and radio buttons is that radio but-
tons must be added to a ButtonGroup—here named optGroup—in or-
der to enforce mutual exclusion among them. A ButtonGroup is an ob-
ject whose sole task is to enforce mutual exclusion among its members.
Whenever you click one radio button, the ButtonGroup will automati-
cally be notified of this event and will turn off whatever other button was
turned on. As Figure 13.27 illustrates, radio buttons are monitored by
two different objects, a ButtonGroup, which manages the radio buttons’
states, and an ItemListener, which listens for clicks on the buttons and
takes appropriate actions.

: ButtonGroup : ItemListener

1 1..* 1..* 1

>Listens
: JRadioButton

ContainsN
Figure 13.27: The ButtonGroup
object tracks each radio button’s
state, ensuring that only one
is selected at a time. The
ItemListener listens for events
on each button.

Note the effective division of labor in the design of the various objects Divide and conquer
to which a radio button belongs. The optionPanel is a GUI compo-
nent (a JPanel) that contains the button within the visual interface. Its
role is to help manage the graphical aspects of the button’s behavior. The
ButtonGroup is just an Object, not a GUI component. Its task is to
monitor the button’s relationship to the other buttons in the group. Each
object has a clearly delineated task.

This division of labor is a key feature of object-oriented design. It is
clearly preferable to giving one object broad responsibilities. For example,
a less effective design might have given the task of managing a group of
buttons to the JPanel that contains them. However, this would lead to all
kinds of problems, not least of which is the fact that not everything in the
container belongs to the same button group. So a clear division of labor is
a much preferable design.

JAVA EFFECTIVE DESIGN Division of Labor. In good
object-oriented design, objects are specialists (experts) for very narrow,
clearly defined tasks. If there’s a new task that needs doing, design a
new object to do it.

13.8.2 Swing Borders
The Swing Border and BorderFactory classes can place borders
around virtually any GUI element. Using borders is an effective way to
make the grouping of components more apparent. Borders can have titles,
which enhance the GUI’s ability to guide and inform the user. They can
also have a wide range of styles and colors, thereby helping to improve
the GUI’s overall appearance.

A border occupies some space around the edge of a JComponent. For
the Acme Software Titles interface, we place titled borders around four of
the panels (Fig. 13.26). The border on the main panel serves to identify
the company again. The one around the button panel serves to group the

624 CHAPTER 13 • Graphical User Interfaces

two control buttons. The borders around both the checkbox and the radio
button menus help to set them apart from other elements of the display
and help identify the purpose of the buttons.

Attaching a titled border to a component—in this case to a JPanel—is
very simple. It takes one statement:� �

choicePanel . se tBorder (
BorderFactory . c r e a t e T i t l e d B o r d e r (” T i t l e s ”)) ;
 	

The setBorder() method is defined in JComponent, is inherited by all
Swing components, and takes a Border argument. In this case, we use
the BorderFactory class to create a border and assign it a title. There
are several versions of the static createTitledBorder() method. This
version lets us specify the border’s title. It uses default values for type
of border (etched), the title’s position (sitting on the top line), justification
(left), and for font’s type and color.

As you would expect, the Border and BorderFactory classes con-
tain methods that let you exert significant control over the border’s look
and feel. You can even design and create your own custom borders.

13.8.3 The BoxLayout Manager
Another type of layout to use is the BoxLayout. This can be associated
with any container, and it comes as the default with the Swing Box con-
tainer. We use it in this example to arrange the checkboxes and radio
buttons (Fig. 13.25).

A BoxLayout is like a one-dimensional grid layout. It allows multi-
ple components to be arranged either vertically or horizontally in a row.
The layout will not wrap around, as does the FlowLayout. Unlike the
GridLayout, the BoxLayout does not force all its components to be
the same size. Instead, it tries to use each component’s preferred width
(or height) in arranging them horizontally (or vertically). (Every Swing
component has a preferred size that is used by the various layout man-
agers in determining the component’s actual size in the interface.) The
BoxLayout manager also tries to align its components’ heights (for hori-
zontal layouts) or widths (for vertical layouts).

Once again, to set the layout manager for a container you use the
setLayout() method:� �

choicePanel . setLayout (new
BoxLayout (choicePanel , BoxLayout . Y AXIS)) ;
 	

The BoxLayout() constructor has two parameters. The first is a refer-
ence to the container that’s being managed, and the second is a constant
that determines whether horizontal (x-axis) or vertical (y-axis) alignment
is used.

One nice feature of the BoxLayout is that it can be used in combina-
tions to imitate the look of the very complicated GridBoxLayout. For
example, Figure 13.28 shows an example with two panels (Panel1 and
Panel2) arranged horizontally within an outer box (Panel0), each con-
taining four components arranged vertically. The three panels all use the

Panel0

Panel1

C1

C2

C3

C4

Panel2

C5

C6

C7

C8

Figure 13.28: Complex layouts
can be achieved by nesting con-
tainers that use the BoxLayout.

BoxLayout.

SECTION 13.8 • Checkboxes, Radio Buttons, and Borders 625

13.8.4 The ItemListener Interface
In this section, we will describe how to handle menu selections. When-
ever the user makes a menu selection, or clicks a check box or radio
button, an ItemEvent is generated. ItemEvents are associated with
items that make up menus, including JPopupMenus, JCheckboxes,
JRadioButtons, and other types of menus. Item events are handled
by the ItemListener interface, which consists of a single method, the
itemStateChanged() method:� �

public void itemStateChanged (ItemEvent e) {
display . s e t T e x t (”Your order so f a r (Payment by : ”) ;
for (i n t k = 0 ; k < options . length ; k++)

i f (opt ions [k] . i s S e l e c t e d ())
display . append (opt ions [k] . getText () + ”)\n”) ;

for (i n t k = 0 ; k < t i t l e s . length ; k++)
i f (t i t l e s [k] . i s S e l e c t e d ())

display . append (”\ t ” + t i t l e s [k] . getText () + ”\n”) ;
} // i t e m S t a t e C h a n g e d ()
 	

This version of the method handles item changes for both the checkbox
menu and the radio buttons menu. The code uses two consecutive for
loops. The first iterates through the options menu (radio buttons) to
determine what payment option the user has selected. Since only one
option can be selected, only one title will be appended to the display. The
second loop iterates through the titles menu (checkboxes) and appends
each title the user selected to the display. This way the complete status
of the user’s order is displayed after every selection. The isSelected()
method is used to determine if a checkbox or radio button is selected or
not.

In this example, we have no real need to identify the item that caused
the event. No matter what item the user selected, we want to display
the entire state of the order. However, like the ActionEvent class, the
ItemEvent class contains methods that can retrieve the item that caused
the event:� �

getItem () ; // R e t u r n s a menu i t e m w i t h i n a menu
 	
The getItem() method is the ItemListener’s analogue to the
ActionEvent’s getSource() method. It enables you to obtain the ob-
ject that generated the event but returns a representation of the item that
was selected or deselected.

13.8.5 The OrderApplet
The design of the OrderApplet is summarized in Figure 13.29 and its
complete implementation is given in Figure 13.30. There are several im-
portant points to make about this program. First, five JPanels are used to
organize the components into logical and visual groupings. This conforms
to the design shown in Figure 13.25.

JApplet

«interface»

ItemListener

+actionPerformed()

«interface»

ActionListener

+init()

-initChoices()

-initOptions()

+actionPerformed(in e : ActionEvent)

+itemStateChanged(in e : ItemEvent)

-NTITLES : int

-NOPTIONS : int

-mainPanel : JPanel

-centerPanel : JPanel

-choicePanel : JPanel

-optionPanel : JPanel

-buttonPanel : JPanel

-optGroup : ButtonGroup

-titles[] : JCheckBox

-options[] : JRadioButton

-titleLabels[] : String

-optionLabels[] : String

-display : JTextArea

-submit : JButton

-cancel : JButton

OrderApplet

+itemStateChanged()

Figure 13.29: The OrderApplet
makes extensive use of GUI com-
ponents.

Second, note the use of titled borders around the four internal panels.
These help reinforce that the components within the border are related by
function.

626 CHAPTER 13 • Graphical User Interfaces

� �
import j avax . swing . ∗ ;
import j avax . swing . border . ∗ ;
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s OrderApplet extends JApplet
implements I temListener , Act ionLis tener {

private f i n a l i n t NTITLES = 3 , NOPTIONS = 3 ;
private JPanel mainPanel = new JPanel () ,

centerPanel = new JPanel () ,
choicePanel = new JPanel () ,
optionPanel = new JPanel () ,
buttonPanel = new JPanel () ;

private ButtonGroup optGroup = new ButtonGroup () ;
private JCheckBox t i t l e s [] = new JCheckBox [NTITLES] ;
private JRadioButton options [] = new JRadioButton [NOPTIONS] ;
private S t r i n g t i t l e L a b e l s [] =
{”Chess Master − $59 . 9 5 ” , ” Checkers Pro − $39 . 9 5 ” ,

”Crossword Maker − $19 . 9 5 ” } ;
private S t r i n g opt ionLabels [] = {” Credi t Card” ,

” Debit Card” , ”E−cash ” } ;
private JTextArea display = new JTextArea (7 , 2 5) ;
private JButton submit = new JButton (”Submit Order”) ,

cance l = new JButton (” Cancel ”) ;

public void i n i t () {
mainPanel . setBorder (BorderFactory . c r e a t e T i t l e d B o r d e r (

”Acme Software T i t l e s ”)) ;
mainPanel . setLayout (new GridLayout (3 , 1 , 1 , 1)) ;
cance l . addActionListener (t h i s) ;
submit . addActionListener (t h i s) ;
i n i t C h o i c e s () ;
i n i t O p t i o n s () ;
buttonPanel . se tBorder (BorderFactory . c r e a t e T i t l e d B o r d e r (

”Order Today”)) ;
buttonPanel . add (cance l) ;
buttonPanel . add (submit) ;
centerPanel . add (choicePanel) ;
centerPanel . add (optionPanel) ;

mainPanel . add (display) ;
mainPanel . add (centerPanel) ;
mainPanel . add (buttonPanel) ;
getContentPane () . add (mainPanel) ;
s e t S i z e (4 0 0 , 4 0 0) ;

} // i n i t ()
 	
Figure 13.30: The OrderApplet class, Part I.

SECTION 13.8 • Checkboxes, Radio Buttons, and Borders 627� �
private void i n i t C h o i c e s () {

choicePanel . se tBorder (
BorderFactory . c r e a t e T i t l e d B o r d e r (” T i t l e s ”)) ;

choicePanel . setLayout (
new BoxLayout (choicePanel , BoxLayout . Y AXIS)) ;

for (i n t k = 0 ; k < t i t l e s . length ; k++) {
t i t l e s [k] = new JCheckBox (t i t l e L a b e l s [k]) ;
t i t l e s [k] . addItemListener (t h i s) ;
choicePanel . add (t i t l e s [k]) ;

}
} // i n i t C h o i c e s ()

private void i n i t O p t i o n s () {
optionPanel . se tBorder (

BorderFactory . c r e a t e T i t l e d B o r d e r (”Payment By”)) ;
optionPanel . setLayout (

new BoxLayout (optionPanel , BoxLayout . Y AXIS)) ;
for (i n t k = 0 ; k < options . length ; k++) {

options [k] = new JRadioButton (opt ionLabels [k]) ;
opt ions [k] . addItemListener (t h i s) ;
optionPanel . add (opt ions [k]) ;
optGroup . add (opt ions [k]) ;

}
options [0] . s e t S e l e c t e d (t rue) ;

} // i n i t O p t i o n s ()

public void itemStateChanged (ItemEvent e) {
display . s e t T e x t (”Your order so f a r (Payment by : ”) ;
for (i n t k = 0 ; k < options . length ; k++)

i f (opt ions [k] . i s S e l e c t e d ())
display . append (opt ions [k] . getText () + ”)\n”) ;

for (i n t k = 0 ; k < t i t l e s . length ; k++)
i f (t i t l e s [k] . i s S e l e c t e d ())

display . append (”\ t ” + t i t l e s [k] . getText () + ”\n”) ;
} // i t e m S t a t e C h a n g e d ()

public void actionPerformed (ActionEvent e){
S t r i n g label = submit . getText () ;
i f (e . getSource () == submit) {

i f (label . equals (”Submit Order”)) {
display . append (
”Thank you . Press ’ Confirm ’ to submit your order !\n”) ;
submit . s e t T e x t (”Confirm Order”) ;

} e lse {
display . append (

”Thank you . You w i l l r e c e i v e your order tomorrow !\n”) ;
submit . s e t T e x t (”Submit Order”) ;

}
} e lse

display . s e t T e x t (
”Thank you . Maybe we can serve you next time !\n”) ;

} // a c t i o n P e r f o r m e d ()

} // O r d e r A p p l e t
 	
Figure 13.30: (continued) The OrderApplet class, Part II.

628 CHAPTER 13 • Graphical User Interfaces

The applet init() method is used to initialize the interface. This in-
volves setting the layouts for the various containers and filling the con-
tainers with their components. Because their initializations are relatively
long, the checkboxes and radio buttons are initialized in separate meth-
ods, the initChoices() and initOptions() methods, respectively.

Finally, note how the actionPerformed() method creates a mock
order form in the display area. This allows the user to review the order
before it is submitted. Also note that the algorithm used for submittal
requires the user to confirm an order before it is actually submitted. The
first time the user clicks the Submit button, the button’s label is changed
to, “Confirm Order,” and the user is prompted in the display area to click
the Confirm button to submit the order. This design allows the interface
to catch inadvertent button clicks.

A user interface should anticipate errors by the user. When a program
involves an action that can’t be undone—such as placing an order—the
program should make sure the user really wants to take the action before
carrying it out.

JAVA EFFECTIVE DESIGN Anticipate the User. A well-designed
interface should make it difficult for the user to make errors and
should make it easy to recover from mistakes when they do happen.

SELF-STUDY EXERCISE

EXERCISE 13.8 What’s your favorite interface horror story? How
would you have remedied the problem? The interface needn’t be a com-
puter interface.

SECTION 13.9 • Menus and Scroll Panes 629

13.9 Menus and Scroll Panes

Pop-up and pull-down menus allow an application or applet to grow in
complexity and functionality without cluttering its interface. Menus are
hierarchical in nature. A particular menu is divided into a number of
menu items, which can themselves be further subdivided. Java makes
it simple to implement menus.

A JMenuBar is an implementation of a menu bar—a horizontal list of
names that appears at the top of a window (Fig. 13.31).

This is a simple text editor writtin in Swing.

All it d te.cut and paste.cut ar

d paste

Simple Text Editor

Menubar

MenuItem

Menu

Separator

Cut

Copy

Paste

Select All

Recent Cuts

File Edit

simple text editor

cut and paste Submenu

Figure 13.31: An application with
a menu bar that is showing its edit
menu. The edit menu contains a
cascading drop-down menu that
can show recent cuts.

Almost all applications have a menu bar. To construct a menu, you add
JMenu objects to a JMenuBar. A JMenu is essentially a clickable area on
a menu bar that is associated with a JPopupMenu, a small window that
pops up and displays the menu’s JMenuItems. A menu can also contain
JSeparators, which are dividers that can be placed between menu items
to organize them into logical groupings.

13.9.1 Adding a Menu Bar to an Application
It is easy to create menus in Swing. The process involves three steps,
although you needn’t perform them in this order:

1. Create the individual JMenuItems.
2. Create a JMenu and add the JMenuItems to it.
3. Create a JMenuBar and add the JMenus to it.

For example, suppose you’re building the interface for a text editor. A
text editor typically contains at least two standard menus. The file menu is
used to create new documents, open and close files, save your document,
and so on. The edit menu is used to cut and paste selected text from the
document.

Here’s how you would create the file menu for this program. First, you
create a menu bar and make it the menu bar for the application’s JFrame
or for the JApplet. This is usually done in the application’s constructor
or in the applet’s init() method:� �

JMenuBar mBar = new JMenuBar () ; // C r e a t e menu b a r

t h i s . setMenuBar (mBar) ; // Add i t t o t h i s w i n d o w
 	
The next step involves creating and adding menus and menu items to
the menu bar. This is also usually done in the constructor or the init()

630 CHAPTER 13 • Graphical User Interfaces

method. If the menu is large, you should break this task into subtasks and
define a method for each subtask.

JAVA EFFECTIVE DESIGN Method Size. A method that gets longer
than 20 to 25 lines is probably trying to do too much and should be
divided into separate methods, each with a clearly defined task.

Here’s the definition of the file menu for our simple text editor:� �
private void in i tF i leMenu () {

fileMenu = new JMenu (” F i l e ”) ; // C r e a t e menu

mBar . add (fileMenu) ; // Add i t t o menu b a r

openItem = new JMenuItem (”Open”) ; // O p e n i t e m

openItem . addActionListener (t h i s) ;
openItem . setEnabled (f a l s e) ;
fi leMenu . add (openItem) ;

saveItem = new JMenuItem (”Save”) ; // S a v e i t e m

saveItem . addActionListener (t h i s) ;
saveItem . setEnabled (f a l s e) ;
fi leMenu . add (saveItem) ;
fileMenu . addSeparator () ; // L o g i c a l s e p a r a t o r

quit I tem = new JMenuItem (” Quit ”) ; // Q u i t i t e m

quit I tem . addActionListener (t h i s) ;
fi leMenu . add (quit I tem) ;

} // i n i t F i l e M e n u ()
 	
The first two statements in the method create the file menu and add it
to the menu bar. The rest of the statements create the individual menu
items that make up the file menu. Note the use of a separator item after the
save item. This has the effect of grouping the file-handling items (open
and save) into one logical category and distinguishing them from the quit
item. A separator is represented as a line in the menu (Fig. 13.31).

JAVA EFFECTIVE DESIGN Logical Design. In designing interfaces,
an effort should be made to use visual cues, such as menu item
separators and borders, to group items that are logically related. This
will help to orient the user.

Note that each menu item is given an ActionListener. As we’ll see
shortly, action events for menu items are handled the same way as action
events for buttons. Finally, note how the setEnabled() method is used
to disable both the open and save menu items. Implementation of these
actions is left as an exercise.

13.9.2 Menu Hierarchies
Menus can be added to other menus to create a hierarchy. For example,
the edit menu will include the standard cut, copy, and paste menu items.
Some edit menus also contain an “Undo” item, which can be used to undo

SECTION 13.9 • Menus and Scroll Panes 631

the last editing operation that was performed. In other words, if you cut
a piece of text, you can undo that operation and get that cut back. Many
editors seem to allow just a single undo. If you cut two pieces of text, the
first piece is lost to the user to undo. This can be an issue, especially if you
didn’t mean to do the first cut.

To help remedy this type of situation, let’s add a feature to our editor
that will keep track of cuts by storing them in a Vector. This function
will be like an “Unlimited Undo” operation for cuts. For this example,
we won’t place any limit on the size of the vector. Every cut the user
makes will be inserted at the beginning of the vector. To go along with this
feature we need a menu that can grow dynamically during the program.
Each time the user makes a cut, the string that was cut will be added to
the menu.

This kind of menu should occur within the edit menu, but it will have
its own items. This is a menu within a menu (Fig. 13.31), an example of
a cascading drop-down menu. The edit menu itself drops down from the
menu bar, and the recent cuts menu drops down and to the right of where
its arrow points. The following method was used to create the edit menu:� �

private void initEditMenu () {
editMenu = new JMenu (” Edit ”) ; // C r e a t e e d i t menu

mBar . add (editMenu) ; // Add t o menu b a r

cutItem = new JMenuItem (”Cut”) ; // C u t i t e m

cutItem . addActionListener (t h i s) ;
editMenu . add (cutItem) ;
copyItem = new JMenuItem (”Copy”) ; // C o p y i t e m

copyItem . addActionListener (t h i s) ;
editMenu . add (copyItem) ;
pasteItem = new JMenuItem (” Paste ”) ; // P a s t e i t e m

pasteItem . addActionListener (t h i s) ;
editMenu . add (pasteItem) ;
editMenu . addSeparator () ;
s e l e c t I t e m = new JMenuItem (” S e l e c t Al l ”) ; // S e l e c t

s e l e c t I t e m . addActionListener (t h i s) ;
editMenu . add (s e l e c t I t e m) ;
editMenu . addSeparator () ;
cutsMenu = new JMenu (” Recent Cuts”) ; // C u t s s u b m e n u

editMenu . add (cutsMenu) ;
} // i n i t E d i t M e n u ()
 	

The main difference between this method and the one used to create the
file menu is that here we insert an entire submenu as one of the items in
the edit menu. The cutsMenu will be used to hold the strings that are cut
from the document. Initially, it will be empty.

13.9.3 Handling Menu Actions

Handling JMenuItem actions is no different from handling JButton
actions. Whenever a user makes a menu selection, an ActionEvent
is generated. Programs that use menus must implement the action-
Performed() method of the ActionListener interface. In the text ed-
itor example, there are a total of six enabled menu items, including the

632 CHAPTER 13 • Graphical User Interfaces

recent cuts menu. This translates into a large if-else structure, with each
clause handling a single menu item.

The following actionPerformed() method is used to handle the
menu selections for the text editor:� �

public void actionPerformed (ActionEvent e) {
JMenuItem m = (JMenuItem) e . getSource () ; // G e t s e l e c t e d menu i t e m

i f (m == quit I tem) { // Q u i t

dispose () ; }
} e lse i f (m == cutItem) { // C u t t h e s e l e c t e d t e x t

scratchPad = display . g e t S e l e c t e d T e x t () ; // C o p y t e x t t o s c r a t c h p a d

display . replaceRange (”” , // a n d d e l e t e

display . g e t S e l e c t i o n S t a r t () , // f r o m t h e s t a r t o f s e l e c t i o n

display . getSe lec t ionEnd ()) ; // t o t h e e n d

addRecentCut (scratchPad) ; // Add t e x t t o t h e c u t s menu

} e lse i f (m == copyItem) // C o p y t e x t t o s c r a t c h p a d

scratchPad = display . g e t S e l e c t e d T e x t () ;
} e lse i f (m == pasteItem) { // P a s t e s c r a t c h p a d t o d o c u m e n t a t c a r e t

display . i n s e r t (scratchPad , display . g e t C a r e t P o s i t i o n ()) ; // p o s i t i o n

} e lse i f (m == s e l e c t I t e m) {
display . s e l e c t A l l () ; // S e l e c t t h e e n t i r e d o c u m e n t

} e lse {
JMenuItem item = (JMenuItem) e . getSource () ; // D e f a u l t i s c u t s M e n u

scratchPad = item . getActionCommand () ; // P u t c u t b a c k i n s c r a t c h p a d

}
} // a c t i o n P e r f o r m e d ()
 	

The method begins by getting the source of the ActionEvent and cast-
ing it into a JMenuItem. It then checks each case of the if-else structure.
Because the actions taken by this program are fairly short, they are mostly
coded within the actionPerformed()method itself. However, for most
programs it will be necessary to write a separate method corresponding to
each menu item and then call the methods from actionPerformed().

Our text editor’s main task is to implement the cut/copy/paste func-
tions, which are simple to do in Java. The text that’s being edited is stored
in a JTextArea, which contains instance methods that make it very easy
to select, insert, and replace text. To copy a piece of text, the program
need only get the text from the JTextArea (getSelectedText()) and
assign it to the scratchpad, which is represented as a String. To paste
a piece of text, the program inserts the contents of the scratchpad into
the JTextArea at the location marked by the caret, a cursor-like character
in the document that marks the next insertion point.

The structure of this if-else statement is significant. Note how the de-
fault case of the if-else is designed. We are using the last else clause as a
“catch all” condition to catch and handle selections from the cutsMenu.
All of the other menu items can be referred to by name. However, the
menu items in the cutsMenu are just snippets of a string that the user has
previously cut from the text, so they can’t be referenced by name. Luckily,Default logic
we don’t really need to. For any JMenuItem, the getActionCommand()

SECTION 13.9 • Menus and Scroll Panes 633

method returns its text, which in this case is the previously cut text. So we
just assign the cut text from the menu to the scratchpad.

JAVA PROGRAMMING TIP Default Cases. Although the order of
the clauses in an if-else structure is usually not important, the default
clause can sometimes be used to handle cases that can’t be referenced
by name.

Handling Previously Cut Text

The most difficult function in our program is the cut operation. Not only
must the selected text be removed from the document and stored in the
scratchpad, but it must also be inserted into the vector that is storing
all the previous cuts. The addRecentCut() method takes care of this
last task. The basic idea here is to take the cut string and insert it at the Algorithm design
beginning of the vector, so that cuts will be maintained in a last-in–first-
out order. Then the cutsMenu must be completely rebuilt by reading its
entries out of the vector, from first to last. That way the most recent cut
will appear first in the menu:� �

private void addRecentCut (S t r i n g cut) {
recentCuts . insertElementAt (cut , 0) ;
cutsMenu . removeAll () ;
for (i n t k = 0 ; k < recentCuts . s i z e () ; k++) {

JMenuItem item =
new JMenuItem ((S t r i n g) recentCuts . elementAt (k)) ;

cutsMenu . add (item) ;
item . addActionListener (t h i s) ;

}
} // a d d R e c e n t C u t ()
 	

The recentCuts Vector stores the cut strings. Note the use of the
insertElementAt() method to insert strings into the vector and the
elementAt() method to get strings from the vector. (You may find it
helpful to review the section on vectors in Chapter 9.)

Note also how menu items are removed and inserted in menus. The
cutsMenu is reinitialized, using the removeAll() method. Then the for
loop iterates through the strings stored in the vector, making new menu
items from them, which are then inserted into the cutsMenu. In this way,

JFrame

+SimpleTextEditor()

-initEditMenu()

-initFileMenu()

-addRecentCut(in s : String)

+actionPerformed(in e : ActionEvent)

+main()

-mBar : JMenuBar

-fileMenu : JMenu

-editMenu : JMenu

-cutsMenu : JMenu

-cutItem : JMenuItem

-copyItem : JMenuItem

-pasteItem : JMenuItem

-selectItem : JMenuItem

-recentCutItem : JMenuItem

-quitItem : JMenuItem

-openItem : JMenuItem

-saveItem : JMenuItem

-display : JTextArea

-scratchPad : String

-recentCuts : Vector

SimpleTextEditor

+actionPerformed(in e : ActionEvent)

«interface»

ActionListener

Figure 13.32: Design of the
SimpleTextEditor.

the cutsMenu is changed dynamically each time the user cuts a piece of
text from the document.

13.9.4 Adding Scrollbars to a Text Area

The design of the SimpleTextEditor class is summarized in Fig-
ure 13.32 and its complete implementation is shown in Figure 13.33.

634 CHAPTER 13 • Graphical User Interfaces� �
import j avax . swing . ∗ ;
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;
import j ava . u t i l . Vector ;

public c l a s s SimpleTextEditor extends JFrame implements Act ionLis tener {
private JMenuBar mBar = new JMenuBar () ; // C r e a t e t h e menu b a r

private JMenu fileMenu , editMenu , cutsMenu ; // Menu r e f e r e n c e s a n d i t e m s

private JMenuItem cutItem , copyItem , pasteItem , s e l e c t I t e m , recentcut I tem ;
private JMenuItem quitItem , openItem , saveItem ; // F i l e i t e m s

private JTextArea display = new JTextArea () ; // H e r e ’ s w h e r e t h e e d i t i n g o c c u r s

private S t r i n g scratchPad = ”” ; // S c r a t c h p a d f o r c u t / p a s t e

private Vector recentCuts = new Vector () ;

public SimpleTextEditor () {
super (” Simple Text Edi tor ”) ; // S e t t h e w i n d o w t i t l e

t h i s . getContentPane () . setLayout (new BorderLayout ()) ;
t h i s . getContentPane () . add (” Center ” , display) ;
t h i s . getContentPane () . add (new J S c r o l l P a n e (display)) ;
d isplay . setLineWrap (t rue) ;
t h i s . setJMenuBar (mBar) ; // S e t t h i s p r o g r a m ’ s menu b a r

in i tF i leMenu () ; // C r e a t e t h e m e n u s

initEditMenu () ;
} // S i m p l e T e x t E d i t e r ()

private void initEditMenu () {
editMenu = new JMenu (” Edit ”) ; // C r e a t e t h e e d i t menu

mBar . add (editMenu) ; // a n d a d d i t t o menu b a r

cutItem = new JMenuItem (”Cut”) ; // C u t i t e m

cutItem . addActionListener (t h i s) ;
editMenu . add (cutItem) ;
copyItem = new JMenuItem (”Copy”) ; // C o p y i t e m

copyItem . addActionListener (t h i s) ;
editMenu . add (copyItem) ;
pasteItem = new JMenuItem (” Paste ”) ; // P a s t e i t e m

pasteItem . addActionListener (t h i s) ;
editMenu . add (pasteItem) ;
editMenu . addSeparator () ;
s e l e c t I t e m = new JMenuItem (” S e l e c t Al l ”) ; // S e l e c t i t e m

s e l e c t I t e m . addActionListener (t h i s) ;
editMenu . add (s e l e c t I t e m) ;
editMenu . addSeparator () ;
cutsMenu = new JMenu (” Recent Cuts”) ; // R e c e n t c u t s s u b m e n u

editMenu . add (cutsMenu) ;
} // i n i t E d i t M e n u ()

private void in i tF i leMenu () {
fileMenu = new JMenu (” F i l e ”) ; // C r e a t e t h e f i l e menu

mBar . add (fileMenu) ; // a n d a d d i t t o t h e menu b a r

openItem = new JMenuItem (”Open”) ; // O p e n i t e m

openItem . addActionListener (t h i s) ;
openItem . setEnabled (f a l s e) ;
fi leMenu . add (openItem) ;
saveItem = new JMenuItem (”Save”) ; // S a v e i t e m
 	

Figure 13.33: A menu-based SimpleTextEditor application, Part I.

SECTION 13.9 • Menus and Scroll Panes 635� �
saveItem . addActionListener (t h i s) ;
saveItem . setEnabled (f a l s e) ;
fi leMenu . add (saveItem) ;
fileMenu . addSeparator () ; // L o g i c a l s e p a r a t o r

quit I tem = new JMenuItem (” Quit ”) ; // Q u i t i t e m

quit I tem . addActionListener (t h i s) ;
fi leMenu . add (quit I tem) ;

} // i n i t F i l e M e n u ()

public void actionPerformed (ActionEvent e) {
JMenuItem m = (JMenuItem) e . getSource () ; // G e t s e l e c t e d menu i t e m

i f (m == quit I tem) { // Q u i t

dispose () ;
} e lse i f (m == cutItem) { // C u t t h e s e l e c t e d t e x t

scratchPad = display . g e t S e l e c t e d T e x t () ; // C o p y t e x t t o s c r a t c h p a d

display . replaceRange (”” , // a n d d e l e t e

display . g e t S e l e c t i o n S t a r t () , // f r o m t h e s t a r t o f t h e s e l e c t i o n

display . getSe lec t ionEnd ()) ; // t o t h e e n d

addRecentCut (scratchPad) ; // Add t h e c u t t e x t t o t h e c u t s menu

} e lse i f (m == copyItem) { // C o p y t h e s e l e c t e d t e x t t o t h e s c r a t c h p a d

scratchPad = display . g e t S e l e c t e d T e x t () ;
} e lse i f (m == pasteItem) { // P a s t e t h e s c r a t c h p a d t o t h e d o c u m e n t a t c a r e t

display . i n s e r t (scratchPad , display . g e t C a r e t P o s i t i o n ()) ; // p o s i t i o n

} e lse i f (m == s e l e c t I t e m) {
display . s e l e c t A l l () ; // S e l e c t t h e e n t i r e d o c u m e n t

} e lse {
JMenuItem item = (JMenuItem) e . getSource () ; // D e f a u l t i s c u t s M e n u

scratchPad = item . getActionCommand () ; // P u t c u t b a c k i n t h e s c r a t c h p a d

}
} // a c t i o n P e r f o r m e d ()

private void addRecentCut (S t r i n g cut) {
recentCuts . insertElementAt (cut , 0) ;
cutsMenu . removeAll () ;
for (i n t k = 0 ; k < recentCuts . s i z e () ; k++) {

JMenuItem item =
new JMenuItem ((S t r i n g) recentCuts . elementAt (k)) ;

cutsMenu . add (item) ;
item . addActionListener (t h i s) ;

}
} // a d d R e c e n t C u t ()

public s t a t i c void main (S t r i n g args []) {
SimpleTextEditor f = new SimpleTextEditor () ;
f . s e t S i z e (3 0 0 , 2 0 0) ;
f . s e t V i s i b l e (t rue) ;
f . addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent e) {
System . e x i t (0) ; // Q u i t t h e a p p l i c a t i o n

}
}) ;

} // m a i n ()

} // S i m p l e T e x t E d i t o r
 	
Figure 13.33: (continued) The SimpleTextEditor, Part II.

636 CHAPTER 13 • Graphical User Interfaces

It uses a BorderLayout, with the JTextArea placed at the center. Note
how simple it is to add scrollbars to the text area:Scrollbars � �

t h i s . getContentPane () . add (new J S c r o l l P a n e (display)) ;
 	
This statement creates a JScrollPane and adds it to the application’s
container. A JScrollPane is one of Swing’s scrollbar classes. Its function
is to manage the viewing and scrolling of a scrollable component, such as
a JTextArea. A JScrollPane is actually a container, which is why it
takes the display as an argument. The display is being added to the
JScrollPane.

Just about any Component can be added to a JScrollPane. Once a
component is added, the scroll pane will manage the scrolling functions
for the component. The default constructor used in this example takes a
single Component parameter. This refers to the scrollable component, in
this case to the JTextArea. Another constructor that you might use takes
the following form:� �

public J S c r o l l P a n e (Component comp , i n t vsbPolicy ,
i n t hsbPol icy) ;
 	

The two integers refer to the vertical and horizontal scrolling policies.
These cover properties such as whether the scrollbars are always present
or just as needed. The default policy is to attach scrollbars to the compo-
nent only when needed. Thus, to see the scrollbars in the SimpleText
Editor, you would have to shrink the window to the point where all of
the text cannot be viewed (Fig. 13.34). Because the text area in this example
is wrapping the text, the horizontal scrollbar will never be needed.

Figure 13.34: The scrollbars ap-
pear on the text area only when
they are needed. In this case, only
a vertical scrollbar is necessary.

SELF-STUDY EXERCISES
EXERCISE 13.9 Modify the addRecentCut() method so it limits the

cuts stored in the vector to the last ten cuts.

EXERCISE 13.10 Modify the addRecentCut() method so that it
doesn’t duplicate cuts already stored in the vector. (Hint: Use the
indexOf(String) method in the Vector class.)

Special Topic: Are Computers Intelligent?

Contemporary computer interfaces are largely visual and graphical, and
many things we use a computer for, such as word processing, still require
us to type. Will there come a day when instead of typing a letter or e-
mail message, we’ll be able to dictate it to our computer? Will comput-
ers eventually have the same kind of interface we have—that is, will we
someday be able to carry on conversations with our computers? Clearly,
a “conversational interface” would require substantial intelligence on the
part of the computer. Do computers have any chance of acquiring such
intelligence?

The question of machine intelligence or artificial intelligence (AI) has

SECTION 13.9 • Menus and Scroll Panes 637

been the subject of controversy since the very first computers were de-
veloped. In 1950, in an article in the journal Mind, Alan Turing proposed
the following test to settle the question of whether computers could be in-
telligent. Suppose you put a person and a computer in another room, and
you let a human interrogate both with any kind of question whatsoever.
The interrogator could ask them to parse a Shakespearian sonnet, or solve
an arithmetic problem, or tell a joke. The computer’s task would be to
try to fool the interrogator into thinking that it was the human. And the
(hidden) human’s task would be to try to help the interrogator see that he
or she was the human.

Turing argued that someday computers would be able to play this
game so well that interrogators would have no better than a 50/50 chance
of telling which was which. When that day came, he argued, we would
have to conclude that computers were intelligent.

This so-called Turing test has been the subject of controversy ever since.
Many of the founders of AI and many of its current practitioners believe
that computation and human thinking are basically the same kind of pro-
cess and that eventually computers will develop enough capability that
we’ll have to call them intelligent. Skeptics argue that even if computers
could mimic our intelligence, there’s no way they will be self-conscious
and, therefore, they can never be truly intelligent. According to the skep-
tics, merely executing programs, no matter how clever the programs are,
will never add up to intelligence.

Computers have made some dramatic strides lately. In 1997, an IBM
computer named Deep Blue beat world chess champion Gary Kasparov
in a seven-game chess match. In 1998, a computer at Los Alamos National
Laboratory proved a mathematical theorem that some of the best mathe-
maticians were unable to prove for the past 40 years.

However, despite these achievements, most observers would agree that
computers are not yet capable of passing the Turing test. One area where
computers fall short is in natural language understanding. Although com-
puters are good at understanding Java and other computer languages,
human languages are still too complex and require too much common
sense knowledge for computers to understand them perfectly. Another
area where computers still fall somewhat short is in speech recognition.
However, an American company recently demonstrated a telephone that
could translate between English and German (as well as some other lan-
guages) in real time. The device’s only limitation was that its discourse
was limited to the travel domain. As computer processing speeds im-
prove, this limitation is expected to be only temporary. Thus, we may be
closer than we think to having our “conversational user interface.”

Natural language understanding, speech recognition, learning, percep-
tion, chess playing, and problem solving are the kinds of problems ad-
dressed in AI, one of the major applied areas of computer science. Almost
every major research group in AI has a Web site that describes its work.
To find some of these, just do a search for “artificial intelligence” and then
browse through the links that are returned.

638 CHAPTER 13 • Graphical User Interfaces

CHAPTER SUMMARY Technical Terms

adapter class
callback design
content pane
containment

hierarchy
controller
event model
inner class

layout manager
lightweight

component
listener
model
model-view-

controller
(MVC)

peer model
pluggable look and

feel
view
widget hierarchy

Summary of Important Points

• Java provides two sets of Graphical User Interface (GUI) components,
the Abstract Windowing Toolkit (AWT), which was part of Java 1.0 and
the Swing component set, the GUI part of the Java Foundation Classes
(JFC), introduced in JDK 1.1.
• Unlike their AWT counterparts, Swing components are written en-

tirely in Java. This allows programs written in Swing to have a
platform-independent look and feel. There are three built-in look-and-
feel packages in Swing: a Windows style, a Unix-like Motif style, and a
purely Java Metal style.
• Swing components are based on the model-view-controller (MVC) archi-

tecture, in which the component is divided into three separate objects:
how it looks (view), what state it’s in (model), and what it does (con-
troller). The view and controller parts are sometimes combined into a
single user interface class, which can be changed to create a customized
look and feel.
• AWT components are based on the peer model, in which every AWT

component has a peer in the native windowing system. This model is
less efficient and more platform dependent than the MVC model.
• Java’s event model is based on event listeners. When a GUI component is

created, it is registered with an appropriate event listener, which takes
responsibility for handling the component’s events.
• A user interface combines four functions: guidance/information for

the user, input, output, and control.
• Components in a GUI are organized into a containment hierarchy that

is rooted at the top-level window. JPanels and other Containers
can be used to organize the components into a hierarchy according to
function or some other criterion.
• The top-level Swing classes—JApplet, JDialog, JFrame, and
JWindow—use a content pane as their component container.
• A GUI should minimize the number of input devices the user needs

to manipulate, as well as the complexity the user needs to deal with.
Certain forms of redundancy—such as two independent but complete
sets of controls—are desirable because they make the interface more
flexible and more widely applicable.

CHAPTER 13 • Solutions to Self-Study Exercises 639

ModelController View
SetsStateN

DeterminesLookN

hasa

hasa hasa

Event

HandlesEventsN

JavaMethodCall

RespondsN

JButton

Figure 13.35: A JButton has
internal model-view-controller
components that interact with
each other to produce the button’s
overall behavior.

• A layout manager is an object that manages the size and arrangement of
the components in a container. The AWT and Swing provide a number
of built-in layouts, including flow, border, grid, and box layouts.
• A radio button is a toggle button that belongs to a group in which only

one button from the group may be selected at the same time. A checkbox
is a toggle button that always displays its state.
• A well-designed interface should reduce the chance of user error and

should make it as easy as possible to recover from errors when they do
occur.

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 13.1 How can a button still be considered a component under the
MVC model? This is a good question. The JButton class acts as a wrapper class
and hides the model-view-controller details (Fig. 13.35). When you instantiate a
JButton, you still get a single instance. Think of it this way: Your body consists of
several systems that interact (internally) among themselves, but it’s still one body
that other bodies interact with as a single object.

SOLUTION 13.2 A component can indeed be registered with more than one lis-
tener. For example, the ToggleButton that we defined in Chapter 4 has two
listeners. The first is the button itself, which takes care of toggling the button’s
label. The second is the frame in which the button is used, which takes care of
handling whatever action the button is associated with.

SOLUTION 13.3 Some components can have two different kinds of listeners.
For example, imagine a “sticky button” that works like this. When you click and
release the button, it causes some action to take place, just like a normal button.
When you click and hold the mouse button down, the button “sticks” to the cursor
and you can then move it to a new location. This button would need listeners for
ActionEvents, MouseEvents, and MouseMotionEvents.

SOLUTION 13.4 To round a double you could use the Math.round() method.
For example, suppose the number you want to round is d. Then the expression
Math.round(100 * d)/100.0will round to two decimal places. Alternatively,
you could use the java.text.NumberFormat class. Both of these approaches
were covered in Chapter 5.

SOLUTION 13.5 Many cars today have cruise control as a alternative way to
control the accelerator. Push buttons, usually located on the steering wheel, are
used to speed up and slow down, so you can drive with your foot or your hand.

640 CHAPTER 13 • Graphical User Interfaces

SOLUTION 13.6 As an alternative, a north-west-center border layout for the
top-level window in the Converter might work. So might center-south-east and
center-south-west. What makes these possible is the fact that the layout manager
will use up space in any edge area that is not assigned a component.

SOLUTION 13.7 A flow layout would not be appropriate for the control panel
because you would have little control of where the convert button would be
placed relative to the keypad.

SOLUTION 13.8 Interface design disaster: My car uses the same kind of on/off
switch for the headlights and the windshield wipers. One is a stem on the left side
of the steering wheel, and the other is on a stem on the right side of the steering
wheel. On more than one occasion, I’ve managed to turn off the headlights when
I intended to turn on the wipers.

SOLUTION 13.9 Modify the addRecentCut() method so it limits the cuts
stored in the vector to the last ten cuts. Solution: Check the size of the vector
after inserting the cut. If it exceeds ten, remove the last element in the vector.� �
private void addRecentCut (S t r i n g cut) {

recentCuts . insertElementAt (cut , 0) ;
i f (recentCuts . s i z e () > 10) { // I f m o r e t h a n 1 0 c u t s

recentCuts . removeElementAt (1 0) ; // r e m o v e o l d e s t c u t

}
cutsMenu . removeAll () ;
for (i n t k = 0 ; k < recentCuts . s i z e () ; k++) {

JMenuItem item =
new JMenuItem ((S t r i n g) recentCuts . elementAt (k)) ;

cutsMenu . add (item) ;
item . addActionListener (t h i s) ;

}
} // a d d R e c e n t C u t ()
 	
SOLUTION 13.10 Modify the addRecentCut() method so that it doesn’t du-
plicate cuts stored in the vector. Solution: Use the indexOf() method to search
for the cut in the vector. If it’s already there, don’t insert the cut.� �
private void addRecentCut (S t r i n g cut) {

i f (recentCuts . indexOf (cut) == −1) {// I f n o t a l r e a d y c u t

recentCuts . insertElementAt (cut , 0) ;
i f (recentCuts . s i z e () > 10) { // I f m o r e t h a n 1 0 c u t s

recentCuts . removeElementAt (1 0) ; // r e m o v e o l d e s t

}
cutsMenu . removeAll () ;
for (i n t k = 0 ; k < recentCuts . s i z e () ; k++) {

JMenuItem item =
new JMenuItem ((S t r i n g) recentCuts . elementAt (k)) ;

cutsMenu . add (item) ;
item . addActionListener (t h i s) ;

}
} // i f n o t a l r e a d y c u t

} // a d d R e c e n t C u t ()
 	

CHAPTER 13 • Exercises 641

EXERCISESEXERCISE 13.1 Explain the difference between the following pairs of terms:

a. A model and a view.
b. A view and a controller.
c. A lightweight and heavyweight component.
d. A JButton and a Button.
e. A layout manager and a container.
f. A containment hierarchy and an inheritance hierarchy.
g. A content pane and a JFrame. Note: For programming exercises,

first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

EXERCISE 13.2 Fill in the blanks.

a. A GUI component that is written entirely in Java is known as a

component.

b. The AWT is not platform independent because it uses the model to

implement its GUI components.

c. The visual elements of a GUI are arranged in a .

d. A is an object that takes responsibility for arranging the components

in a container.

e. The default layout manager for a JPanel is .

f. The default layout manager for a JApplet is .

EXERCISE 13.3 Describe in general terms what you would have to do to change
the standard look and feel of a Swing JButton.

EXERCISE 13.4 Explain the differences between the model-view-controller de-
sign of a JButton and the design of an AWT Button. Why is MVC superior?

EXERCISE 13.5 Suppose you have a GUI that contains a JButton and a
JLabel. Each time the button is clicked, the GUI rearranges the letters in the
label. Using Java’s event model as a basis, explain the sequence of events that
happens in order for this action to take place.

EXERCISE 13.6 Draw a containment hierarchy for the most recent GUI version
of the OneRowNim program.

EXERCISE 13.7 Create a GUI design, similar to the one shown in Figure 13.25,
for a program that would be used to buy tickets online for a rock concert.

EXERCISE 13.8 Create a GUI design, similar to the one shown in Figure 13.25,
for an online program that would be used to play musical recordings.

EXERCISE 13.9 Design and implement a GUI for the CDInterest program
(Fig. 5.18). This program should let the user input the interest rate, principal, and
period and should accumulate the value of the investment.

EXERCISE 13.10 Design and implement a GUI for the Temperature class
(Fig. 5.5). One challenge of this design is to find a good way for the user to indicate
whether a Fahrenheit or Celsius value is being input. This should also determine
the order of the conversion: F to C or C to F.

EXERCISE 13.11 Design an interface for a 16-button integer calculator that sup-
ports addition, subtraction, multiplication, and division. Implement the interface
so that the label of the button is displayed in the calculator’s display—that is, it
doesn’t actually do the math.

642 CHAPTER 13 • Graphical User Interfaces

EXERCISE 13.12 Challenge: Design and implement a Calculator class to go
along with the interface you developed in the previous exercise. It should function
the same way as a hand calculator except it only handles integers.

EXERCISE 13.13 Modify the Converter application so that it can convert in
either direction: from miles to kilometers or from kilometers to miles. Use radio
buttons in your design to let the user select one or the other alternative.

EXERCISE 13.14 Here’s a design problem for you. A biologist needs an inter-
active program that calculates the average of some field data represented as real
numbers. Any real number could be a data value, so you can’t use a sentinel
value, such as 9999, to indicate the end of the input. Design and implement a
suitable interface for this problem.

EXERCISE 13.15 Challenge: A dialog box is a window associated with an ap-
plication that appears only when needed. Dialog boxes have many uses. An error
dialog is used to report an error message. A file dialog is used to help the user
search for and open a file. Creating a basic error dialog is very simple in Swing.
The JOptionPane class has class methods that can be used to create the kind
of dialog shown in Figure 13.36. Such a dialog box can be created with a single
statement:

Figure 13.36: A basic JOption-
Pane error dialog.

� �
JOptionPane . showMessageDialog (this ,

” Sorry , your number i s out of range . ”) ;
 	
Convert the Validate program (Fig. 6.12 from Chapter 6) to a GUI interface and
use the JOptionPane dialog to report errors.

EXERCISE 13.16 Challenge: Design and implement a version of the game Mem-
ory. In this game you are given a two-dimensional grid of boxes that contains pairs
of matching images or strings. The object is to find the matching pairs. When you
click a box, its contents are revealed. You then click another box. If its contents
match the first one, their contents are left visible. If not, the boxes are closed up
again. The user should be able to play multiple games without getting the same
arrangement every time.

EXERCISE 13.17 Challenge: Extend the SimpleTextEditor program by
adding methods to handle the opening, closing and saving of text files.

OBJECTIVES
After studying this chapter, you will

• Understand the concept of a thread.
• Know how to design and write multithreaded programs.
• Be able to use the Thread class and the Runnable interface.
• Understand the life cycle of a thread.
• Know how to synchronize threads.

OUTLINE
14.1 Introduction
14.2 What Is a Thread?
14.3 From the Java Library: java.lang.Thread
14.4 Thread States and Life Cycle
14.5 Using Threads to Improve Interface Responsiveness
14.6 Case Study: Cooperating Threads
14.7 Case Study: The Game of Pong

Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 14

Threads and Concurrent
Programming

643

644 CHAPTER 14 • Threads and Concurrent Programming

14.1 Introduction

This chapter is about doing more than one thing at a time. Doing more
than one thing at once is commonplace in our everyday lives. For exam-
ple, let’s say your breakfast today consists of cereal, toast, and a cup of
java. You have to do three things at once to have breakfast: eat cereal, eat
toast, and drink coffee.

Actually, you do these things “at the same time” by alternating among
them: You take a spoonful of cereal, then a bite of toast, and then sip some
coffee. Then you have another bite of toast, or another spoonful of cereal,
more coffee, and so on, until breakfast is finished. If the phone rings while
you’re having breakfast, you will probably answer it—and continue to
have breakfast, or at least to sip the coffee. This means you’re doing even
more “at the same time.” Everyday life is full of examples where we do
more than one task at the same time.

The computer programs we have written so far have performed one
task at a time. But there are plenty of applications where a program needs
to do several things at once, or concurrently. For example, if you wrote
an Internet chat program, it would let several users take part in a dis-
cussion group. The program would have to read messages from several
users at the same time and broadcast them to the other participants in
the group. The reading and broadcasting tasks would have to take place
concurrently. In Java, concurrent programming is handled by threads, the
topic of this chapter.

14.2 What Is a Thread?

A thread (or a thread of execution or a thread of control) is a single sequence of
executable statements within a program. For Java applications, the flow of
control begins at the first statement in main() and continues sequentially
through the program statements. For Java applets, the flow of control
begins with the first statement in init(). Loops within a program cause
a certain block of statements to be repeated. If-else structures cause certain
statements to be selected and others to be skipped. Method calls cause the
flow of execution to jump to another part of the program, from which it
returns after the method’s statements are executed. Thus, within a single
thread, you can trace the sequential flow of execution from one statement
to the next.

One way to visualize a thread is to imagine that you could make a listVisualizing a thread
of the program’s statements as they are executed by the computer’s cen-
tral processing unit (CPU). Thus, for a particular execution of a program
with loops, method calls, and selection statements, you could list each
instruction that was executed, beginning at the first, and continuing until
the program stopped, as a single sequence of executed statements. That’s
a thread!

Now imagine that we break a program up into two or more indepen-
dent threads. Each thread will have its own sequence of instructions.
Within a single thread, the statements are executed one after the other, as
usual. However, by alternately executing the statements from one thread
and another, the computer can run several threads concurrently. Even

SECTION 14.2 • What Is a Thread? 645

though the CPU executes one instruction at at time, it can run multiple
threads concurrently by rapidly alternating among them. The main ad-
vantage of concurrency is that it allows the computer to do more than
one task at a time. For example, the CPU could alternate between down-
loading an image from the Internet and running a spreadsheet calcula-
tion. This is the same way you ate toast and cereal and drank coffee in
our earlier breakfast example. From our perspective, it might look as if
the computer had several CPUs working in parallel, but that’s just the
illusion created by an effectively scheduling threads.

JAVA LANGUAGE RULE JVM Threads. The Java Virtual Machine
(JVM) is itself an example of a multithreaded program. JVM threads
perform tasks that are essential to the successful execution of Java
programs.

JAVA LANGUAGE RULE Garbage Collector Thread. One of the
JVM threads, the garbage collector thread, automatically reclaims mem-
ory taken up by objects that are not used in your programs. This
happens at the same time that the JVM is interpreting your program.

14.2.1 Concurrent Execution of Threads
The technique of concurrently executing several tasks within a program is Multitasking
known as multitasking. A task in this sense is a computer operation of
some sort, such as reading or saving a file, compiling a program, or dis-
playing an image on the screen. Multitasking requires the use of a separate
thread for each of the tasks. The methods available in the Java Thread
class make it possible (and quite simple) to implement multithreaded
programs.

Most computers, including personal computers, are sequential machines
that consist of a single CPU, which is capable of executing one machine in-
struction at a time. In contrast, parallel computers, used primarily for large
scale scientific and engineering applications, are made up of multiple
CPUs working in tandem.

Today’s personal computers, running at clock speeds over 1 gigahertz—
1 gigahertz equals 1 billion cycles per second—are capable of executing
millions of machine instructions per second. Despite its great speed,
however, a single CPU can process only one instruction at a time.

Each CPU uses a fetch-execute cycle to retrieve the next instruction
from memory and execute it. Since CPUs can execute only one instruc-
tion at a time, multithreaded programs are made possible by dividing
the CPU’s time and sharing it among the threads. The CPU’s schedule
is managed by a scheduling algorithm, which is an algorithm that sched-
ules threads for execution on the CPU. The choice of a scheduling algo-
rithm depends on the platform on which the program is running. Thus,
thread scheduling might be handled differently on Unix, Windows, and
Macintosh systems.

One common scheduling technique is known as time slicing, in which CPUs are sequential

646 CHAPTER 14 • Threads and Concurrent Programming
Figure 14.1: Each thread gets a
slice of the CPU’s time.

CPU time

Quantum

Thread 1

Thread 2

each thread alternatively gets a slice of the CPU’s time. For example, sup-
pose we have a program that consists of two threads. Using this tech-
nique, the system would give each thread a small quantum of CPU time—
say, one thousandth of a second (one millisecond)—to execute its instruc-
tions. When its quantum expires, the thread would be preempted and the
other thread would be given a chance to run. The algorithm would then
alternate in this round-robin fashion between one thread and the other
(Fig. 14.1). During each millisecond on a 300-megahertz CPU, a threadTime slicing
can execute 300,000 machine instructions. One megahertz equals 1 mil-
lion cycles per second. Thus, within each second of real time, each thread
will receive 500 time slices and will be able to execute something like 150
million machine instructions.

Under priority scheduling, threads of higher priority are allowed toPriority scheduling
run to completion before lower-priority threads are given a chance. An
example of a high-priority thread would be one that is processing key-
board input or any other kind of interactive input from the user. If such
tasks were given low priority, users would experience noticeable delays
in their interaction, which would be quite unacceptable.

The only way a high-priority thread can be preempted is if a thread
of still higher priority becomes available to run. In many cases, higher-
priority threads are those that can complete their task within a few mil-
liseconds, so they can be allowed to run to completion without starving
the lower-priority threads. An example would be processing a user’s
keystroke, a task that can begin as soon as the key is struck and can be
completed very quickly. Starvation occurs when one thread is repeatedly
preempted by other threads.

JAVA LANGUAGE RULE Thread Support. Depending on the hard-
ware platform, Java threads can be supported by assigning different
threads to different processors, by time slicing a single processor, or by
time slicing many hardware processors.

14.2.2 Multithreaded Numbers
Let’s consider a simple example of a threaded program. Suppose we give
every individual thread a unique ID number, and each time it runs, it
prints its ID ten times. For example, when the thread with ID 1 runs the
output produced would just be a sequence of ten 1’s: 1111111111.

As shown in Figure 14.2, the NumberThread class is defined
+NumberThread(in n : int)

+run()

NumberThread

+run()

Thread

Figure 14.2: The NumberThread
class overrides the inherited
run() method.

as a subclass of Thread and overrides the run() method. To set the
thread’s ID number, the constructor takes a single parameter that is used

SECTION 14.2 • What Is a Thread? 647

Creates

Creates

: Numbers

thread1 : NumberThread

thread2 : NumberThread

thread3 : NumberThread

sta
rt(

)

start()

start()

Creates

Figure 14.3: The Numbers ob-
ject creates several instances of
NumberThread and tells each
one to start().

to set the thread’s ID number. In the run() method, the thread simply
executes a loop that prints its own number ten times:� �

public c l a s s NumberThread extends Thread {
i n t num;

public NumberThread (i n t n) {
num = n ;

}
public void run () {

for (i n t k =0; k < 1 0 ; k++) {
System . out . p r i n t (num) ;

} // f o r

} // r u n ()

} // N u m b e r T h r e a d
 	
Thread subclass

Now let’s define another class whose task will be to create many
NumberThreads and get them all running at the same time (Fig. 14.3). For
each NumberThread, we want to call its constructor and then start()
it:� �

public c l a s s Numbers {
public s t a t i c void main (S t r i n g args []) {

// 5 t h r e a d s

NumberThread number1 , number2 , number3 , number4 , number5 ;

// C r e a t e a n d s t a r t e a c h t h r e a d

number1 = new NumberThread (1) ; number1 . s t a r t () ;
number2 = new NumberThread (2) ; number2 . s t a r t () ;
number3 = new NumberThread (3) ; number3 . s t a r t () ;
number4 = new NumberThread (4) ; number4 . s t a r t () ;
number5 = new NumberThread (5) ; number5 . s t a r t () ;

} // m a i n ()

} // N u m b e r s
 	
When a thread is started by calling its start() method, it automati-
cally calls its run() method. The output generated by this version of Starting a thread

648 CHAPTER 14 • Threads and Concurrent Programming

the Numbers application is as follows:� �
11111111112222222222333333333344444444445555555555
 	

From this output, it appears that the individual threads were run in the
order in which they were created. In this case, each thread was able to run
to completion before the next thread started running.

What if we increase the number of iterations that each thread per-
forms? Will each thread still run to completion? The following output
was generated for 200 iterations per thread:� �

111
111
112222222
222
222
223333333333333333333333333
333
33333333333333333333333333344
444
4444444444555
552222222
2222333
333333333333334444444444444444444444444444445555555555555555555555555
55444444444444444
4444444444444444444444444444444444
 	

In this case, only thread 1 managed to run to completion. Threads 2, 3,
4, and 5 did not. As this example illustrates, the order and timing of a
thread’s execution are highly unpredictable. This example also serves to
illustrate one way of creating a multithreaded program:

+Thread()

+Thread(in target : Runnable)

+Thread(in name : String)

+getName() : String

+getPriority() : int

+run()

+setName(in s : String)

+setPriority(in priority : int)

+start()

+stop()

Thread

+run()

«interface»

Runnable

Figure 14.4: The
java.lang.Thread class.
NOTE: NEEDS REVISION TO
ADD PRIORITY, YIELD() and
SLEEP().

• Create a subclass of the Thread class.
• Within the subclass, implement a method with the signature void
run() that contains the statements to be executed by that thread.
• Create several instances of the subclass and start each thread by invok-

ing the start() method on each instance.

JAVA LANGUAGE RULE Thread Creation. One way to create a
thread in Java is to define a subclass of Thread and override the default
run() method.

14.3 From the Java Library: java.lang.Thread

The java.lang.Thread class contains the public methods shown in Fig-
ure 14.4 (the figure contains only a partial list). Note that Thread im-
plements the Runnable interface, which consists simply of the run()
method. As we will now see, another way to create a thread is to instan-
tiate a Thread object and pass it a Runnable object that will become its
body. This approach allows you to turn an existing class into a separate
thread.

A Runnable object is any object that implements the Runnable
interface—that is, any object that implements the run() method

SECTION 14.3 • From the Java Library: java.lang.Thread 649

(Fig. 14.5). The following example provides an alternative way to imple-
ment the NumberThread program:

+NumberPrinter(in n : int)

+run()

-num : int

NumberPrinter

+run()

«interface»

Runnable

Figure 14.5: Any object that im-
plements the Runnable interface
can be run as a separate thread.

� �
public c l a s s NumberPrinter implements Runnable {

i n t num;

public NumberPrinter (i n t n) {
num = n ;

}

public void run () {
for (i n t k =0; k < 1 0 ; k++)

System . out . p r i n t (num) ;
} // r u n ()

} // N u m b e r P r i n t e r
 	
Given this definition, we would then pass instances of this class to the
individual threads as we create them:� �

public c l a s s Numbers {
public s t a t i c void main (S t r i n g args []) {

Thread number1 , number2 , number3 , number4 , number5 ;
// C r e a t e a n d s t a r t e a c h t h r e a d

number1 = new Thread (new NumberPrinter (1)) ; number1 . s t a r t () ;
number2 = new Thread (new NumberPrinter (2)) ; number2 . s t a r t () ;
number3 = new Thread (new NumberPrinter (3)) ; number3 . s t a r t () ;
number4 = new Thread (new NumberPrinter (4)) ; number4 . s t a r t () ;
number5 = new Thread (new NumberPrinter (5)) ; number5 . s t a r t () ;

} // m a i n ()

} // N u m b e r s
 	
The NumberPrinter class implements Runnable by defining exactly
the same run() that was used previously in the NumberThread class.
We then pass instances of NumberPrinter when we create the individ-
ual threads. Doing things this way gives exactly the same output as earlier.
This example serves to illustrate another way of creating a multithreaded
program:

• Implement the Runnable interface for an existing class by implement-
ing the void run() method, which contains the statements to be exe-
cuted by that thread.
• Create several Thread instances by first creating instances of the
Runnable class and passing each instance as an argument to the
Thread() constructor.
• For each thread instance, start it by invoking the start() method on

it.

JAVA LANGUAGE RULE Thread Creation. A thread can be created
by passing a Runnable object to a new Thread instance. The object’s
run() method will be invoked automatically as soon as the thread’s
start() method is called.

650 CHAPTER 14 • Threads and Concurrent Programming

JAVA EFFECTIVE DESIGN Converting a Class to a Thread. Using
the Runnable interface to create threads enables you to turn an
existing class into a thread. For most applications, using the
Runnable interface is preferable to redefining the class as a Thread
subclass.

SELF-STUDY EXERCISE

EXERCISE 14.1 Use the Runnable interface to convert the following
class into a thread. You want the thread to print all the odd numbers up
to its bound:� �
public c l a s s PrintOdds {

private i n t bound ;
public PrintOdds (i n t b) {

bound = b ;
}

public void p r i n t () {
i f (i n t k = 1 ; k < bound ; k+=2)

System . out . p r i n t l n (k) ;
}

} // P r i n t O d d s
 	
14.3.1 Thread Control

The various methods in the Thread class (Fig. 14.4) can be used to ex-
ert some control over a thread’s execution. The start() and stop()Controlling threads
methods play the obvious roles of starting and stopping a thread. These
methods will sometimes be called automatically. For example, an applet
is treated as a thread by the browser, or appletviewer, which is responsible
for starting and stopping it.

As we saw in the NumberThread example, the run() method encap-
sulates the thread’s basic algorithm. It is usually not called directly. In-
stead, it is called by the thread’s start() method, which handles any
system-dependent initialization tasks before calling run().

14.3.2 Thread Priority

The setPriority(int) method lets you set a thread’s priority to an in-
teger value between Thread.MIN PRIORITY and Thread.MAX PRIOR-
ITY, the bounds defined as constants in the Thread class. Using set-
Priority() gives you some control over a thread’s execution. In gen-

SECTION 14.3 • From the Java Library: java.lang.Thread 651

eral, higher-priority threads get to run before, and longer than, lower-
priority threads.

JAVA LANGUAGE RULE Preemption. A higher-priority thread
that wants to run will preempt any threads of lower priority.

To see how setPriority()works, suppose we change NumberThread’s
constructor to the following:� �

public NumberThread (i n t n) {
num = n ;
s e t P r i o r i t y (n) ;

}
 	
In this case, each thread sets its priority to its ID number. So, thread five
will have priority five, a higher priority than all the other threads. Sup- Thread priority
pose we now run 2 million iterations of each of these threads. Because 2
million iterations will take a long time if we print the thread’s ID on each
iteration, let’s modify the run() method, so that the ID is printed every 1
million iterations:� �

for (i n t k = 0 ; k < 1 0 ; k++)
i f (k % 1000000 == 0)

System . out . p r i n t (num) ;
 	
Given this modification, we get the following output when we run
Numbers:� �

5544332211
 	
It appears from this output that the threads ran to completion in priority
order. Thus, thread five completed 2 million iterations before thread four
started to run, and so on. This shows that, on my system at least, the Java
Virtual Machine (JVM) supports priority scheduling.

JAVA PROGRAMMING TIP Platform Dependence. Thread
implementation in Java is platform dependent. Adequate testing is
necessary to ensure that a program will perform correctly on a given
platform.

JAVA EFFECTIVE DESIGN Thread Coordination. One way to
coordinate the behavior of two threads is to give one thread higher
priority than another.

JAVA DEBUGGING TIP Starvation. A high-priority thread that
never gives up the CPU can starve lower-priority threads by
preventing them from accessing the CPU.

652 CHAPTER 14 • Threads and Concurrent Programming

14.3.3 Forcing Threads to Sleep
The Thread.sleep() and Thread.yield() methods also provide
some control over a thread’s behavior. When executed by a thread, the
yield() method causes the thread to yield the CPU, allowing the thread
scheduler to choose another thread. The sleep() method causes theSleep versus yield
thread to yield and not to be scheduled until a certain amount of real time
has passed.

JAVA LANGUAGE RULE Sleep Versus Yield. Both the yield()
and sleep() methods yield the CPU, but the sleep() method keeps
the thread from being rescheduled for a fixed amount of real time.

The sleep()method can halt a running thread for a given number of mil-
liseconds, allowing other waiting threads to run. The sleep() method
throws an InterruptedException, which is a checked exception. This
means that the sleep() call must be embedded within a try/catch
block or the method it’s in must throw an InterruptedException.
Try/catch blocks were covered in Chapter 10.� �

t r y {
s leep (1 0 0) ;

} catch (InterruptedExcept ion e) {
System . out . p r i n t l n (e . getMessage ()) ;

}
 	
For example, consider the following version of the NumberPrinter.run():� �

public void run () {
for (i n t k =0; k < 1 0 ; k++) {

t r y {
Thread . s leep ((long) (Math . random () ∗ 1 0 0 0)) ;

} catch (InterruptedExcept ion e) {
System . out . p r i n t l n (e . getMessage ()) ;

}
System . out . p r i n t (num) ;

} // f o r

} // r u n ()
 	
In this example, each thread is forced to sleep for a random number of
milliseconds between 0 and 1,000. When a thread sleeps, it gives up the
CPU, which allows one of the other waiting threads to run. As you would
expect, the output we get from this example will reflect the randomness
in the amount of time that each thread sleeps:� �

14522314532143154232152423541243235415523113435451
 	
As we will see, the sleep() method provides a rudimentary form of
thread synchronization, in which one thread yields control to another.

SECTION 14.3 • From the Java Library: java.lang.Thread 653

SELF-STUDY EXERCISES
EXERCISE 14.2 What happens if you run five NumberThreads of

equal priority through 2 million iterations each? Run this experiment and
note the output. Don’t print after every iteration! What sort of scheduling
algorithm (round-robin, priority scheduling, or something else) was used
to schedule threads of equal priority on your system?

EXERCISE 14.3 Try the following experiment and note the output. Let
each thread sleep for 50 milliseconds (rather than a random number of
milliseconds). How does this affect the scheduling of the threads? To
make things easier to see, print each thread’s ID after every 100,000 itera-
tions.

EXERCISE 14.4 The purpose of the Java garbage collector is to recap-
ture memory that was used by objects that are no longer being used by
your program. Should its thread have higher or lower priority than your
program?

14.3.4 The Asynchronous Nature of Threaded Programs
Threads are asynchronous. This means that the order of execution and
the timing of a set of threads are unpredictable, at least from the pro-
grammer’s point of view. Threads are executed under the control of the
scheduling algorithm used by the operating system and the Java Virtual
Machine. In general, unless threads are explicitly synchronized, it is im-
possible for the programmer to predict when and for how long an indi-
vidual thread will run. In some systems, under some circumstances, a Thread preemptions are unpredictable
thread might run to completion before any other thread can run. In other
systems, or under different circumstances, a thread might run for a short
time and then be suspended while another thread runs. Of course, when
a thread is preempted by the system, its state is saved so that its execution
can be resumed without losing any information.

One implication of a thread’s asynchronicity is that it is not generally
possible to determine where in its source code an individual thread might
be preempted. You can’t even assume that a thread will be able to com-
plete a simple Java arithmetic operation once it has started it. For example,
suppose a thread had to execute the following operation:� �

i n t N = 5 + 3 ;
 	
This operation computes the sum of 5 and 3 and assigns the result to N. It
would be tempting to think that once the thread started this operation, it An arithmetic operation can be

interruptedwould be able to complete it, but that is not necessarily so. You have to
remember that Java code is compiled into a rudimentary bytecode, which
is translated still further into the computer’s machine language. In ma-
chine language, this operation would break down into something like the
following three steps:� �

Fetch 5 from memory and s t o r e i t in r e g i s t e r A.
Add 3 to r e g i s t e r A.
Assign the value in r e g i s t e r A to N.
 	

654 CHAPTER 14 • Threads and Concurrent Programming

Although none of the individual machine instructions can be preempted,
the thread could be interrupted between any two machine instructions.
The point here is that not even a single Java language instruction can be
assumed to be indivisible or unpreemptible. Therefore, it is impossible to
make any assumptions about when a particular thread will run and when
it will give up the CPU. This suggests the following important principle
of multithreaded programs:Threads are asynchronous

JAVA LANGUAGE RULE Asynchronous Thread Principle. Unless
they are explicitly prioritized or synchronized, threads behave in a
completely asynchronous fashion.

JAVA PROGRAMMING TIP Thread Timing. Unless they are
explicitly synchronized, you cannot make any assumptions about
when, or in what order, individual threads will execute, or where a
thread might be interrupted or preempted during its execution.

As we will see, this principle plays a large role in the design of multi-
threaded programs.

14.4 Thread States and Life Cycle

Each thread has a life cycle that consists of several different states, which
are summarized in Figure 14.6 and Table 14.1. Thread states are rep-
resented by labeled ovals, and the transitions between states are repre-
sented by labeled arrows. Much of a thread’s life cycle is under theReady, running, and sleeping
control of the operating system and the Java Virtual Machine. Those
transitions represented by method names—such as start(), stop(),Controlling a thread
wait(), sleep(), notify()—can be controlled by the program. Of
these methods, the stop() method has been deprecated in JDK 1.2 be-
cause it is inherently unsafe to stop a thread in the middle of its execution.
Other transitions—such as dispatch, I/O request, I/O done, time expired, done
sleeping—are under the control of the CPU scheduler. When first created
a thread is in the ready state, which means that it is ready to run. In the

Figure 14.6: A depiction of a
thread’s life cycle.

Waiting

SleepingRunning

Dead
Blocked

Dispatch
Done

 sleeping

ReadyI/O done

I/O requested

Time

Expires

stop()

sleep()

notify()
notifyAll()

start()

wait()

SECTION 14.4 • Thread States and Life Cycle 655

TABLE 14.1 A summary of the different thread states.

State Description

Ready The thread is ready to run and waiting for the CPU.
Running The thread is executing on the CPU.
Waiting The thread is waiting for some event to happen.
Sleeping The thread has been told to sleep for a time.
Blocked The thread is waiting for I/O to finish.
Dead The thread is terminated.

ready state, a thread is waiting, perhaps with other threads, in the ready
queue, for its turn on the CPU. A queue is like a waiting line. When the
CPU becomes available, the first thread in the ready queue will be dis-
patched—that is, it will be given the CPU. It will then be in the running
state. The ready queue

Transitions between the ready and running states happen under the
control of the CPU scheduler, a fundamental part of the Java runtime sys- CPU scheduler
tem. The job of scheduling many threads in a fair and efficient manner
is a little like sharing a single bicycle among several children. Children
who are ready to ride the bike wait in line for their turn. The grown up
(scheduler) lets the first child (thread) ride for a period of time before the
bike is taken away and given to the next child in line. In round-robin
scheduling, each child (thread) gets an equal amount of time on the bike
(CPU).

When a thread calls the sleep() method, it voluntarily gives up the
CPU, and when the sleep period is over, it goes back into the ready queue.
This would be like one of the children deciding to rest for a moment dur-
ing his or her turn. When the rest was over, the child would get back in
line.

When a thread calls the wait() method, it voluntarily gives up the
CPU, but this time it won’t be ready to run again until it is notified by Threads can give up the CPU
some other thread.

This would be like one child giving his or her turn to another child.
When the second child’s turn is up, it would notify the first child, who
would then get back in line.

The system also manages transitions between the blocked and ready
states. A thread is put into a blocked state when it does some kind of I/O
operation. I/O devices, such as disk drives, modems, and keyboards, are Threads block on I/O operations
very slow compared to the CPU. Therefore, I/O operations are handled
by separate processors known as controllers. For example, when a thread
wants to read data from a disk drive, the system will give this task to the
disk controller, telling it where to place the data. Because the thread can’t
do anything until the data are read, it is blocked, and another thread is
allowed to run. When the disk controller completes the I/O operation,
the blocked thread is unblocked and placed back in the ready queue.

In terms of the bicycle analogy, blocking a thread would be like giving
the bicycle to another child when the rider has to stop to tie his or her
shoe. Instead of letting the bicycle just sit there, we let another child ride
it. When the shoe is tied, the child is ready to ride again and goes back

656 CHAPTER 14 • Threads and Concurrent Programming

into the ready line. Letting other threads run while one thread is waiting
for an I/O operation to complete improves the overall utilization of the
CPU.

SELF-STUDY EXERCISE

EXERCISE 14.5 Round-robin scheduling isn’t always the best idea.
Sometimes priority scheduling leads to a better system. Can you think
of ways that priority scheduling—higher-priority threads go to the head
of the line—can be used to improve the responsiveness of an interactive
program?

14.5 Using Threads to Improve
Interface Responsiveness

One good use for a multithreaded program is to help make a more respon-
sive user interface. In a single-threaded program, a program that is ex-
ecuting statements in a long (perhaps even infinite) loop remains unre-
sponsive to the user’s actions until the loop is exited. Thus, the user will
experience a noticeable and sometimes frustrating delay between the time
an action is initiated and the time it is actually handled by the program.

14.5.1 Single-Threaded Design

It’s always a good idea that the interface be responsive to user input, but
sometimes it is crucial to an application. For example, suppose a psy-
chology experiment is trying to measure how quickly a user responds to
a certain stimulus presented by a program. Obviously, for this kind of
application, the program should take action as soon as the user clicks a
button to indicate a response to the stimulus. Let’s work through an ap-
propriate program design for the experiment. First, we will formally state
the situation and describe what the program should do. Then, we will
examine the components that would make up an effective program.

Figure 14.7: Random dots are
drawn until the user clicks the
Clear button.

Problem Statement

A psychologist is conducting a psychometric experiment to measure user
response to a visual cue and asks you to create the following program.
The program should have two buttons. When the Draw button is clicked,
the program begins drawing thousands of black dots at random locationsProblem specification
within a rectangular region of the screen (Fig. 14.7). After a random time
interval, the program begins drawing red dots. This change corresponds
to the presentation of the stimulus. As soon as the stimulus is presented
the user is supposed to click on a Clear button, which clears the drawing
area. To provide a measure of the user’s reaction time, the program should
report how many red dots were drawn before the user clicked the Clear
button.

SECTION 13.4 • Using Threads to Improve Interface Responsiveness657

Drawing

JPanel

JFrame JButtons
Controls

JPanel

BorderLayout

north

JFrame

 Controls JPanel

 Draw JButton

 Clear JButton

 Drawing JPanel

BorderLayout

center

ClearDraw

Component Hierarchy

Figure 14.8: GUI design for the
dot-drawing program.

Figure 14.8 shows a design for this program’s GUI. It contains a con-
trol JPanel that contains the two JButtons. The dots are drawn on a
JPanel, which is positioned in the center of a BorderLayout design. GUI design

Problem Decomposition
This program should be decomposed into two classes, a GUI to handle
the user interface and a drawing class to manage the drawing. The main Interface class and drawing class
features of its classes are as follows:

• RandomDotGUI Class: This class manages the user interface, respond-
ing to user actions by calling methods of the Dotty class (Fig. 14.9).
• Dotty Class: This class contains draw() and clear() methods for

drawing on the GUI’s drawing panel (Fig. 14.10).

The RandomDotGUI Class +init()

+actionPerformed(in e : ActionEvent)

+NDOTS : int=10000

-dotty : Dotty

-controls : JPanel

-canvas : JPanel

-draw : JButton

-clear : JButton

RandomDotGUI

Figure 14.9: The RandomDotGUI.

The implementation of RandomDotGUI is shown in Figure 14.11. The GUI
arranges the control and drawing panels in a BorderLayout and listens
for action events on its JButtons. When the user clicks the Draw but-
ton, the GUI’s actionPerformed() method will create a new Dotty
instance and call its draw() method:� �

dotty = new Dotty (canvas , NDOTS) ;
dotty . draw () ;
 	

Note that Dotty is passed a reference to the drawing canvas as well as
the number of dots to be drawn. When the user clicks the Clear button, the
GUI should call the dotty.clear() method. Of course, the important
question is, how responsive will the GUI be to the user’s action?

+Dotty(in canv : JPanel, in n : int)

+draw()

+clear()

+HREF : int final=20

+VREF : int final=20

+LEN : int final=200

-canvas : JPanel

-nDots : int

-nDrawn : int

-firstRed : int=0

Dotty

Figure 14.10: The Dotty class
manages the drawing actions.

The Dotty Class
The purpose of the Dotty class will be to draw the dots and to report
how many red dots were drawn before the canvas was cleared. Because
it will be passed a reference to the drawing panel and the number of dots
to draw, the Dotty class will need instance variables to store these two
values. It will also need a variable to keep track of how many dots were
drawn. Finally, since it will be drawing within a fixed rectangle on the
panel, the reference coordinates and dimensions of the drawing area are
declared as class constants.

The Dotty() constructor method will be passed a reference to a draw-
ing panel as well as the number of dots to be drawn and will merely assign
these parameters to its instance variables. In addition to its constructor

658 CHAPTER 14 • Threads and Concurrent Programming� �
import j ava . awt . ∗ ;
import j avax . swing . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s RandomDotGUI extends JFrame
implements Act ionLis tener {

public f i n a l i n t NDOTS = 10000 ;
private Dotty dotty ; // T h e d r a w i n g c l a s s

private JPanel c o n t r o l s = new JPanel () ;
private JPanel canvas = new JPanel () ;
private JButton draw = new JButton (”Draw”) ;
private JButton c l e a r = new JButton (” Clear ”) ;

public RandomDotGUI () {
getContentPane () . setLayout (new BorderLayout ()) ;
draw . addActionListener (t h i s) ;
c l e a r . addActionListener (t h i s) ;
c o n t r o l s . add (draw) ;
c o n t r o l s . add (c l e a r) ;
canvas . setBorder (

BorderFactory . c r e a t e T i t l e d B o r d e r (”Drawing Canvas”)) ;
getContentPane () . add (”North” , c o n t r o l s) ;
getContentPane () . add (” Center ” , canvas) ;
getContentPane () . s e t S i z e (4 0 0 , 4 0 0) ;

}
public void actionPerformed (ActionEvent e) {

i f (e . getSource () == draw) {
dotty = new Dotty (canvas , NDOTS) ;
dotty . draw () ;

} e lse {
dotty . c l e a r () ;

}
} // a c t i o n P e r f o r m e d ()

public s t a t i c void main (S t r i n g args []) {
RandomDotGUI gui = new RandomDotGUI () ;
gui . s e t S i z e (4 0 0 , 4 0 0) ;
gui . s e t V i s i b l e (t rue) ;

}
} // R a n d o m D o t G U I
 	

Figure 14.11: The RandomDotGUI class.

method, the Dotty class will have public draw() and clear() meth-
ods, which will be called from the GUI. The draw() method will use a
loop to draw random dots. The clear() will clear the canvas and report
the number of dots drawn.

The complete implementation of Dotty is shown in Figure 14.12. Note
how its draw() method is designed. The drawing loop is bounded by
the number of dots to be drawn. On each iteration, the draw() method
picks a random location within the rectangle defined by the coordinates
(HREF,VREF) and (HREF+LEN, VREF+LEN), and draws a dot there. On
each iteration it also generates a random number. If the random number

SECTION 13.4 • Using Threads to Improve Interface Responsiveness659� �
import j ava . awt . ∗ ;
import j avax . swing . ∗ ; // I m p o r t S w i n g c l a s s e s

public c l a s s Dotty {
// C o o r d i n a t e s

private s t a t i c f i n a l i n t HREF = 20 , VREF = 20 , LEN = 2 0 0 ;
private JPanel canvas ;
private i n t nDots ; // N u m b e r o f d o t s t o d r a w

private i n t nDrawn ; // N u m b e r o f d o t s d r a w n

private i n t f i r s t R e d = 0 ; // N u m b e r o f t h e f i r s t r e d d o t

public Dotty (JPanel canv , i n t dots) {
canvas = canv ;
nDots = dots ;

}
public void draw () {

Graphics g = canvas . getGraphics () ;
for (nDrawn = 0 ; nDrawn < nDots ; nDrawn++) {

i n t x = HREF + (i n t) (Math . random () ∗ LEN) ;
i n t y = VREF + (i n t) (Math . random () ∗ LEN) ;
g . f i l l O v a l (x , y , 3 , 3) ; // Draw a d o t

i f ((Math . random () < 0 . 0 0 1) && (f i r s t R e d == 0)) {
g . se tColor (Color . red) ; // C h a n g e c o l o r t o r e d

f i r s t R e d = nDrawn ;
}

} // f o r

} // d r a w ()

public void c l e a r () { // C l e a r s c r e e n a n d r e p o r t r e s u l t

Graphics g = canvas . getGraphics () ;
g . se tColor (canvas . getBackground ()) ;
g . f i l l R e c t (HREF, VREF, LEN + 3 , LEN + 3) ;
System . out . p r i n t l n (

”Number of dots drawn s i n c e f i r s t red = ” + (nDrawn−f i r s t R e d)) ;
} // c l e a r ()

} // D o t t y
 	
Figure 14.12: The Dotty class, single-threaded version.

is less than 0.001, it changes the drawing color to red and keeps track of
the number of dots drawn up to that point.

The problem with this design is that as long as the draw() method
is executing, the program will be unable to respond to the GUI’s Clear
button. In a single-threaded design, both the GUI and dotty are com-
bined into a single thread of execution (Fig. 14.13). When the user clicks

Figure 14.13: A single-threaded
execution of random dot drawing. Draw button Clear button 10,000 dots

dotty.clear()

applet.init() dotty.draw() actionPerformed()

660 CHAPTER 14 • Threads and Concurrent Programming

the Draw button, the GUI’s actionPerformed() method is invoked.
It then invokes Dotty’s draw() method, which must run to completion
before anything else can be done. If the user clicks the Clear button while
the dots are being drawn, the GUI won’t be able to get to this until all the
dots are drawn.

If you run this program with nDots set to 10,000, the program will not
clear the drawing panel until all 10,000 dots are drawn, no matter when
the Clear button is pressed. Therefore, the values reported for the user’s
reaction time will be wrong. Obviously, since it is so unresponsive to user
input, this design completely fails to satisfy the program’s specifications.

JAVA LANGUAGE RULE Single-Threaded Loop. In a
single-threaded design, a loop that requires lots of iterations will
completely dominate the CPU during its execution, which forces other
tasks, including user I/O tasks, to wait.

SELF-STUDY EXERCISE
EXERCISE 14.6 Suppose the Java Virtual Machine (JVM) was single

threaded and your program got stuck in an infinite loop. Would you be
able to break out of the loop by typing some special command (such as
Control-C) from the keyboard?

+run()

«interface»

Runnable

+run()

Dotty

Figure 14.14: In a multithreaded
design, the Dotty class imple-
ments Runnable.

14.5.2 Multithreaded Drawing: The Dotty Thread
One way to remedy this problem is to create a second thread (in addition
to the GUI itself) to do the drawing. The drawing thread will be responsi-
ble just for drawing, while the GUI thread will be responsible for handling
user actions in the interface. The trick to making the user interface more
responsive will be to interrupt the drawing thread periodically so that the
GUI thread has a chance to handle any events that have occurred.Multithreaded design: Interrupt the

drawing loop As Figure 14.14 illustrates, the easiest way to convert Dotty into a
thread is to have it implement the Runnable interface:� �

public c l a s s Dotty implements Runnable {

// E v e r y t h i n g e l s e r e m a i n s t h e s a m e

public void run () {
draw () ;

}
}
 	

This version of Dotty will perform the same task as before except that
it will now run as a separate thread of execution. Note that its run()
method just calls the draw() method that we defined in the previous ver-
sion. When the Dotty thread is started by the RandomDotGUI, we will
have a multithreaded program.

However, just because this program has two threads doesn’t necessarily
mean that it will be any more responsive to the user. There’s no guarantee
that the drawing thread will stop as soon as the Clear button is clicked. On

SECTION 13.4 • Using Threads to Improve Interface Responsiveness661

most systems, if both threads have equal priority, the GUI thread won’tThread control
run until the drawing thread finishes drawing all N dots.

JAVA DEBUGGING TIP Thread Control. Just breaking a program
into two separate threads won’t necessarily give you the desired
performance. It might be necessary to coordinate the threads.

Therefore, we have to modify our design in order to guarantee that the
GUI thread will get a chance to handle the user’s actions. One good way
to do this is to have Dotty sleep for a short instance after it draws each
dot. When a thread sleeps, any other threads that are waiting their turn Using sleep() to interrupt the

drawingwill get a chance to run. If the GUI thread is waiting to handle the user’s
click on Clear, it will now be able to call Dotty’s clear() method.

The new version of draw() is shown in Figure 14.15. In this version of
draw(), the thread sleeps for 1 millisecond on each iteration of the loop.
This will make it possible for the GUI to run on every iteration, so it will
handle user actions immediately.

Another necessary change is that once the clear() method is called,
the Dotty thread should stop running (drawing). The correct way to stop
a thread is to use some variable whose value will cause the run loop (or
in this case the drawing loop) to exit, so the new version of Dotty uses
the boolean variable isCleared to control when drawing is stopped.
Note that the variable is initialized to false and then set to true in the
clear() method. The for loop in draw() will exit when isCleared
becomes true. This causes the draw() method to return, which causes
the run() method to return, which causes the thread to stop in an orderly
fashion.

JAVA EFFECTIVE DESIGN Threaded GUIs. Designing a
multithreaded GUI involves creating a secondary thread that will run
concurrently with the main GUI thread. The GUI thread handles the
user interface, while the secondary thread performs CPU-intensive
calculations.

JAVA PROGRAMMING TIP Threading an GUI. Creating a second
thread within a GUI requires three steps: (1) Define the secondary
thread to implement the Runnable interface, (2) override its run()
method, and (3) incorporate some mechanism, such as a sleep()
state, into the thread’s run algorithm so that the GUI thread will have
a chance to run periodically.

Modifications to RandomDotGUI
We don’t need to make many changes in RandomDotGUI to get it to
work with the new version of Dotty. The primary change comes in the
actionPerformed() method. Each time the Draw button was clicked
in the original version of this method, we created a dotty instance and
then called its draw() method. In the revised version we must create a

662 CHAPTER 14 • Threads and Concurrent Programming

� �
import j ava . awt . ∗ ;
import j avax . swing . ∗ ; // I m p o r t S w i n g c l a s s e s

public c l a s s Dotty implements Runnable {
// C o o r d i n a t e s

private s t a t i c f i n a l i n t HREF = 20 , VREF = 20 , LEN = 2 0 0 ;
private JPanel canvas ;
private i n t nDots ; // N u m b e r o f d o t s t o d r a w

private i n t nDrawn ; // N u m b e r o f d o t s d r a w n

private i n t f i r s t R e d = 0 ; // N u m b e r o f t h e f i r s t r e d d o t

private boolean i sCleared = f a l s e ; // P a n e l i s c l e a r e d

public void run () {
draw () ;

}
public Dotty (JPanel canv , i n t dots) {

canvas = canv ;
nDots = dots ;

}
public void draw () {

Graphics g = canvas . getGraphics () ;
for (nDrawn = 0 ; ! i sCleared && nDrawn < nDots ; nDrawn++) {

i n t x = HREF + (i n t) (Math . random () ∗ LEN) ;
i n t y = VREF + (i n t) (Math . random () ∗ LEN) ;
g . f i l l O v a l (x , y , 3 , 3) ; // Draw a d o t

i f (Math . random () < 0 .001 && f i r s t R e d == 0) {
g . se tColor (Color . red) ; // C h a n g e c o l o r t o r e d

f i r s t R e d = nDrawn ;
}
t r y {

Thread . s leep (1) ; // S l e e p f o r a n i n s t a n t

} catch (InterruptedExcept ion e) {
System . out . p r i n t l n (e . getMessage ()) ;

}
} // f o r

} // d r a w ()

public void c l e a r () {
i sCleared = t rue ;
Graphics g = canvas . getGraphics () ;
g . se tColor (canvas . getBackground ()) ;
g . f i l l R e c t (HREF, VREF,LEN+3 ,LEN+ 3) ;
System . out . p r i n t l n (”Number of dots drawn s i n c e f i r s t red = ”

+ (nDrawn−f i r s t R e d)) ;
} // c l e a r ()

} // D o t t y
 	
Figure 14.15: By implementing the Runnable interface, this version of
Dotty can run as a separate thread.

SECTION 13.4 • Using Threads to Improve Interface Responsiveness663

new Thread and pass it an instance of Dotty, which will then run as a Starting the drawing thread
separate thread:� �

public void actionPerformed (ActionEvent e) {
i f (e . getSource () == draw) {

dotty = new Dotty (canvas , NDOTS) ;
dottyThread = new Thread (dotty) ;
dottyThread . s t a r t () ;

} e lse {
dotty . c l e a r () ;

}
} // a c t i o n P e r f o r m e d ()
 	

Note that in addition to a reference to dotty we also have a reference to a
Thread named dottyThread. This additional variable must be declared
within the GUI.

Remember that when you call the start() method, it automatically
calls the thread’s run() method. When dottyThread starts to run, it
will immediately call the draw() method and start drawing dots. After
each dot is drawn, dottyThread will sleep for an instant.

Notice how the GUI stops the drawing thread. In the new version,
Dotty.clear() will set the isCleared variable, which will cause the
drawing loop to terminate. Once again, this is the proper way to stop a
thread. Thus, as soon as the user clicks the Clear button, the Dotty thread
will stop drawing and report its result.

JAVA DEBUGGING TIP Stopping a Thread. The best way to stop a
thread is to use a boolean control variable whose value can be set to
true or false to exit the run() loop.

14.5.3 Advantages of Multithreaded Design

By creating a separate thread for Dotty, we have turned a single-threaded
program into a multithreaded program. One thread, the GUI, handles the
user interface. The second thread handles the drawing task. By forcing
the drawing to sleep on each iteration, we guarantee that the GUI thread
will remain responsive to the user’s actions. Figure 14.16 illustrates the
difference between the single- and multithreaded designs. Note that the Divide and conquer!
GUI thread starts and stops the drawing thread, and the GUI thread exe-
cutes dotty.clear(). The drawing thread simply executes its draw()
method. In the single-threaded version, all of these actions are done by
one thread.

The trade-off involved in this design is that it will take longer to draw
N random dots, since dottyThread.draw() will sleep for an instant on Trade-off: speed vs. responsiveness
each iteration. However, the extra time is hardly noticeable. By breaking
the program into two separate threads of control, one to handle the draw-

664 CHAPTER 14 • Threads and Concurrent Programming
Figure 14.16: Two independent
threads: one for drawing, the
other for the GUI.

Draw button Clear button

Applet thread

Dotty thread

draw() clear()

init() actionPerformed()

ing task and one to handle the user interface, the result is a much more
responsive program.

JAVA EFFECTIVE DESIGN Responsive Interfaces. In order to give a
program a more responsive user interface, divide it into separate
threads of control. Let one thread handle interactive tasks, such as user
input, and let the second thread handle CPU-intensive computations.

SELF-STUDY EXERCISES
EXERCISE 14.7 Someone might argue that because the Java Virtual Ma-

chine uses a round-robin scheduling algorithm, it’s redundant to use the
sleep() method, since the GUI thread will get its chance to run. What’s
wrong with this argument for interface responsiveness?

EXERCISE 14.8 Instead of sleeping on each iteration, another way to
make the interface more responsive would be to set the threaded Dotty’s
priority to a low number, such as 1. Make this change, and experiment
with its effect on the program’s responsiveness. Is it more or less respon-
sive than sleeping on each iteration? Why?

14.6 CASE STUDY: Cooperating Threads

For some applications it is necessary to synchronize and coordinate the
behavior of threads to enable them to carry out a cooperative task. Many
cooperative applications are based on the producer/consumer model. Ac-
cording to this model, two threads cooperate at producing and consuming
a particular resource or piece of data. The producer thread creates some
message or result, and the consumer thread reads or uses the result. The
consumer has to wait for a result to be produced, and the producer has to
take care not to overwrite a result that hasn’t yet been consumed. Many
types of coordination problems fit the producer/consumer model.

One example of an application for this model would be to control the
display of data that is read by your browser. As information arrives from
the Internet, it is written to a buffer by the producer thread. A sepa-Producer and consumer threads
rate consumer thread reads information from the buffer and displays it
in your browser window. Obviously, the two threads must be carefully
synchronized.

SECTION 14.6 • CASE STUDY: Cooperating Threads 665

14.6.1 Problem Statement
To illustrate how to address the sorts of problems that can arise when you
try to synchronize threads, let’s consider a simple application in which
several threads use a shared resource. You’re familiar with those take- Simulating a waiting line
a-number devices that are used in bakeries to manage a waiting line.
Customers take a number when they arrive, and the clerk announces
who’s next by looking at the device. As customers are called, the clerk
increments the “next customer” counter by one.

There are some obvious potential coordination problems here. The de-
vice must keep proper count and can’t skip customers. Nor can it give
the same number to two different customers. Nor can it allow the clerk to
serve nonexistent customers.

Our task is to build a multithreaded simulation that uses a model of a
take-a-number device to coordinate the behavior of customers and a (sin-
gle) clerk in a bakery waiting line. To help illustrate the various issues
involved in trying to coordinate threads, we will develop more than one
version of the program.

Problem Decomposition
This simulation will use four classes of objects. Figure 14.17 pro- What classes do we need?
vides a UML representation of the interactions among the objects. The

: Bakery

joe : Customer

mary : Customer

pete : Customer

: TakeANumber

alicia : Clerk

create()

create()

create()

create()

create()

nextNumber()

nextNumber()

nextNumber()

nextCustomer()

Each customer gets

a different number.

The clerk serves the

next customer in line.

Figure 14.17: The Bakery creates
the Customer and Clerk threads
and the TakeANumber gadget.
Then Customers request and re-
ceive waiting numbers and the
Clerk requests and receives the
number of the next customer to
serve.

TakeANumber object will serve as a model of a take-a-number device.
This is the resource that will be shared by the threads, but it is not a
thread itself. The Customer class, a subclass of Thread, will model the
behavior of a customer who arrives on line and takes a number from the
TakeANumber device. There will be several Customer threads created
that then compete for a space in line. The Clerk thread, which simulates
the behavior of the store clerk, should use the TakeANumber device to
determine who the next customer is and should serve that customer. Fi-
nally, there will be a main program that will have the task of creating and

666 CHAPTER 14 • Threads and Concurrent Programming

starting the various threads. Let’s call this the Bakery class, which gives
us the following list of classes:

• Bakery—creates the threads and starts the simulation.
• TakeANumber—represents the gadget that keeps track of the next cus-

tomer to be served.
• Clerk—uses the TakeANumber to determine the next customer and

will serve the customer.
• Customer—represents the customers who will use the TakeANumber

to take their place in line.

14.6.2 Design: The TakeANumber Class
The TakeANumber class must track two things: Which customer will
be served next, and which waiting number the next customer will be
given. This suggests that it should have at least two public methods:
nextNumber(), which will be used by customers to get their waiting
numbers, and nextCustomer(), which will be used by the clerk to de-
termine who should be served (Fig. 14.18). Each of these methods will
simply retrieve the values of the instance

+nextNumber() : int

+nextCustomer() : int

-next : int

-serving : int

TakeANumber

Figure 14.18: The TakeANumber
object keeps track of numbers and
customers.

variables, next and serving, which keep track of these two values.
As part of the object’s state, these variables should be private.

How should we make this TakeANumber object accessible to all of
the other objects—that is, to all of the customers and to the clerk? The
easiest way to do that is to have the main program pass a reference to
the TakeANumber when it constructs the Customers and the Clerk.
They can each store the reference as an instance variable. In this way,
all the objects in the simulation can share a TakeANumber object as a
common resource. Our design considerations lead to the definition of thePassing a reference to a shared object
TakeANumber class shown in Figure 14.19.� �
c l a s s TakeANumber {

private i n t next = 0 ; // N e x t p l a c e i n l i n e

private i n t serving = 0 ; // N e x t c u s t o m e r t o s e r v e

public synchronized i n t nextNumber () {
next = next + 1 ;
return next ;

} // n e x t N u m b e r ()

public i n t nextCustomer () {
++serving ;
return serving ;

} // n e x t C u s t o m e r ()

} // T a k e A N u m b e r
 	
Figure 14.19: Definition of the TakeANumber class, Version 1.

Note that the nextNumber() method is declared synchronized. As
we will discuss in more detail, this ensures that only one customer at a
time can take a number. Once a thread begins executing a synchronized
method, no other thread can execute that method until the first thread

SECTION 14.6 • CASE STUDY: Cooperating Threads 667

finishes. This is important because, otherwise, several Customers could Synchronized methods
call the nextNumber method at the same time. It’s important that the
customer threads have access only one at a time, also called mutually ex-
clusive access to the TakeANumber object. This form of mutual exclusion
is important for the correctness of the simulation.

SELF-STUDY EXERCISE
EXERCISE 14.9 What is the analogue to mutual exclusion in the real-

world bakery situation?

14.6.3 Java Monitors and Mutual Exclusion
An object that contains synchronizedmethods has a monitor associated
with it. A monitor is a widely used synchronization mechanism that en- The monitor concept
sures that only one thread at a time can execute a synchronizedmethod.
When a synchronizedmethod is called, a lock is acquired on that object.
For example, if one of the Customer threads calls nextNumber(), a lock
will be placed on that TakeANumber object. While an object is locked, no
other synchronized method can run in that object. Other threads must
wait for the lock to be released before they can execute a synchronized
method.

While one Customer is executing nextNumber(), all other Customers Mutually exclusive access to a shared
objectwill be forced to wait until the first Customer is finished. When the

synchronized method is exited, the lock on the object is released, al-
lowing other Customer threads to access their synchronized meth-
ods. In effect, a synchronized method can be used to guarantee mu-
tually exclusive access to the TakeANumber object among the competing
customers.

JAVA LANGUAGE RULE synchronized. Once a thread begins
to execute a synchronized method in an object, the object is locked so
that no other thread can gain access to that object’s synchronized
methods.

JAVA EFFECTIVE DESIGN Synchronization. In order to restrict
access of a method or set of methods to one object at a time (mutual
exclusion), declare the methods synchronized.

One cautionary note here is that although a synchronized method blocks
access to other synchronized methods, it does not block access to nonsyn-
chronized methods. This could cause problems. We will return to this
issue in the next part of our case study when we discuss the testing of our
program.

14.6.4 The Customer Class
A Customer thread should model the behavior of taking a number from
the TakeANumber gadget. For the sake of this simulation, let’s suppose
that after taking a number, the Customer object just prints it out. This will
serve as a simple model of “waiting on line.” What about the Customer’s
state? To help distinguish one customer

+Customer(in gadget : TakeANumber)

+run()

-number : int=10000

-id : int

-takeANumber : TakeANumber

Customer

+run()

Thread

Figure 14.20: The Customer
thread.

668 CHAPTER 14 • Threads and Concurrent Programming

from another, let’s give each customer a unique ID number starting at
10001, which will be set in the constructor method. Also, as we noted ear-
lier, each Customer needs a reference to the TakeANumber object, which
is passed as a constructor parameter (Fig. 14.20). This leads to the defini-
tion of Customer shown in Figure 14.21. Note that before taking a num-
ber the customer sleeps for a random interval of up to 1,000 milliseconds.
This will introduce a bit of randomness into the simulation.� �
public c l a s s Customer extends Thread {

private s t a t i c i n t number = 10000 ; // I n i t i a l I D n u m b e r

private i n t id ;
private TakeANumber takeANumber ;

public Customer (TakeANumber gadget) {
id = ++number ;
takeANumber = gadget ;

}

public void run () {
t r y {

s leep ((i n t) (Math . random () ∗ 1000)) ;
System . out . p r i n t l n (”Customer ” + id +

” takes t i c k e t ” + takeANumber . nextNumber ()) ;
} catch (InterruptedExcept ion e) {

System . out . p r i n t l n (” Exception ” + e . getMessage ()) ;
}

} // r u n ()

} // C u s t o m e r
 	
Figure 14.21: Definition of the Customer class, Version 1.

Another important feature of this definition is the use of the static
variable number to assign each customer a unique ID number. Remem-
ber that a static variable belongs to the class itself, not to its instances.Static (class) variables
Therefore, each Customer that is created can share this variable. By
incrementing it and assigning its new value as the Customer’s ID, we
guarantee that each customer has a unique ID number.

JAVA LANGUAGE RULE Static (Class) Variables. Static variables
are associated with the class itself and not with its instances.

JAVA EFFECTIVE DESIGN Unique IDs. Static variables are often
used to assign a unique ID number or a unique initial value to each
instance of a class.

SECTION 14.6 • CASE STUDY: Cooperating Threads 669

14.6.5 The Clerk Class
The Clerk thread should simulate the behavior of serving the
next customer in line, so the Clerk thread will repeatedly access
TakeANumber.nextCustomer() and then serve that customer. For
the sake of this simulation, we’ll just print a message to indicate which
customer is being served. Because there’s only one clerk in this simu-
lation, the only variable in its internal state will be a reference to the
TakeANumber object (Fig. 14.22). In addition to the constructor, all we
really need to define for this class is the run() method. This +Clerk(in gadget : TakeANumber)

+run()

Clerk

-takeANumber : TakeANumber

+run()

Thread

Figure 14.22: The Clerk thread.

leads to the definition of Clerk shown in Figure 14.23. In this case,
the sleep() method is necessary to allow the Customer threads to run.
The Clerk will sit in an infinite loop serving the next customer on each
iteration.� �
public c l a s s Clerk extends Thread {

private TakeANumber takeANumber ;

public Clerk (TakeANumber gadget) {
takeANumber = gadget ;

}

public void run () {
while (t rue) {

t r y {
s leep ((i n t) (Math . random () ∗ 5 0)) ;
System . out . p r i n t l n (” Clerk serving t i c k e t ” +

takeANumber . nextCustomer ()) ;
} catch (InterruptedExcept ion e) {

System . out . p r i n t l n (” Exception ” + e . getMessage ()) ;
}

} // w h i l e

} // r u n ()

} // C l e r k
 	
Figure 14.23: Definition of Clerk, Version 1.

14.6.6 The Bakery Class
Finally, Bakery is the simplest class to design. It contains the main()
method, which gets the whole simulation started. As we said, its role will
be to create one Clerk thread and several Customer threads, and get The main program
them all started (Fig. 14.24). Notice that the Customers and the Clerk
are each passed a reference to the shared TakeANumber gadget.

Problem: Nonexistent Customers
Now that we have designed and implemented the classes, let’s run sev-
eral experiments to test that everything works as intended. Except for
the synchronized nextNumber() method, we’ve made little attempt
to make sure that the Customer and Clerk threads will work together
cooperatively, without violating the real-world constraints that should be
satisfied by the simulation. If we run the simulation as it is presently

670 CHAPTER 14 • Threads and Concurrent Programming� �
public c l a s s Bakery {

public s t a t i c void main (S t r i n g args []) {
System . out . p r i n t l n (” S t a r t i n g c l e r k and customer threads ”) ;
TakeANumber numberGadget = new TakeANumber () ;
Clerk c l e r k = new Clerk (numberGadget) ;
c l e r k . s t a r t () ;
for (i n t k = 0 ; k < 5 ; k++) {

Customer customer = new Customer (numberGadget) ;
customer . s t a r t () ;

}
} // m a i n ()

} // B a k e r y
 	
Figure 14.24: Definition of the Bakery class.

coded, it will generate five customers and the clerk will serve all of them.
But we get something like the following output:Testing and debugging � �

S t a r t i n g c l e r k and customer threads
Clerk serving t i c k e t 1
Clerk serving t i c k e t 2
Clerk serving t i c k e t 3
Clerk serving t i c k e t 4
Clerk serving t i c k e t 5

Customer 10004 takes t i c k e t 1
Customer 10002 takes t i c k e t 2

Clerk serving t i c k e t 6
Customer 10005 takes t i c k e t 3

Clerk serving t i c k e t 7
Clerk serving t i c k e t 8
Clerk serving t i c k e t 9
Clerk serving t i c k e t 10

Customer 10001 takes t i c k e t 4
Customer 10003 takes t i c k e t 5
 	

Our current solution violates an important real-world constraint: You
can’t serve customers before they enter the line! How can we ensureProblem: The clerk thread doesn’t

wait for customer threads that the clerk doesn’t serve a customer unless there’s actually a customer
waiting?

The wrong way to address this issue would be to increase the amount
of sleeping that the Clerk does between serving customers. Indeed, this
would allow more customer threads to run, so it might appear to have
the desired effect, but it doesn’t truly address the main problem: A clerk
cannot serve a customer if no customer is waiting.

The correct way to solve this problem is to have the clerk check that
there are customers waiting before taking the next customer. One way
to model this would be to add a customerWaiting() method to our
TakeANumber object. This method would return true whenever next
is greater than serving. That will correspond to the real-world situation
in which the clerk can see customers waiting in line. We can make theThe clerk checks the line

SECTION 14.6 • CASE STUDY: Cooperating Threads 671

following modification to Clerk.run():� �
public void run () {

while (t rue) {
t r y {

s leep ((i n t) (Math . random () ∗ 5 0)) ;
i f (takeANumber . customerWaiting ())

System . out . p r i n t l n (” Clerk serving t i c k e t ”
+ takeANumber . nextCustomer ()) ;

} catch (InterruptedExcept ion e) {
System . out . p r i n t l n (” Exception ” + e . getMessage ()) ;

}
} // w h i l e

} // r u n ()
 	
And we add the following method to TakeANumber (Fig. 14.25):� �

public boolean customerWaiting () {
return next > serving ;

}
 	 +nextNumber() : int

+nextCustomer() : int

+customerWaiting() : boolean

-next : int

-serving : int

TakeANumber

Figure 14.25: The revised
TakeANumber class.

In other words, the Clerk won’t serve a customer unless there are cus-
tomers waiting—that is, unless next is greater than serving. Given
these changes, we get the following type of output when we run the
simulation:� �

S t a r t i n g c l e r k and customer threads
Customer 10003 takes t i c k e t 1

Clerk serving t i c k e t 1
Customer 10005 takes t i c k e t 2

Clerk serving t i c k e t 2
Customer 10001 takes t i c k e t 3

Clerk serving t i c k e t 3
Customer 10004 takes t i c k e t 4

Clerk serving t i c k e t 4
Customer 10002 takes t i c k e t 5

Clerk serving t i c k e t 5
 	
This example illustrates that when application design involves cooperat-
ing threads, the algorithm used must ensure the proper cooperation and
coordination among the threads.

JAVA EFFECTIVE DESIGN Thread Coordination. When two or
more threads must behave cooperatively, their interaction must be
carefully coordinated by the algorithm.

14.6.7 Problem: Critical Sections
It is easy to forget that thread behavior is asynchronous. You can’t pre-
dict when a thread might be interrupted or might have to give up the Thread interruptions are

unpredictable

672 CHAPTER 14 • Threads and Concurrent Programming

CPU to another thread. In designing applications that involve cooperat-
ing threads, it’s important that the design incorporates features to guard
against problems caused by asynchronicity. To illustrate this problem,
consider the following statement from the Customer.run() method:� �

System . out . p r i n t l n (”Customer ” + id +
” takes t i c k e t ” + takeANumber . nextNumber ()) ;
 	

Even though this is a single Java statement, it breaks up into several Java
bytecode statements. A Customer thread could certainly be interrupted
between getting the next number back from TakeANumber and printing it
out. We can simulate this by breaking the println() into two statements
and putting a sleep() in their midst:� �

public void run () {
t r y {

i n t myturn = takeANumber . nextNumber () ;
s leep ((i n t) (Math . random () ∗ 1000)) ;
System . out . p r i n t l n (”Customer ” + id +

” takes t i c k e t ” + myturn) ;
} catch (InterruptedExcept ion e) {

System . out . p r i n t l n (” Exception ” + e . getMessage ()) ;
}

} // r u n ()
 	
If this change is made in the simulation, you might get the following
output:� �

S t a r t i n g c l e r k and customer threads
Clerk serving t i c k e t 1
Clerk serving t i c k e t 2
Clerk serving t i c k e t 3

Customer 10004 takes t i c k e t 4
Clerk serving t i c k e t 4
Clerk serving t i c k e t 5

Customer 10001 takes t i c k e t 1
Customer 10002 takes t i c k e t 2
Customer 10003 takes t i c k e t 3
Customer 10005 takes t i c k e t 5
 	

Because the Customer threads are now interrupted in between taking a
number and reporting their number, it looks as if they are being served in
the wrong order. Actually, they are being served in the correct order. It’s
their reporting of their numbers that is wrong!

The problem here is that the Customer.run() method is being in-
terrupted in such a way that it invalidates the simulation’s output. AProblem: An interrupt in a critical

section method that displays the simulation’s state should be designed so that
once a thread begins reporting its state, that thread will be allowed to fin-
ish reporting before another thread can start reporting its state. Accurate
reporting of a thread’s state is a critical element of the simulation’s overall
integrity.

SECTION 14.6 • CASE STUDY: Cooperating Threads 673

A critical section is any section of a thread that should not be inter-
rupted during its execution. In the bakery simulation, all of the statements
that report the simulation’s progress are critical sections. Even though
the chances are small that a thread will be interrupted in the midst of
a println() statement, the faithful reporting of the simulation’s state
should not be left to chance. Therefore, we must design an algorithm that
prevents the interruption of critical sections.

Creating a Critical Section

The correct way to address this problem is to treat the reporting of the cus-
tomer’s state as a critical section. As we saw earlier when we discussed
the concept of a monitor, a synchronized method within a shared ob-
ject ensures that once a thread starts the method, it will be allowed to
finish it before any other thread can start it. Therefore, one way out of Making a critical section

uninterruptiblethis dilemma is to redesign the nextNumber() and nextCustomer()
methods in the TakeANumber class so that they report which customer
receives a ticket and which customer is being served (Fig. 14.26). In this
version all of the methods are synchronized, so all the actions of the
TakeANumber object are treated as critical sections.

� �
public c l a s s TakeANumber {

private i n t next = 0 ; // N e x t p l a c e i n l i n e

private i n t serving = 0 ; // N e x t c u s t o m e r t o s e r v e

public synchronized i n t nextNumber (i n t cus t Id) {
next = next + 1 ;
System . out . p r i n t l n (”Customer ” + cus t Id + ”

takes t i c k e t ” + next) ;
return next ;

} // n e x t N u m b e r ()

public synchronized i n t nextCustomer () {
++serving ;
System . out . p r i n t l n (” Clerk serving t i c k e t ”

+ serving) ;
return serving ;

} // n e x t C u s t o m e r ()

public synchronized boolean customerWaiting () {
return next > serving ;

} // c u s t o m e r W a i t i n g ()

} // T a k e A N u m b e r
 	
Figure 14.26: Definition of the TakeANumber class, Version 2.

Note that the reporting of both the next number and the next customer
to be served are now handled by TakeANumber in Figure 14.26 . Because
the methods that handle these actions are synchronized, they cannot be
interrupted by any threads involved in the simulation. This guarantees
that the simulation’s output will faithfully report the simulation’s state.

674 CHAPTER 14 • Threads and Concurrent Programming

Given these changes to TakeANumber, we must remove the println()
statements from the run() methods in Customer:� �

public void run () {
t r y {

s leep ((i n t) (Math . random () ∗ 2 0 0 0)) ;
takeANumber . nextNumber (id) ;

} catch (InterruptedExcept ion e) {
System . out . p r i n t l n (” Exception : ”+ e . getMessage ()) ;

}
} // r u n ()
 	

and from the run() method in Clerk:� �
public void run () {

while (t rue) {
t r y {

s leep ((i n t) (Math . random () ∗ 1 0 0 0)) ;
i f (takeANumber . customerWaiting ())

takeANumber . nextCustomer () ;
} catch (InterruptedExcept ion e) {

System . out . p r i n t l n (” Exception : ”+e . getMessage ()) ;
}

} // w h i l e

} // r u n ()
 	
Rather than printing their numbers, these methods now just call the ap-
propriate methods in TakeANumber. Given these design changes, our
simulation now produces the following correct output:� �

S t a r t i n g c l e r k and customer threads
Customer 10001 takes t i c k e t 1

Clerk serving t i c k e t 1
Customer 10003 takes t i c k e t 2
Customer 10002 takes t i c k e t 3

Clerk serving t i c k e t 2
Customer 10005 takes t i c k e t 4
Customer 10004 takes t i c k e t 5

Clerk serving t i c k e t 3
Clerk serving t i c k e t 4
Clerk serving t i c k e t 5
 	

The lesson to be learned from this is that in designing multithreaded pro-
grams, it is important to assume that if a thread can be interrupted at a
certain point, it will be interrupted at that point. The fact that an interruptPreventing undesirable interrupts

SECTION 14.6 • CASE STUDY: Cooperating Threads 675

is unlikely to occur is no substitute for the use of a critical section. This is
something like “Murphy’s Law of Thread Coordination.”

JAVA EFFECTIVE DESIGN The Thread Coordination Principle. Use
critical sections to coordinate the behavior of cooperating threads. By
designating certain methods as synchronized, you can ensure their
mutually exclusive access. Once a thread starts a synchronized
method, no other thread will be able to execute the method until the
first thread is finished.

In a multithreaded application, the classes and methods should be de-
signed so that undesirable interrupts will not affect the correctness of the
algorithm.

JAVA PROGRAMMING TIP Critical Sections. Java’s monitor
mechanism will ensure that while one thread is executing a
synchronized method, no other thread can gain access to it. Even if the
first thread is interrupted, when it resumes execution again it will be
allowed to finish the synchronized method before other threads can
access synchronized methods in that object.

SELF-STUDY EXERCISE

EXERCISE 14.10 Given the changes we’ve described, the bakery sim-
ulation should now run correctly regardless of how slow or fast the
Customer and Clerk threads run. Verify this by placing different-sized
sleep intervals in their run() methods. (Note: You don’t want to put a
sleep() in the synchronized methods because that would undermine
the whole purpose of making them synchronized in the first place.)

14.6.8 Using wait/notify to Coordinate Threads
The examples in the previous sections were designed to illustrate the is-
sue of thread asynchronicity and the principles of mutual exclusion and
critical sections. Through the careful design of the algorithm and the ap-
propriate use of the synchronized qualifier, we have managed to design
a program that correctly coordinates the behavior of the Customers and
Clerk in this bakery simulation.

The Busy-Waiting Problem
One problem with our current design of the Bakery algorithm is that it
uses busy waiting on the part of the Clerk thread. Busy waiting occurs Busy waiting
when a thread, while waiting for some condition to change, executes a
loop instead of giving up the CPU. Because busy waiting is wasteful of
CPU time, we should modify the algorithm.

676 CHAPTER 14 • Threads and Concurrent Programming

As it is presently designed, the Clerk thread sits in a loop that repeat-
edly checks whether there’s a customer to serve:� �

public void run () {
while (t rue) {

t r y {
s leep ((i n t) (Math . random () ∗ 1 0 0 0)) ;
i f (takeANumber . customerWaiting ())

takeANumber . nextCustomer () ;
} catch (InterruptedExcept ion e) {

System . out . p r i n t l n (” Exception : ” + e . getMessage ()) ;
}

} // w h i l e

} // r u n ()
 	
A far better solution would be to force the Clerk thread to wait un-

til a customer arrives without using the CPU. Under such a design, the
Clerk thread can be notified and enabled to run as soon as a Customer
becomes available. Note that this description views the customer/clerk
relationship as one-half of the producer/consumer relationship. When aProducer/consumer
customer takes a number, it produces a customer in line that must be served
(that is, consumed) by the clerk.

This is only half the producer/consumer relationship because we
haven’t placed any constraint on the size of the waiting line. There’s no
real limit to how many customers can be produced. If we did limit the
line size, customers might be forced to wait before taking a number if, say,
the tickets ran out, or the bakery filled up. In that case, customers would
have to wait until the line resource became available and we would have
a full-fledged producer/consumer relationship.

The wait/notify Mechanism

So, let’s use Java’s wait/notify mechanism to eliminate busy waiting
from our simulation. As noted in Figure 14.6, the wait() method puts
a thread into a waiting state, and notify() takes a thread out of wait-
ing and places it back in the ready queue. To use these methods in this
program we need to modify the nextNumber() and nextCustomer()
methods. If there is no customer in line when the Clerk calls the
nextCustomer() method, the Clerk should be made to wait():� �

public synchronized i n t nextCustomer () {
t r y {

while (next <= serving)
wait () ;

} catch (InterruptedExcept ion e) {
System . out . p r i n t l n (” Exception : ” + e . getMessage ()) ;

} f i n a l l y {
++serving ;
System . out . p r i n t l n (” Clerk serving t i c k e t ” + serving) ;
return serving ;

}
}
 	

SECTION 14.6 • CASE STUDY: Cooperating Threads 677

Note that the Clerk still checks whether there are customers waiting. If
there are none, the Clerk calls the wait() method. This removes the
Clerk from the CPU until some other thread notifies it, at which point A waiting thread gives up the CPU
it will be ready to run again. When it runs again, it should check that
there is in fact a customer waiting before proceeding. That’s why we use a
while loop here. In effect, the Clerk will wait until there’s a customer to
serve. This is not busy waiting because the Clerk thread loses the CPU
and must be notified each time a customer becomes available.

When and how will the Clerk be notified? Clearly, the Clerk should
be notified as soon as a customer takes a number. Therefore, we put a
notify() in the nextNumber() method, which is the method called by
each Customer as it gets in line:� �

public synchronized i n t nextNumber (i n t cus t Id) {
next = next + 1 ;
System . out . p r i n t l n (”Customer ” + cus t Id +

” takes t i c k e t ” + next) ;
n o t i f y () ;
return next ;

}
 	
Thus, as soon as a Customer thread executes the nextNumber()
method, the Clerk will be notified and allowed to proceed.

What happens if more than one Customer has executed a wait()? In
that case, the JVM will maintain a queue of waiting Customer threads.
Then, each time a notify() is executed, the JVM will take the first
Customer out of the queue and allow it to proceed.

If we use this model of thread coordination, we no longer need to test
customerWaiting() in the Clerk.run() method. It is to be tested in
the TakeANumber.nextCustomer(). Thus, the Clerk.run() can be
simplified to� �

public void run () {
while (t rue) {

t r y {
s leep ((i n t) (Math . random () ∗ 1 0 0 0)) ;
takeANumber . nextCustomer () ;

} catch (InterruptedExcept ion e) {
System . out . p r i n t l n (” Exception : ”+ e . getMessage ()) ;

}
} // w h i l e

} // r u n ()
 	
The Clerk thread may be forced to wait when it calls the nextCustomer
method.

Because we no longer need the customerWaiting() method, we end
up with the new definition of TakeANumber shown in

+nextNumber() : int<<synchronized>>

+nextCustomer() : int<<synchronized>>

-next : int

-serving : int

TakeANumber

Figure 14.27: In the final design
of TakeANumber, its methods are
synchronized.

Figures 14.27 and 14.28.

678 CHAPTER 14 • Threads and Concurrent Programming� �
public c l a s s TakeANumber {

private i n t next = 0 ;
private i n t serving = 0 ;

public synchronized i n t nextNumber (i n t cus t Id) {
next = next + 1 ;
System . out . p r i n t l n (”Customer ” + cus t Id +

” takes t i c k e t ” + next) ;
n o t i f y () ;
return next ;

} // n e x t N u m b e r ()

public synchronized i n t nextCustomer () {
t r y {

while (next <= serving) {
System . out . p r i n t l n (” Clerk wait ing ”) ;
wait () ;

}
} catch (InterruptedExcept ion e) {

System . out . p r i n t l n (” Exception ” + e . getMessage ()) ;
} f i n a l l y {

++serving ;
System . out . p r i n t l n (” Clerk serving t i c k e t ”

+ serving) ;
return serving ;

}
} // n e x t C u s t o m e r ()

} // T a k e A N u m b e r
 	
Figure 14.28: The TakeANumber class, Version 3.

Given this version of the program, the following kind of output will be
generated:� �

S t a r t i n g c l e r k and customer threads
Customer 10004 takes t i c k e t 1
Customer 10002 takes t i c k e t 2

Clerk serving t i c k e t 1
Clerk serving t i c k e t 2

Customer 10005 takes t i c k e t 3
Customer 10003 takes t i c k e t 4

Clerk serving t i c k e t 3
Customer 10001 takes t i c k e t 5

Clerk serving t i c k e t 4
Clerk serving t i c k e t 5
Clerk wait ing
 	

JAVA PROGRAMMING TIP Busy Waiting. Java’s wait/notify
mechanism can be used effectively to eliminate busy waiting from a
multithreaded application.

JAVA EFFECTIVE DESIGN Producer/Consumer. The
producer/consumer model is a useful design for coordinating the
wait/notify interaction.

SELF-STUDY EXERCISE

SECTION 14.7 • CASE STUDY: The Game of Pong 679

EXERCISE 14.11 An interesting experiment to try is to make the Clerk
a little slower by making it sleep for up to 2,000 milliseconds. Take a
guess at what would happen if you ran this experiment. Then run the
experiment and observe the results.

The wait/notify Mechanism
There are a number of important restrictions that must be observed when Wait/notify go into synchronized

methodsusing the wait/notify mechanism:

• Both wait() and notify() are methods of the Object class, not the
Thread class. This enables them to lock objects, which is the essential
feature of Java’s monitor mechanism.
• A wait() method can be used within a synchronized method. The

method doesn’t have to be part of a Thread.
• You can only use wait() and notify() within synchronized

methods. If you use them in other methods, you will cause
an IllegalMonitorStateException with the message “current
thread not owner.”
• When a wait()—or a sleep()—is used within a synchronized

method, the lock on that object is released so that other methods can
access the object’s synchronized methods.

JAVA DEBUGGING TIP Wait/Notify. It’s easy to forget that the
wait() and notify() methods can only be used within
synchronized methods.

14.7 CASE STUDY: The Game of Pong

The game of Pong was one of the first computer video games and was all
the rage in the 1970s. The game consists of a ball that moves horizontally
and vertically within a rectangular region, and a single paddle, which is
located at the right edge of the region that can be moved up and down by
the user. When the ball hits the top, left, or bottom walls or the paddle,
it bounces off in the opposite direction. If the ball misses the paddle, it
passes through the right wall and re-emerges at the left wall. Each time
the ball bounces off a wall or paddle, it emits a pong sound.

14.7.1 A Multithreaded Design
Let’s develop a multithreaded GUI to play the game of Pong.

Figure 14.29: The UI for Pong.

Figure 14.29 shows how the game’s GUI should appear. There are three
objects involved in this program: the frame, which serves as the GUI, the
ball, which is represented as a blue circle in the program, and the paddle,
which is represented by a red rectangle along the right edge of the frame.
What cannot be seen in this figure is that the ball moves autonomously,
bouncing off the walls and paddle. The paddle’s motion is controlled by
the user by pressing the up- and down-arrow keys on the keyboard.

We will develop class definitions for the ball, paddle, and the frame.
Following the example of our dot-drawing program earlier in the Chapter,
we will employ two independent threads, one for the GUI and one for the

680 CHAPTER 14 • Threads and Concurrent Programming

ball. Because the user will control the movements of the paddle, the frame
will employ a listener object to listen for and respond to the user’s key
presses.

Figure 14.30 provides an overview of the object-oriented design of the
Pong program. The PongFrame class is the main class. It uses instances
of the Ball and Paddle classes. PongFrame is a subclass of JFrame
and implements the KeyListener interface. This is another of the sev-

Figure 14.30: Design of the Pong
program.

eral event handlers provided in the java.awt library. This one han-
dles KeyEvents and the KeyListener interface consists of three ab-
stract methods: keyPressed(), keyTyped(), and keyReleased(), all
of which are associated with the act of pressing a key on the keyboard.
All three of these methods are implemented in the PongFrame class. A
key-typed event occurs when a key is pressed down. A key-release event
occurs when a key that has been pressed down is released. A key-press
event is a combination of both of these events.

The Ball class is a Thread subclass. Its data and methods are de-
signed mainly to keep track of its motion within the program’s drawing
panel. The design strategy employed here leaves the drawing of the ball
up to the frame. The Ball thread itself just handles the movement within
the program’s drawing panel. Note that the Ball() constructor takes a
reference to the PongFrame. As we will see, the Ball uses this reference
to set the dimensions of the frame’s drawing panel. Also, as the Ball

SECTION 14.7 • CASE STUDY: The Game of Pong 681

moves, it will repeatedly call the frame’s repaint() method to draw the
ball.

The Paddle class is responsible for moving the paddle up and down
along the drawing panel’s right edge. Its public methods, moveUP() and
moveDown(), will be called by the frame in response to the user pressing
the up and down arrows on the keyboard. Because the frame needs to
know where to draw the paddle, the paddle class contains several public
methods, getX(), getY(), and resetLocation(), whose tasks are to
report the paddle’s location or to adjust its location in case the frame is
resized.

The PongFrame controls the overall activity of the program. Note in
particular its ballHitsPaddle() method. This method has the task
of determining when the ball and paddle come in contact as the ball
continuously moves around in the frame’s drawing panel. As in the
ThreadedDotty example earlier in the chapter, it is necessary for the
Ball and the the frame to be implemented as separated threads so that
the frame can be responsive to the user’s key presses.

14.7.2 Implementation of the Pong Program

We begin our discussion of the program’s implementation with the
Paddle class implementation (Fig. 14.31).

Class constants, HEIGHT and WIDTH are used to define the size of the
Paddle, which is represented on the frame as a simple rectangle. The
frame will use the Graphics.fillRect() method to draw the paddle:� �

g . f i l l R e c t (pad . getX () , pad . getY () , Paddle .WIDTH, Paddle .HEIGHT) ;
 	
Note how the frame uses the paddle’s getX() and getY() methods to
get the paddle’s current location.

The class constants DELTA and BORDER are used to control the paddle’s
movement. DELTA represents the number of pixels that the paddle moves
on each move up or down, and BORDER is used with gameAreaHeight
to keep the paddle within the drawing area. The moveUp() and
moveDown() methods are called by the frame each time the user presses
an up- or down-arrow key. They simply change the paddle’s location by
DELTA pixels up or down.

682 CHAPTER 14 • Threads and Concurrent Programming� �
public c l a s s Paddle {

public s t a t i c f i n a l i n t HEIGHT = 5 0 ; // P a d d l e s i z e

public s t a t i c f i n a l i n t WIDTH = 1 0 ;
private s t a t i c f i n a l i n t DELTA = HEIGHT/2; // Move s i z e

private s t a t i c f i n a l i n t BORDER = 0 ;
private i n t gameAreaHeight ;
private i n t locat ionX , loca t ionY ;
private PongFrame frame ;

public Paddle (PongFrame f) {
frame = f ;
gameAreaHeight = f . getHeight () ;
loca t ionX = f . getWidth ()−WIDTH;
loca t ionY = gameAreaHeight /2;

} // P a d d l e ()

public void r e s e t L o c a t i o n () {
gameAreaHeight = frame . getHeight () ;
loca t ionX = frame . getWidth ()−WIDTH;

}
public i n t getX () {

return loca t ionX ;
}
public i n t getY () {

return loca t ionY ;
}
public void moveUp () {

i f (loca t ionY > BORDER)
loca t ionY −= DELTA;

} // moveUp ()

public void moveDown () {
i f (loca t ionY + HEIGHT < gameAreaHeight − BORDER)

loca t ionY += DELTA;
} // moveDown ()

} // P a d d l e
 	
Figure 14.31: Definition of the Paddle class.

The Ball class (Fig. 14.32) uses the class constant SIZE to determine
the size of the oval that represents the ball, drawn by the frame as follows:� �

g . f i l l O v a l (b a l l . getX () , b a l l . getY () , b a l l . SIZE , b a l l . SIZE) ;
 	
As with the paddle, the frame uses the ball’s getX() and getY()method
to determine the ball’s current location.

Unlike the paddle, however, the ball moves autonomously. Its run()
method, which is inherited from its Thread superclass, repeatedly moves
the ball, draws the ball, and then sleeps for a brief interval (to slow down
the speed of the ball’s apparent motion). The run() method itself is quite
simple because it consists of a short loop. We will deal with the details of
how the ball is painted on the frame when we discuss the frame itself.

SECTION 14.7 • CASE STUDY: The Game of Pong 683� �
import j avax . swing . ∗ ;
import j ava . awt . T o o l k i t ;

public c l a s s B a l l extends Thread {
public s t a t i c f i n a l i n t SIZE = 1 0 ; // D i a m e t e r o f t h e b a l l

private PongFrame frame ; // R e f e r e n c e t o t h e f r a m e

private i n t topWall , bottomWall , l e f t W a l l , r ightWal l ; // B o u n d a r i e s

private i n t locat ionX , loca t ionY ; // C u r r e n t l o c a t i o n o f t h e b a l l

private i n t direc t ionX = 1 , d i rec t ionY = 1 ; // x− a n d y− d i r e c t i o n (1 o r −1)

private T o o l k i t k i t = T o o l k i t . g e t D e f a u l t T o o l k i t () ; // F o r b e e p () m e t h o d

public B a l l (PongFrame f) {
frame = f ;
loca t ionX = l e f t W a l l + 1 ; // S e t i n i t i a l l o c a t i o n

loca t ionY = bottomWall /2;
} // B a l l ()

public i n t getX () {
return loca t ionX ;

} // g e t X ()

public i n t getY () {
return loca t ionY ;

} // g e t Y ()

public void move () {
r ightWal l = frame . getWidth () − SIZE ; // D e f i n e b o u n c i n g r e g i o n

l e f t W a l l = topWall = 0 ; // And l o c a t i o n o f w a l l s

bottomWall = frame . getHeight () − SIZE ;
loca t ionX = locat ionX + direc t ionX ; // C a l c u l a t e a new l o c a t i o n

loca t ionY = locat ionY + direc t ionY ;

i f (frame . ba l lHi tsPaddle ()) {
direc t ionX = −1; // move t o w a r d l e f t w a l l

k i t . beep () ;
} // i f b a l l h i t s p a d d l e

i f (loca t ionX <= l e f t W a l l){
direc t ionX = + 1 ; // move t o w a r d r i g h t w a l l

k i t . beep () ;
} // i f b a l l h i t s l e f t w a l l

i f (loca t ionY + SIZE >= bottomWall | | loca t ionY <= topWall){
direc t ionY = −direc t ionY ; // r e v e r s e d i r e c t i o n

k i t . beep () ;
} // i f b a l l h i t s t o p o r b o t t o m w a l l s

i f (loca t ionX >= rightWal l + SIZE) {
loca t ionX = l e f t W a l l + 1 ; // j u m p b a c k t o l e f t w a l l

} // i f b a l l g o e s t h r o u g h r i g h t w a l l

} // move ()

public void run () {
while (t rue) {

move () ; // Move

frame . r e p a i n t () ;
t r y { s leep (1 5) ;
} catch (InterruptedExcept ion e) {}

} // w h i l e

} // r u n ()

} // B a l l
 	
Figure 14.32: Definition of the Ball class.

684 CHAPTER 14 • Threads and Concurrent Programming

The most complex method in the Ball class is the move() method.
This is the method that controls the ball’s movement within the bound-
aries of the frame’s drawing area. This method begins by moving the
ball by one pixel left, right, up, or down by adjusting the values of its
locationX and locationY coordinates:� �

loca t ionX = locat ionX + direc t ionX ; // C a l c u l a t e l o c a t i o n

loca t ionY = locat ionY + direc t ionY ;
 	
The directionX and directionY variables are set to either +1 or −1,
depending on whether the ball is moving left or right, up or down. After
the ball is moved, the method uses a sequence of if statements to check
whether the ball is touching one of the walls or the paddle. If the ball is
in contact with the top, left, or bottom walls or the paddle, its direction
is changed by reversing the value of the directionX or directionY
variable. The direction changes depend on whether the ball has touched
a horizontal or vertical wall. When the ball touches the right wall, having
missed the paddle, it passes through the right wall and re-emerges from
the left wall going in the same direction.

Note how the frame method, ballHitsPaddle() is used to deter-
mine whether the ball has hit the paddle. This is necessary because only
the frame knows the locations of both the ball and the paddle.

14.7.3 The KeyListener Interface
The implementation of the PongFrame class is shown in figure 14.33. The
frame’s main task is to manage the drawing of the ball and paddle and
to handle the user’s key presses. Handling keyboard events is a simple
matter of implementing the KeyListener interface. This works in much
the same way as the ActionListener interface, which is used to handle
button clicks and other ActionEvents. Whenever a key is pressed, it
generates KeyEvents, which are passed to the appropriate methods of
the KeyListener interface.

There’s a bit of redundancy in the KeyListener interface in the sense
that a single key press and release generates three KeyEvents: A key-
typed event, when the key is pressed, a key-released event, when the key
is released, and a key-pressed event, when the key is pressed and released.
While it is important for some programs to be able to distinguish be-
tween a key-typed and key-released event, for this program, we will take
action whenever one of the arrow keys is pressed (typed and released).
Therefore, we implement the keyPressed() method as follows:� �

public void keyPressed (KeyEvent e) { // C h e c k a r r o w k e y s

i n t keyCode = e . getKeyCode () ;
i f (keyCode == e . VK UP) // Up a r r o w

pad . moveUp () ;
e lse i f (keyCode == e .VKDOWN) // Down a r r o w

pad . moveDown () ;
} // k e y R e l e a s e d ()
 	

Each key on the keyboard has a unique code that identifies the key.
The key’s code is gotten from the KeyEvent object by means of the

SECTION 14.7 • CASE STUDY: The Game of Pong 685

� �
import j avax . swing . ∗ ;
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s PongFrame extends JFrame implements KeyListener {
private B a l l b a l l ;
private Paddle pad ;

public PongFrame () {
setBackground (Color . white) ;
addKeyListener (t h i s) ;
pad = new Paddle (t h i s) ; // C r e a t e t h e p a d d l e

b a l l = new B a l l (t h i s) ; // C r e a t e t h e b a l l

b a l l . s t a r t () ;
} // P o n g F r a m e ()

public void paint (Graphics g) {
g . se tColor (getBackground ()) ; // E r a s e t h e d r a w i n g a r e a

g . f i l l R e c t (0 , 0 , getWidth () , getHeight ()) ;

g . se tColor (Color . blue) ; // P a i n t t h e b a l l

g . f i l l O v a l (b a l l . getX () , b a l l . getY () , b a l l . SIZE , b a l l . SIZE) ;

pad . r e s e t L o c a t i o n () ; // P a i n t t h e p a d d l e

g . se tColor (Color . red) ;
g . f i l l R e c t (pad . getX () , pad . getY () , Paddle .WIDTH, Paddle .HEIGHT) ;

} // p a i n t ()

public boolean bal lHi tsPaddle () {
return b a l l . getX () + B a l l . SIZE >= pad . getX ()

&& b a l l . getY () >= pad . getY ()
&& b a l l . getY () <= pad . getY () + Paddle .HEIGHT;

} // b a l l H i t s P a d d l e ()

public void keyPressed (KeyEvent e) { // C h e c k f o r a r r o w k e y s

i n t keyCode = e . getKeyCode () ;
i f (keyCode == e . VK UP) // Up a r r o w

pad . moveUp () ;
e lse i f (keyCode == e .VKDOWN) // Down a r r o w

pad . moveDown () ;
} // k e y R e l e a s e d ()

public void keyTyped (KeyEvent e) {} // U n u s e d

public void keyReleased (KeyEvent e) {} // U n u s e d

public s t a t i c void main (S t r i n g [] args) {
PongFrame f = new PongFrame () ;
f . s e t S i z e (4 0 0 , 4 0 0) ;
f . s e t V i s i b l e (t rue) ;

} // P o n g F r a m e
 	
Figure 14.33: Definition of the PongFrame class.

686 CHAPTER 14 • Threads and Concurrent Programming

getKeyCode() method. Then it is compared with the codes for the up-
arrow and down-arrow keys, which are implemented as class constants,
VK UP and VK DOWN, in the KeyEvent class. If either of those keys were
typed, the appropriate paddle method, moveUP() or moveDown(), is
called.

Note that even though we are not using the keyPressed() and
keyReleased() methods in this program, it is still necessary to provide
implementations for these methods in the frame. In order to implement
an interface, such as the KeyListener interface, you must implement
all the abstract methods in the interface. That is why we provide triv-
ial implementations of both the keyPressed() and keyReleased()
methods.

14.7.4 Animating the Bouncing Ball
Computer animation is accomplished by repeatedly drawing, erasing,
and re-drawing an object at different locations on the drawing panel.
The frame’s paint() method is used for drawing the ball and the pad-
dle at their current locations. The paint() method is never called di-
rectly. Rather, it is called automatically after the constructor method
PongFrame(), when the program is started. It is then invoked indirectly
by the program by calling the repaint() method, which is called in the
run() method of the Ball class. The reason that paint() is called in-
directly is because Java needs to pass it the frame’s current Graphics
object. Recall that in Java all drawing is done using a Graphics object.

In order to animate the bouncing ball, we first erase the current image
of the ball, then we draw the ball in its new location. We also draw the
paddle in its current location. These steps are carried out in the frame’s
paint() method. First, the drawing area is cleared by painting its rect-
angle in the background color. Then the ball and paddle are painted at
their current locations. Note that before painting the paddle, we first call
its resetLocation() method. This causes the paddle to be relocated in
case the user has resized the frame’s drawing area. There is no need to
do this for the ball because the ball’s drawing area is updated within the
Ball.move() method every time the ball is moved.

One problem with computer animations of this sort is that the repeated
drawing and erasing of the drawing area can cause the screen to flicker.Double buffering
In some drawing environments a technique known as double buffering
is used to reduce the flicker. In double buffering, an invisible, off-screen,
buffer is used for the actual drawing operations and it is then used to
replace the visible image all at once when the drawing is done. Fortu-
nately, Java’s Swing components, including JApplet and JFrame, per-
form an automatic form of double buffering, so we needn’t worry about
it. Some graphics environments, including Java’s AWT environment, do
not perform double buffering automatically, in which case the program
itself must carry it out.

Like the other examples in this chapter, the game of Pong provides a
simple illustration of how threads are used to coordinate concurrent ac-
tions in a computer program. As most computer game fans will realize,
most modern interactive computer games utilize a multithreaded design.
The use of threads allows our interactive programs to achieve a respon-
siveness and sophistication that is not possible in single-threaded pro-

CHAPTER 14 • Chapter Summary 687

grams. One of the great advantages of Java is that it simplifies the use of
threads, thereby making thread programming accessible to programmers.
However, one of the lessons that should be drawn from this chapter is
that multithreaded programs must be carefully designed in order to work
effectively.

SELF-STUDY EXERCISE
EXERCISE 14.12 Modify the PongFrame program so that it contains a

second ball that starts at a different location from the first ball.

CHAPTER SUMMARYTechnical Terms
asynchronous
blocked
busy waiting
concurrent
critical section
dispatched
fetch-execute cycle
lock
monitor

multitasking
multithreaded
mutual exclusion
priority scheduling
producer/consumer

model
quantum
queue
ready queue

round-robin
scheduling

scheduling algorithm
task
thread
thread life cycle
time slicing

Summary of Important Points
• Multitasking is the technique of executing several tasks at the same time

within a single program. In Java we give each task a separate thread of
execution, thus resulting in a multithreaded program.
• A sequential computer with a single central processing unit (CPU) can

execute only one machine instruction at a time. A parallel computer
uses multiple CPUs operating simultaneously to execute more than one
instruction at a time.
• Each CPU uses a fetch-execute cycle to retrieve the next machine in-

struction from memory and execute it. The cycle is under the control
of the CPU’s internal clock, which typically runs at several hundred
megahertz—where 1 megahertz (MHz) is 1 million cycles per second.
• Time slicing is the technique whereby several threads can share a single

CPU over a given time period. Each thread is given a small slice of the
CPU’s time under the control of some kind of scheduling algorithm.
• In round-robin scheduling, each thread is given an equal slice of time,

in a first-come–first-served order. In priority scheduling, higher-priority
threads are allowed to run before lower-priority threads are run.
• There are generally two ways of creating threads in a program. One is

to create a subclass of Thread and implement a run() method. The
other is to create a Thread instance and pass it a Runnable object—
that is, an object that implements run().
• The sleep() method removes a thread from the CPU for a determi-

nate length of time, giving other threads a chance to run.
• The setPriority() method sets a thread’s priority. Higher-priority

threads have more and longer access to the CPU.

688 CHAPTER 14 • Threads and Concurrent Programming

• Threads are asynchronous. Their timing and duration on the CPU are
highly sporadic and unpredictable. In designing threaded programs,
you must be careful not to base your algorithm on any assumptions
about the threads’ timing.
• To improve the responsiveness of interactive programs, you could

give compute-intensive tasks, such as drawing lots of dots, to a lower-
priority thread or to a thread that sleeps periodically.
• A thread’s life cycle consists of ready, running, waiting, sleeping, and

blocked states. Threads start in the ready state and are dispatched to
the CPU by the scheduler, an operating system program. If a thread
performs an I/O operation, it blocks until the I/O is completed. If it
voluntarily sleeps, it gives up the CPU.
• According to the producer/consumer model, two threads share a re-

source, one serving to produce the resource and the other to consume
the resource. Their cooperation must be carefully synchronized.
• An object that contains synchronized methods is known as a mon-

itor. Such objects ensure that only one thread at a time can execute a
synchronized method. The object is locked until the thread completes
the method or voluntarily sleeps. This is one way to ensure mutually
exclusive access to a resource by a collection of cooperating threads.
• The synchronized qualifier can also be used to designate a method

as a critical section, whose execution should not be preempted by one of
the other cooperating threads.
• In designing multithreaded programs, it is useful to assume that if a

thread can be interrupted at a certain point, it will be interrupted there.
Thread coordination should never be left to chance.
• One way of coordinating two or more cooperating threads is to use

the wait/notify combination. One thread waits for a resource to
be available, and the other thread notifies when a resource becomes
available.

CHAPTER 14 • Solutions to Self-Study Exercises 689

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 14.1� �
public c l a s s PrintOdds implements Runnable {

private i n t bound ;
public PrintOdds (i n t b) {

bound = b ;
}

public void p r i n t () {
i f (i n t k = 1 ; k < bound ; k+=2)

System . out . p r i n t l n (k) ;
}

public void run () {
p r i n t () ;

}
}
 	
SOLUTION 14.2 On my system, the experiment yielded the following output, if
each thread printed its number after every 100,000 iterations:� �
1111112222222211111111333333322222221111113333333
222224444444433333344444445555555544444555555555555
 	
This suggests that round-robin scheduling is being used.

SOLUTION 14.3 If each thread is given 50 milliseconds of sleep on each itera-
tion, they tend to run in the order in which they were created:� �
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 . . .
 	
SOLUTION 14.4 The garbage collector runs whenever the available memory
drops below a certain threshold. It must have higher priority than the application,
since the application won’t be able to run if it runs out of memory.

SOLUTION 14.5 To improve the responsiveness of an interactive program, the
system could give a high priority to the threads that interact with the user and a
low priority to those that perform noninteractive computations, such as number
crunching.

SOLUTION 14.6 If the JVM were single threaded, it wouldn’t be possible to
break out of an infinite loop, because the program’s loop would completely con-
sume the CPU’s attention.

SOLUTION 14.7 If round-robin scheduling is used, each thread will be get a por-
tion of the CPU’s time, so the GUI thread will eventually get its turn. But you don’t
know how long it will be before the GUI gets its turn, so there might still be an
unacceptably long wait before the user’s actions are handled. Thus, to guarantee
responsiveness, it is better to have the drawing thread sleep on every iteration.

SOLUTION 14.8 If Dotty’s priority is set to 1, a low value, this does improve
the responsiveness of the interface, but it is significantly less responsive than using
a sleep() on each iteration.

690 CHAPTER 14 • Threads and Concurrent Programming

SOLUTION 14.9 In a real bakery only one customer at a time can take a number.
The take-a-number gadget “enforces” mutual exclusion by virtue of its design:
There’s room for only one hand to grab the ticket and there’s only one ticket per
number. If two customers got “bakery rage” and managed to grab the same ticket,
it would rip in half and neither would benefit.

SOLUTION 14.10 One experiment to run would be to make the clerk’s perfor-
mance very slow by using large sleep intervals. If the algorithm is correct, this
should not affect the order in which customers are served. Another experiment
would be to force the clerk to work fast but the customers to work slowly. This
should still not affect the order in which the customers are served.

SOLUTION 14.11 You should observe that the waiting line builds up as cus-
tomers enter the bakery, but the clerk should still serve the customers in the correct
order.

SOLUTION 14.12 A two-ball version of Pong would require the following
changes to the original version:

1. A new Ball() constructor that has parameters to set the initial location and
direction of the ball.

2. The PongFrame should create a new Ball instance, start it, and draw it.

EXERCISES EXERCISE 14.1 Explain the difference between the following pairs of terms:
a. Blocked and ready.
b. Priority and round-robin scheduling.
c. Producer and consumer.
d. Monitor and lock.

e. Concurrent and time slicing.
f. Mutual exclusion and critical section.
g. Busy and nonbusy waiting.

Note: For programming exercises,
first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

EXERCISE 14.2 Fill in the blanks.

a. happens when a CPU’s time is divided among several different
threads.

b. A method that should not be interrupted during its execution is known as a
.

c. The scheduling algorithm in which each thread gets an equal portion of the
CPU’s time is known as .

d. The scheduling algorithm in which some threads can preempt other threads is
known as .

e. A is a mechanism that enforces mutually exclusive access to a syn-
chronized method.

f. A thread that performs an I/O operation may be forced into the state
until the operation is completed.

EXERCISE 14.3 Describe the concept of time slicing as it applies to CPU
scheduling.

EXERCISE 14.4 What’s the difference in the way concurrent threads would be
implemented on a computer with several processors and on a computer with a
single processor?

EXERCISE 14.5 Why are threads put into the blocked state when they perform
an I/O operation?

EXERCISE 14.6 What’s the difference between a thread in the sleep state and a
thread in the ready state?

CHAPTER 14 • Exercises 691

EXERCISE 14.7 Deadlock is a situation that occurs when one thread is holding
a resource that another thread is waiting for, while the other thread is holding
a resource that the first thread is waiting for. Describe how deadlock can occur
at a four-way intersection with cars entering from each branch. How can it be
avoided?

EXERCISE 14.8 Starvation can occur if one thread is repeatedly preempted by
other threads. Describe how starvation can occur at a four-way intersection and
how it can be avoided.

EXERCISE 14.9 Use the Runnable interface to define a thread that repeatedly
generates random numbers in the interval 2 through 12.

EXERCISE 14.10 Create a version of the Bakery program that uses two clerks
to serve customers.

EXERCISE 14.11 Modify the Numbers program so that the user can in-
teractively create NumberThreads and assign them a priority. Modify the
NumberThreads so that they print their numbers indefinitely (rather than for a
fixed number of iterations). Then experiment with the system by observing the
effect of introducing threads with the same, lower, or higher priority. How do
the threads behave when they all have the same priority? What happens when
you introduce a higher-priority thread into the mix? What happens when you
introduce a lower-priority thread into the mix?

EXERCISE 14.12 Create a bouncing ball simulation in which a single ball
(thread) bounces up and down in a vertical line. The ball should bounce off the
bottom and top of the enclosing frame.

EXERCISE 14.13 Modify the simulation in the previous exercise so that more
than one ball can be introduced. Allow the user to introduce new balls into the
simulation by pressing the space bar or clicking the mouse.

EXERCISE 14.14 Modify your solution to the previous problem by having the
balls bounce off the wall at a random angle.

EXERCISE 14.15 Challenge: One type of producer/consumer problem is the
reader/writer problem. Create a subclass of JTextField that can be shared by
threads, one of which writes a random number to the text field, and the other of
which reads the value in the text field. Coordinate the two threads so that the
overall effect of the program will be to print the values from 0 to 100 in the proper
order. In other words, the reader thread shouldn’t read a value from the text field
until there’s a value to be read. The writer thread shouldn’t write a value to the
text field until the reader has read the previous value.

EXERCISE 14.16 Challenge: Create a streaming banner thread that moves a
simple message across a panel. The message should repeatedly enter at the left
edge of the panel and exit from the right edge. Design the banner as a subclass of
JPanel and have it implement the Runnable interface. That way it can be added
to any user interface. One of its constructors should take a String argument that
lets the user set the banner’s message.

EXERCISE 14.17 Challenge: Create a slide show program, which repeatedly
cycles through an array of images. The action of displaying the images should
be a separate thread. The frame thread should handle the user interface. Give
the user some controls that let it pause, stop, start, speed up, and slow down the
images.

692 CHAPTER 14 • Threads and Concurrent Programming

EXERCISE 14.18 Challenge: Create a horse race simulation, using separate
threads for each of the horses. The horses should race horizontally across the
screen, with each horse having a different vertical coordinate. If you don’t have
good horse images to use, just make each horse a colored polygon or some other
shape. Have the horses implement the Drawable interface, which we introduced
in Chapter chapter-inheritance.

EXERCISE 14.19 Challenge: Create a multithreaded digital clock application.
One thread should keep time in an endless while loop. The other thread should
be responsible for updating the screen each second.

OBJECTIVES
After studying this chapter, you will

• Understand some basics about networks.
• Know how to use Java’s URL class to download network resources from a GUI or console application.
• Be able to design networking applications, using the client/server model.
• Understand how to use Java’s Socket and ServerSocket classes.

OUTLINE
15.1 Introduction
15.2 An Overview of Networks
15.3 Using Network Resources from an Applet
15.4 From the Java Library: java.net.URL
15.5 The Slide Show Program
15.6 Using Network Resources from an Application
15.7 Client/Server Communication via Sockets
15.8 Case Study: Generic Client/Server Classes
15.9 Playing One Row Nim Over the Network
15.10 Java Network Security Restrictions

Special Topic: Privacy and the Internet
15.11 Java Servlets and Server Pages

Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 15

Sockets and Networking

693

694 CHAPTER 15 • Sockets and Networking

15.1 Introduction

One of the key strengths of Java is the support it provides for the Internet
and client/server programming. In the previous chapter, we saw how to
make Java programs transfer information to and from external files. Al-
though files are external to the programs that process them, they are still
located on the same computer. In this chapter, we learn how to transfer
information to and from files that reside on a network. This enables pro-
grams to communicate with programs running on other computers. With
networking, we can communicate with computers anywhere in the world.

15.2 An Overview of Networks

Networking is a broad and complex topic. In a typical computer science
curriculum, it is covered in one or more upper-level courses. Neverthe-
less, in this chapter you can learn enough about networking to be able to
use network resources and to design simple Java networking applications.

15.2.1 Network Size and Topology
Computer networks come in a variety of sizes and shapes. A local area
network (LAN) is usually a privately owned network located within a sin-
gle office or a single organization. Your campus network would be an
example of a LAN. A wide area network (WAN) spans a wide geographical
distance like a country or a continent. It may use a combination of public,
private, and leased communication devices. Some of the large commercial
networks, such as MCI and Sprint, are examples of WANs.

The computers that make up a network can be arranged in a variety of
topologies, or shapes, some of the most common of which are shown in Fig-
ures 15.1 and 15.2. As you would expect, different topologies use different
techniques for transmitting information from computer to computer.Network topology

Figure 15.1: Star, bus, and ring
topologies.

Hub

Star topology Bus topology

Ring topology

In a star network (Fig. 15.1), a central computer functions as a hub,
with every other computer in the network connected to the hub. Each

SECTION 15.2 • An Overview of Networks 695

Hub

Tree topology Fully connected

mesh topology

Hub Hub

Figure 15.2: Tree and fully con-
nected mesh topologies.

computer can communicate with the others but only through the hub. The
bus topology doesn’t have a hub computer. Instead, each node looks at
each message sent on the bus to find those that are addressed to it. In
sending a message, a node waits until the bus is free and then transmits
the message.

A ring network (Fig. 15.1) also has no host, and the computers are con-
nected in a loop, through which they exchange information. The tree
topology (Fig. 15.2) is organized into a hierarchy, with each level (trunk
of the tree, major branch of the tree) controlled by a hub. The fully con-
nected mesh network directly connects all points to all points, eliminat-
ing the “middleman.” Here there is no need to go through one or more
other computers in order to communicate with a particular computer in
the network.

Network topologies differ quite a bit in the expense of the wiring they
require, their efficiency, their susceptibility to failure, and the types of
protocols they use. These differences are beyond the scope of this chapter.

15.2.2 Internets

An internet (lowercase i) is a collection of two or more distinct networks,
joined by devices called routers (Fig. 15.3). An internet is like a meeting of
the United Nations. Each country sends a delegation, all of whose mem- An internet vs. the Internet
bers speak that country’s language. A national delegation is like a single
computer network. Language interpreters take on the task of translating
one language to another so that any two delegations, say, the United States
and China, can communicate. The routers play a similar translation role
within an internet. The UN conference, composed of communicating del-
egations from all the different countries of the world, is like a worldwide
internet.

The United Nations is an apt analogy for the Internet (uppercase I),
which is an example of a particular worldwide internet. Internets, in the
generic sense, shouldn’t be confused with the Internet. It’s quite likely
that your campus LAN is itself composed of several, smaller networks,
each of which uses its own “language.”

696 CHAPTER 15 • Sockets and Networking
Figure 15.3: An internet is a col-
lection of distinct networks joined
together by routers.

Router Router

Router

Router

LAN LAN

LAN LAN

WAN

SELF-STUDY EXERCISES

EXERCISE 15.1 In a network of ten computers, which topology would
require the most cables?

EXERCISE 15.2 Which topology would be most resistant to having one
of its computers crash?

EXERCISE 15.3 Which topology would be least resistant to having one
of its computers crash?

15.2.3 Network Protocols
A protocol is a set of rules that governs the communication of infor-
mation. For example, the World Wide Web is based on the HyperText
Transfer Protocol (HTTP). HTTP describes how information is to be ex-
changed between a Web browser, such as Internet Explorer or NetscapeNetwork protocols
Navigator, and a Web server, which stores an individual’s or company’s
Web pages. Web pages are encoded in the HyperText Markup Language
(HTML). Among other things, the HTTP protocol can interpret HTML
pages.

Similarly, the Simple Mail Transfer Protocol (SMTP) is a set of rules
that governs the transfer of e-mail. And the File Transfer Protocol (FTP) is
the protocol that governs the transfer of files across the Internet.

Application Protocols

These three examples—HTTP, SMTP, and FTP—are examples of applica-
tion protocols. They are relatively high-level protocols that support and
govern a particular network application, such as e-mail or WWW ac-
cess. Among the things they determine how we address different com-
puters on the network. For example, the HTTP protocol specifies Web
addresses by using a Uniform Resource Locator (URL). A URL speci-
fies three necessary bits of information: The method used to transfer in-
formation (e.g., HTTP or FTP), the address of the host computer (e.g.,

SECTION 15.2 • An Overview of Networks 697

www.prenhall.com), and the path describing where the file is located
on the host (/morelli/index.html):� �

METHOD: //HOST/PATH
HTTP: //www. prenhal l . com/m o r e l l i/index . html
 	

Similarly, an e-mail address is specified by the SMTP protocol to consist
of a local mailbox address (George.W.Bush) followed by the address of
the computer (mail.whitehouse.gov):� �

LOCAL MAILBOX@COMPUTER
George .W. Bush@mail . whitehouse . gov
 	

Another good example of an application protocol is the Internet’s Domain
Name System (DNS), which is the system that governs how names, such
as whitehouse.gov and java.trincoll.edu, can be translated into Internet domain names
numeric addresses. In the DNS, each host computer on the Internet is
identified with a unique host name—for example, mail, java—which is
usually made up by the network administrator whose job it is to man-
age an organization’s network. The DNS divides the entire Internet into
a hierarchy of domains and subdomains. The generic domains are names
like com, edu, and mil, which refer to the type of organization— com-
mercial, educational, and military, respectively. In addition to these there
are country domains, such as fr, au, and nz, for France, Australia, and
New Zealand. Finally, individuals and organizations can buy their own
domain names, such as whitehouse, microsoft, and trincoll.

What makes the whole system work is that certain computers within
the network are designated as DNS servers. It is their role to translate
names such as java.trincoll.edu to numeric addresses whenever
they are requested to do so by clients such as the SMTP or the HTTP
server. Also, the DNS servers must communicate among themselves to
make sure that their databases of names and addresses are up-to-date.

SELF-STUDY EXERCISE
EXERCISE 15.4 What’s the URL of the Web server at Prentice Hall?

Identify its component parts—host name, domain name, Internet domain.

15.2.4 Client/Server Applications
The HTTP, FTP, SMTP, and DNS protocols are examples of client/server
protocols, and the applications they support are examples of client/server
applications. In general, a client/server application is one in which the
task at hand has been divided into two subtasks, one performed by the
client and one performed by the server (Fig. 15.4).

Request service

Provide service

Server Client

Figure 15.4: Client/server appli-
cation.

For example, in the HTTP case, the Web browser plays the role of a
client by requesting a Web page from a Web (HTTP) server. A Web server
is just a computer that runs HTTP software—a program that implements
the HTTP protocol. For e-mail, the program you use to read your e-mail—
Eudora, Pine, or Outlook—is an e-mail client. It requests certain services,
such as send mail or get mail, from an e-mail (SMTP) server, which is
simply a computer that runs SMTP software. In the FTP case, to transfer

698 CHAPTER 15 • Sockets and Networking

a program from one computer to another, you would use an FTP client,
such as Fetch. Finally, in the DNS case, the DNS servers handle requests
for name to address translations that come from HTTP, FTP, and SMTP
servers, acting in this case like clients.

So we can say that a client/server application is one that observes the
following protocol:� �

Server : Se t up a s e r v i c e on a p a r t i c u l a r host computer .
C l i e n t : Contact the server and request the s e r v i c e .
Server : Accept a request from a c l i e n t and provide the s e r v i c e .
 	

As these examples illustrate, many Internet applications are designed as
client/server applications.

JAVA EFFECTIVE DESIGN Divide and Conquer. The client/server
protocol is an example of the effective use of the divide-and-conquer
strategy.

SELF-STUDY EXERCISE
EXERCISE 15.5 Lots of our everyday interactions fit into the client/ser-

ver model. Suppose you are the client in the following services:

• Buying a piece of software at a bookstore.

• Buying a piece of software over the phone.

• Buying a piece of software over the Internet.

Identify the server and then describe the basic protocol.

15.2.5 Lower Level Network Protocols
Modern computer networks, such as the Internet, are organized into a
number of levels of software and hardware. Each level has its own collec-
tion of protocols (Fig. 15.5).

Application level: Provide

services. (HTTP, SMTP, DNS)

Transport layer: Deliver packets;

error recovery. (TCP, UDP)

Network layer: Move packets;

provide internetworking. (IP)

Physical and data link layers:

Transmit bits over a medium

from one address to another.

(ETHERNET)

Figure 15.5: Levels of network
protocols.

The application level, which contains the HTTP, FTP, SMTP, and DNS
protocols, is the highest level. Underlying the application-level protocols
are various transmission protocols, such as the Transfer Control Protocol (TCP)
and the User Datagram Protocol (UDP). These protocols govern the trans-
fer of large blocks of information, or packets, between networked com-
puters. All of the applications we mentioned—WWW, e-mail, and file
transfer— involve data transmission and, therefore, rely on one or morePacket transfer
of the transmission protocols.

At the very lowest end of this hierarchy of protocols are those that
govern the transmission of bits or electronic pulses over wires and those
that govern the delivery of data from node to node. Most of these proto-
cols are built right into the hardware—the wires, connectors, transmission
devices—that networks use. On top of these are protocols, such as the
ethernet protocol and token ring protocol, that govern the delivery of pack-
ets of information on a local area network. These too may be built right
into the network hardware.

As you might expect, these lower level protocols are vastly different
from each other. An ethernet network cannot talk directly to a token ringDisparate protocols

SECTION 15.2 • An Overview of Networks 699

"bonjour"

"au revoir"

Ethernet-based LAN Token-ring based LAN

English protocol French protocolRouter (IP protocol)

hello=bonjour

au revoir=goodbye

"hello"

"goodbye"

Figure 15.6: Routers between indi-
vidual networks use the IP proto-
col to translate one network pro-
tocol to another.

network. How can we connect such disparate networks together? Think
again of our United Nations analogy. How do we get French-speaking net-
works to communicate with English-speaking networks? The answer sup-
plied by the Internet is to use the Internetworking Protocol (IP), which
governs the task of translating one network protocol to a common format
(Fig. 15.6).

To push the UN analogy a bit further, the Internet’s IP is like a univer- The Internet protocol
sal language built into the routers that transmit data between disparate
networks. On one end of a transmission, a router takes a French packet
of information received from one of the delegates in its network. The
router translates the French packet into an IP packet, which it then sends
on through the network to its destination. When the IP packet gets close
to its destination, another router takes it and translates it into an English
packet before sending it on to its destination on its network.

15.2.6 The java.net Package

As we have seen, networks are glued together by a vast array of protocols.
Most of these protocols are implemented in software that runs on general-
purpose computers. You can install software on your personal computer
to turn it into a Web server, an FTP server, or an e-mail server. Some of the
lower level protocols are implemented in software that runs on special-
purpose computers, the routers. Still other protocols, such as the ethernet
protocol, are implemented directly in hardware.

Fortunately, we don’t have to worry about the details of even the high-
est level protocols in order to write client/server applications in Java. The
java.net (Fig. 15.7) package supplies a powerful and easy-to-use set of
classes that supports network programming.

The java.net.URL class provides a representation of the Internet’s java.net.*
Uniform Resource Locator that we described earlier. We’ll show how to
use its methods to download WWW pages. We’ll also look at an example
that uses a URL and an input stream so that files stored on the Web can be
used as input files to a Java applet or application program.

The Socket and ServerSocket classes provide methods that let us
develop our own networking applications. They enable us to make a
direct connection to an Internet host, and read and write data through
InputStreams and OutputStreams. As we will see, this is no
more difficult than reading and writing data to and from files. The
DatagramPacket and DatagramSocket classes provide support for
even lower-level networking applications, based on Internet packets.

Figure 15.8: An applet that con-
tinuously displays slides down-
loaded from the Web.

700 CHAPTER 15 • Sockets and Networking
Figure 15.7: The java.net pack-
age.

java.io

java.lang

Object

DatagramPacket

DatagramSocket

InetAddress

ServerSocket

Socket

URL

URLConnection HttpURLConnection

URLEncoded

IOException

MalformedURLException

ProtocolException

SocketException

UnknownHostException

UnknownServiceException

BindException

ConnectException

NoRouteToHostException

java.net

15.3 Using Multimedia Network Resources for a
Graphical Program

Suppose you want to write an graphical program that will display a cat-
alog consisting of images or documents that you’ve prepared and stored
on your Web site. Perhaps you can use such a program to give people
who visit your site a downloadable tour of your campus as a slide show
(Fig. 15.8). Or perhaps a company might use such a program to advertise
its products. In addition to making the catalog available through its main
Web site, you can imagine it running continuously as a slide show on aProblem statement
computer kiosk in the company’s lobby.

In order to solve this problem we have to be able to download and
display Web resources. As you know, Web resources are multimedia. That
is, they could be documents, images, sounds, video clips, and so on. All
Web resources are specified in terms of their Uniform Resource LocatorsSpecifying Web resources
(URLs). Thus, to download an image (or an HTML file or audio clip), we
usually type its URL into a Web browser. We want our program to know
beforehand the URLs of the images it will display, so there won’t be any
need for inputting the URL. We want to implement something like the
following algorithm:� �

repeat f o r e v e r
Generate the URL for the next s l i d e .
Use the URL to download the image or document .
Display the image or document .
 	

SECTION 15.4 • From the Java Library: java.net.URL 701

A URL specification is just a String, such as,� �
http : //www. cs . t r i n c o l l . edu : 8 0 / ˜ ram/ j j j /slideshow/ s l i d e 1 . g i f
 	

which describes how to retrieve the resource. First, it specifies the
protocol or method that should be used to download the resource
(http). Then, it provides the domain name of the server that
runs the protocol and the port number where the service is running
(www.cs.trincoll.edu:80). Next, the URL specifies the resource’s file
name (˜ram/jjj/slideshow/slide1.gif).

15.4 From the Java Library: java.net.URL

GIVEN SUCH a URL specification, how can we download its associated
resource? Are there Java classes that can help us solve this problem? For-
tunately, there are. First, the java.net.URL class contains methods to
help retrieve the resource associated with a particular URL (Fig. 15.9). The
URL class represents a Uniform Resource Locator. The URL() constructor
shown here (there are others) takes a URL specification as a String and,

+URL(in urlSpec : String)

+openConnection() : URLConnection

+openStream() : InputStream

URL

Figure 15.9: The java.net.URL
class.

assuming it specifies a valid URL, it creates a URL object. If the URL speci-

java.sun.com/j2se/1.5.0/docs/api/

fication is invalid, a MalformedURLException is thrown. A URL might
be invalid if the protocol were left off or if it is not a known protocol. The
following simple code creates a URL for the home page of our companion
Web site:� �

URL u r l ;
t r y {

u r l =
new URL(” http ://www. prenhal l . com:80/ m o r e l l i/index . html”) ;

} catch (MalformedURLException e) {
System . out . p r i n t l n (”Malformed URL: ” + u r l . t o S t r i n g ()) ;
}
 	

Note how we catch the MalformedURLException when we create a
new URL.

Once we have a valid URL instance, it can be used to download the
data or object associated with it. There are different ways to do this. The
openConnection() method creates a URLConnection, which can then
be used to download the resource. You would only use this method if
your application required extensive control over the download process.
A much simpler approach would use the openStream() method. This
method will open an InputStream, which you can then use to read the
associated URL data the same way you would read a file. This method is
especially useful for writing Java applications (in addition to applets). As
you might guess, downloading Web resources is particularly easy from a
Java applet. Now let’s search around for other methods that we can use. URLs and streams

702 CHAPTER 15 • Sockets and Networking

15.4.1 Code Reuse: The java.applet.Applet Class

The java.applet.Applet class itself contains several useful methods
for downloading and displaying Web resources. These methods are in-
herited by javax.swing.JApplet:� �

public c l a s s Applet extends Panel {
public AppletContext getAppletContext () ;
public AudioClip getAudioClip (URL u r l) ;
public Image getImage (URL u r l) ;
public void play (URL u r l) ;
public void showStatus (S t r i n g msg) ;

}
 	
As you see, both the getImage() and getAudioClip() methods use a
URL to download a resource. An AudioClip is a sound file encoded in
AU format, a special type of encoding for sound files. The getImage()
method can return files in either GIF or JPEG format, two popular image
file formats. The play() method downloads and plays an audio file in
one easy step. For example, to download and play an audio clip within an
applet requires just two lines of code:� �

URL u r l ;
t r y {

u r l = new
URL(” http ://www. cs . t r i n c o l l . edu/˜ram/ j j j /slideshow/sound . au”) ;

play (u r l) ;
} catch (MalformedURLException e) {

System . out . p r i n t l n (”Malformed URL: ” + u r l . t o S t r i n g ()) ;
}
 	

Similarly, to download (and store a reference to) an image is just as simple:� �
URL u r l ;
t r y {

u r l = new
URL(” http ://www. cs . t r i n c o l l . edu/˜ram/ j j j /slideshow/ s l i d e 0 . g i f ”) ;

imgRef = getImage (u r l) ;
} catch (MalformedURLException e) {

System . out . p r i n t l n (”Malformed URL: ” + u r l . t o S t r i n g ()) ;
}
 	

So, if applets were still in fashion, then these would be the methods we
need to implement our slide show. For an application, to load an image

SECTION 15.4 • From the Java Library: java.net.URL 703

you need to declare the ImageRef and the call to read the image url is
different:� �

URL u r l ;
Image imageRef ;
t r y {

u r l = new
URL(” http ://www. cs . t r i n c o l l . edu/˜ram/ j j j /slideshow/ s l i d e 0 . g i f ”) ;

imgRef = javax . imageio . ImageIO . read (u r l) ;
} catch (MalformedURLException e) {

System . out . p r i n t l n (”Malformed URL: ” + u r l . t o S t r i n g ()) ;
}
 	

For sound we need the javax.sound.sampled package. After con-
structing the URL, we need to set up an AudioInputStream, put the
format of the stream into a DataLine.info object, and then get the line
as a Clip, which we can then use to play the sound. The AudioSystem
class is used heavily for this.� �

Clip c l i p ; URL u r l = null ;
t r y {

u r l = new
URL(” http :// cooplogic . com/cheyney/sound/ l i f t M u s i c . wav”) ;
AudioInputStream audio =

AudioSystem . getAudioInputStream (u r l) ; // g e t s t r e a m f r o m u r l

DataLine . Info i n f o =
new DataLine . Info (Clip . c lass , audio . getFormat ()) ; // i n f o n e e d e d f o r l i n e

i f (! AudioSystem . isLineSupported (i n f o)) {
System . e r r . p r i n t l n (”Audio f i l e not supported : ” + i n f o) ;
return ;

}
t r y {

c l i p = (Clip) AudioSystem . getLine (i n f o) ; // t h e c l i p d o e s t h e w o r k

c l i p . open (audio) ; // o p e n t h e s t r e a m .

c l i p . s t a r t () ; // s t a r t t h e s t r e a m o n a s e p a r a t e t h r e a d .

// l o o p u n t i l c l i p h a s f i n i s h e d

while (c l i p . getFramePosit ion () < c l i p . getFrameLength ()) {
t r y {

Thread . s leep (1 0) ;
} catch (Exception e) {

e . p r i n t S t a c k T r a c e () ;
}

}
} catch (LineUnavai lableException ex) {

ex . p r i n t S t a c k T r a c e () ;
}

} catch (MalformedURLException e) {
System . out . p r i n t l n (”Malformed URL: ” + u r l . t o S t r i n g ()) ;

} catch (UnsupportedAudioFileException ae) {
System . out . p r i n t l n (” not supported : ” + ae) ;

} catch (IOException ioex) {
ioex . p r i n t S t a c k T r a c e () ;

}
 	

704 CHAPTER 15 • Sockets and Networking

We’ll use the URL() constructor to create a URL from a String,What methods can we use?
and we’ll use the javax.imageio.ImageIO.read(url) method to
retrieve the images from the Web.

15.5 The Slide Show Program

Problem Specification
Let’s suppose our slide show will repeatedly display a set of images
named “slide0.gif,” “slide1.gif,” and “slide2.gif.” Suppose these images
are stored on a Web site on www.cs.trincoll.edu and are stored in a
directory named /˜ram/jjj/slideshow. This means our program will
have to load the following three URLs:� �

http : //www. cs . t r i n c o l l . edu/˜ram/ j j j /slideshow/ s l i d e 0 . g i f
ht tp : //www. cs . t r i n c o l l . edu/˜ram/ j j j /slideshow/ s l i d e 1 . g i f
ht tp : //www. cs . t r i n c o l l . edu/˜ r a m j j j /slideshow/ s l i d e 2 . g i f
 	

We want our show to cycle endlessly through these images, leaving about
5 seconds between each slide.

User Interface Design
The user interface for this program is graphical, but it doesn’t contain any
GUI components. It just needs to display an image every 5 seconds. It
can use a simple paint() method to display an image each time it is
repainted:� �

public void paint (Graphics g) {
i f (currentImage != null)

g . drawImage (currentImage , 10 , 10 , t h i s) ;
}
 	

The assumption here is that the currentImage instance variable will be
set initially to null. Each time an image is downloaded, it will be set to
refer to that image. Because paint() is called before the program starts
downloading the images, it is necessary to guard against attempting to

JFrame

+ paint()
+ nextSlide()
+ init()

+ WIDTH : int
+ HEIGHT : int
- NIMGS : int
- slide[] : Image
- currentImage : Image
- nextImage : int

SlideShowFrame

Figure 15.10: The SlideShow-
Frame downloads and displays
the images.

draw a null image, which would lead to an exception.

Problem Decomposition
One problem we face with this program is getting it to pause between fig-

+ run()

«interface»

Runnable

+ Timer(in a : SlideShowFrame)
+ run()

- frame : SlideShowFrame

Timer

FIGURE 15.11 The Timer class
delays the frame thread between each
slide.

p830f2 each slide. One way to do this is to set up a loop that does nothing
for about 5 seconds:� �

for (i n t k = 0 ; k < 1000000 ; k++) ; // B u s y w a i t i n g
 	
However, this isn’t a very good solution. As we saw in Chapter 14, this
is a form of busy waiting that monopolizes the CPU, making it very diffi-
cult to break out of the loop. Another problem with this loop is that we
don’t really know how many iterations to do to approximate 5 seconds of
idleness.

SECTION 15.5 • The Slide Show Program 705

A much better design would be to use a separate timer thread, which
can sleep() for 5 seconds between each slide. So our program will have
two classes: one to download and display the slides and one to serve as a
timer (Figs. 15.10 and 15.11). (Java Swing has a Timer class that works a
little bit differently, see the javadoc for a description.)

• SlideShowFrame—This JFrame subclass will take care of download-
ing and displaying the images and starting the timer thread.
• Timer—This class will implement the Runnable interface so that it

can run as a separate thread. It will repeatedly sleep for 5 seconds and
then tell the frame to display the next side.

JAVA EFFECTIVE DESIGN Busy Waiting. Instead of busy waiting,
a thread that sleeps for a brief period on each iteration is a better way
to introduce a delay into an algorithm.

15.5.1 The SlideShowFrame class
What should we do with the images we download? Should we repeatedly
download and display them, or should we just download them once and
store them in memory? The second of these alternatives seems more effi-
cient. If an image has already been downloaded, it would be wasteful to
download it again.

JAVA EFFECTIVE DESIGN Network Traffic. In general, a design
that minimizes network traffic is preferable.

So we’ll need an array to store the images. Our slide show will then
consist of retrieving the next image from the array and displaying it. To What data do we need?
help us with this task, let’s use a nextImg variable as an array index to
keep track of the next image. Even though it isn’t absolutely necessary, we
could use a third variable here, currentImage, to keep track of the cur-
rent image being displayed. Thus, our frame needs the following instance
variables:� �

private s t a t i c f i n a l i n t NIMGS = 3 ;
private Image [] s l i d e = new Image [NIMGS] ;
private Image currentImage = null ;
private i n t nextImg = 0 ;
 	
Given these variables, let’s now write a method to take care of choos- Method design

ing the next slide. Recall that the paint() method is responsible for dis-
playing currentImage, so all this method needs to do is to update both
currentImage and nextImg. This method should be designed so that it
can be called by the Timer thread whenever it is time to display the next
slide, so it should be a public method. It can be a void method with no

706 CHAPTER 15 • Sockets and Networking

parameters, because the frame already contains all the necessary informa-
tion to display the next slide. Thus, there’s no need for information to be
passed back and forth between Timer and this method:� �

public void n e x t S l i d e () {
currentImage = s l i d e [nextImg] ;
nextImg = (nextImg + 1) % NIMGS;
r e p a i n t () ;

}// n e x t S l i d e ()
 	
The method’s algorithm is very simple. It sets currentImage to what-
ever slide is designated by nextImg and it then updates nextImg’s
value. Note here the use of modular arithmetic to compute the value
of nextImg. Given that NIMGS is 3, this algorithm will cause nextImg
to take on the repeating sequence of values 0, 1, 2, 0, 1, 2, and so forth.
Finally, the method calls repaint() to display the image.

JAVA PROGRAMMING TIP Modular Arithmetic. Modular
arithmetic
(x % N) is useful for cycling repeatedly through the values
0,1, . . . ,N−1.

The frame’s constructor, SlideShowFrame() method will have two
tasks:

• Download and store the images in slide[].
• Start the Timer thread.

As we discussed, downloading Web resources for an application requires
the use of the javax.imageio.ImageIO.read()method. Here we just
place these method calls in a loop:� �

for (i n t k =0; k < NIMGS; k++)
s l i d e [k] = javax . imageio . ImageIO . read (getCodeBase () ,

” g i f s /demo” + k + ” . g i f ”) ;
 	
Note here how we convert the loop variable k into a String and con-
catenate it right into the URL specification. This allows us to have URLs
containing “slide0.gif,” “slide1.gif,” and “slide2.gif.” This makes our pro-
gram easily extensible should we later decide to add more slides to the

SECTION 15.5 • The Slide Show Program 707

show. Note also the use of the class constant NIMGS as the loop bound.
This too adds to the program’s extensibility.

JAVA PROGRAMMING TIP Concatenation. Concatenating an
integer value (k) with a string lets you create file names of the form
file1.gif, file2.gif, and so on.

The task of starting the Timer thread involves creating an instance of
the Timer class and calling its start() method:� �

Thread timer = new Thread (new Timer (t h i s)) ;
t imer . s t a r t () ;
 	

Note that Timer is passed a reference to this frame. This enables Timer
to call the frame’s nextSlide() method every 5 seconds. This program-
ming technique is known as callback and the nextSlide() method is an
example of a callback method (Fig. 15.12).

JAVA PROGRAMMING TIP Callback. Communication between
two objects can often be handled using a callback technique. One
object is passed a reference to the other object. The first object uses the
reference to call one of the public methods of the other object.

This completes our design and development of SlideShowFrame, which
is shown in Figure 15.13.

: SlideShowFrame : Timer

1: start()

nextSlide()

Figure 15.12: Timer uses the
nextSlide() method to call back
the frame to remind it to switch to
the next slide.

15.5.2 The Timer Class
The Timer class is a subclass of Thread, which means it must implement
the run() method. Recall that we never directly call a thread’s run()

The timer thread

method. Instead, we call its start() method, which automatically calls
run(). This particular thread has a very simple and singular function. It
should call the SlideShowFrame.nextSlide()method and then sleep
for 5 seconds. So its main algorithm will be:� �

while (t rue) {
frame . n e x t S l i d e () ;
s leep (5000) ;

}
 	
However, recall that Thread.sleep() throws the Interrupted-
Exception. This means that we’ll have to embed this while loop in a
try/catch block.

To call the frame’s nextSlide() method, we also need a reference
to the SlideShowFrame, so we need to give it a reference, such as an
instance variable, as well as a constructor that allows the frame to pass
Timer a reference to itself.

Given these design decisions, the complete implementation of Timer
is shown in Figure 15.14. To see how it works, download it from the Java,
Java, Java Web site and run it.

708 CHAPTER 15 • Sockets and Networking� �
import j ava . awt . ∗ ;
import j avax . swing . ∗ ;
import j avax . imageio . ImageIO ;
import j ava . net . ∗ ;

public c l a s s SlideShowFrame extends JFrame {
public s t a t i c f i n a l i n t WIDTH=300 , HEIGHT=200;
private s t a t i c f i n a l i n t NIMGS = 3 ;
private Image [] s l i d e = new Image [NIMGS] ;
private Image currentImage = null ;
private i n t nextImg = 0 ;

public void paint (Graphics g) {
g . se tColor (getBackground ()) ;
g . f i l l R e c t (0 , 0 , WIDTH, HEIGHT) ;
i f (currentImage != null)

g . drawImage (currentImage , 10 , 10 , t h i s) ;
}// p a i n t ()

public void n e x t S l i d e () {
currentImage = s l i d e [nextImg] ;
nextImg = (nextImg + 1) % NIMGS;
r e p a i n t () ;

}// n e x t S l i d e ()

public SlideShowFrame () {
for (i n t k =0; k < NIMGS; k++)

s l i d e [k] = ImageIO . read (getCodeBase () ,
” g i f s /demo” + k + ” . g i f ”) ;

Thread timer = new Thread (new Timer (t h i s)) ;
t imer . s t a r t () ;
s e t S i z e (WIDTH, HEIGHT) ;

}// c o n s t r u c t o r

}// S l i d e S h o w F r a m e
 	
Figure 15.13: The SlideShowFrame class.

SELF-STUDY EXERCISE
EXERCISE 15.6 Describe the design changes you would make to
SlideShowFrame if you wanted to play a soundtrack along with your
slides. Assume that the sounds are stored in a sequence of files,
“sound0.au,” sound1.au,” and so forth, on your Web site.

15.6 Adding Text Network Resources for an
Application

The SlideShowFrame illustrates the use of multimedia resources from
the web. However, much of the files we may want to retrieve are text
based, and we want to be able to use these resources side-by-side with the
available multimedia. The next application describes how to do just this.

SECTION 15.6 • Adding Text Network Resources for anApplication 709� �
public c l a s s Timer implements Runnable {

private SlideShowFrame frame ;

public Timer (SlideShowFrame app) {
frame = app ;

}

public void run () {
t r y {

while (t rue) {
frame . n e x t S l i d e () ;
Thread . s leep (5000) ;

}
} catch (InterruptedExcept ion e) {

System . out . p r i n t l n (e . getMessage ()) ;
}

}// r u n ()

}// T i m e r
 	
Figure 15.14: The Timer class.

Problem Specification
Suppose a realtor asks you to write a Java application that will allow
customers to view pictures and descriptions of homes from an online Problem statement
database. The application should allow the customer to select a home
and should then display both an image of the home and a text description
of its features, such as square footage, asking price, and so on.

Suppose that the database of image and text files is kept at a fixed loca-
tion on the Web, but the names of the files themselves may change. This
will enable the company to change the database as it sells the homes. The
company will provide a text file that contains the names of the files for the
current selection of homes to input into the program. To simplify matters,
both image and text files have the same name but different extensions—
for example, ranch.txt and ranch.gif. The data file will store just the
names of the files, one per line, giving it the following format:� �

beauti fulCape
handsomeRanch
l o v e l y C o l o n i a l
 	

15.6.1 Downloading a Text File from the Web
This application requires us to solve two new problems:

1. How do we download a text file of names that we want to use as menu
items?

2. How do we download a text file and display it in a JTextArea?
3. How do we download and display an image file?

The SlideShowFrame solves the problem of downloading and display-
ing an image file. So, the most challenging part of this program is the task
of downloading a Web text file and using its data in the program. Understanding the problem

710 CHAPTER 15 • Sockets and Networking

For this program we must make use of two types of text data down-
loaded from the Web. The first will be the names of the image and docu-
ment files. We’ll want to read these names and use them as menu items
that the user can select. Second, once the user has selected a house to
view, we must download and display an image and a text description of
the house. Downloading the text is basically the same as downloading the
file of names. The only difference is that we need to display this text in a
JTextArea. Downloading the image file can be handled in more or less
the same way that it was handled in the SlideShowFrame— by using a
special Java method to download and display the image file.

Clearly, the problems of downloading a file from the Web and reading a
file from the disk are quite similar. Recall that we used streams to handle
the I/O operation when reading disk files. The various InputStream
and OutputStream classes contained the read() and write() meth-
ods needed for I/O. The situation is the same for downloading Web files.

Recall that the URL class contains the openStream() method, which
opens an InputStream to the resource associated with the URL. Once
the stream has been opened, you can read data from the stream just as if
it were coming from a file. The program doesn’t care whether the data areFile download algorithm
coming from a file on the Internet or a file on the disk. It just reads data
from the stream. So, to download a data file from the Internet, regardless
of whether it’s a text file, image file, audio file, or whatever, you would
use the following general algorithm:� �

URL u r l ;
InputStream data ;
t r y {

u r l = new URL(fileURL) ; // C r e a t e a URL

data = u r l . openStream () ; // O p e n a s t r e a m t o URL

// READ THE F I L E INTO MEMORY} // R e a d d a t

data . c l o s e () ; // C l o s e t h e s t r e a m

} catch (MalformedURLException e) { // T h r o w n b y URL ()

System . out . p r i n t l n (e . getMessage ()) ;
} catch (IOException e) {

System . out . p r i n t l n (e . getMessage ()) ;
}
 	

The algorithm consists of four basic steps:

• Create a URL instance.
• Open an InputStream to it.
• Read the data.
• Close the stream.

Step 3 of this algorithm—read the data—involves many lines of code and
has, therefore, been left as a subtask suitable for encapsulation within a
method.

Reading the Data
As we saw in the previous chapter, the algorithm for step 3 will dependText or binary data?
on the file’s data. If it’s a text file, we would like to read one line at a time,
storing the input in a String. If it’s an image or an audio file, we would
read one byte at a time.

SECTION 15.6 • Adding Text Network Resources for anApplication 711

Because our data are contained in a text file, we want to read one line at What library methods can we use?
a time. The BufferedReader class contains a readLine() method that
returns either a String storing the line or the value null when it reaches
the end of file. The following method shows how you would read a text
file into the program’s JTextArea, which is named display:� �

private void readTextIntoDisplay (URL u r l)
throws IOException {

BufferedReader data
= new BufferedReader (

new InputStreamReader (u r l . openStream ())) ;
d isplay . s e t T e x t (””) ; // R e s e t t h e t e x t a r e a

S t r i n g l i n e = data . readLine () ;
while (l i n e != null) { // R e a d e a c h l i n e

display . append (l i n e + ”\n”) ; // Add t o d i s p l a y

l i n e = data . readLine () ;
}
data . c l o s e () ;

}// r e a d T e x t I n t o D i s p l a y ()
 	
The method is passed the file’s URL and it uses the URL.openStream()
method to open the input stream. Note that the method throws
IOException, which means that any I/O exceptions that get raised will I/O exceptions
be handled by the calling method.

In this example, the input algorithm reads each line of the file and adds
it to the display. For our real estate application, the same basic algo-
rithm can be used to read the names of the data files and store them in
a menu from which a user makes selections. For example, if we use a
JComboBox menu named homeChoice, we would simply add each line
to it:� �

S t r i n g l i n e = data . readLine () ;
while (l i n e != null) {

homeChoice . addItem (l i n e) ;
l i n e = data . readLine () ;

}
 	
Interface Design
The interface for this application is very important. It should provide
some means to display a text file and an image. The text file can be
displayed in a JTextArea, and the image can be drawn on a JPanel.

Next, let’s consider the types of controls a user might need. The cus-
tomer should be allowed to select a home to view from a menu of options.
Because the program will have the list of available homes, it can provide
the options in a JComboBox pull-down menu.

To create an appropriate layout, we want to make sure that the controls,
the image, and JTextArea all have their own region of the application’s
window. This suggests a BorderLayout, which is the default layout
for a JFrame. We can put the JComboBox menu at the “North” border,
and the image and text on the “West” and “East” borders, respectively.
Figure 15.15 illustrates these various design decisions.

+RealEstateViewer()

+itemStateChanged()

+main()

+WIDTH : int=400

-HEIGHT : int=400

-dataFileURL : String

-baseURL : String

-display : JTextArea

-homeChoice : JComboBox

-imagePanel : ImagePanel

-currentImage : Image

RealEstateViewer

+itemStateChanged()

«interface»

ItemListener

JFrame

Figure 15.16: The RealEstate-
Viewer class defines the user in-
terface.

712 CHAPTER 15 • Sockets and Networking

JTextArea for displaying

information about

the home.

JFrame

Image

drawn here

JPanel JComboBox JTextArea

BorderNorth

BorderLayout eastBorder west

JFrame

	 JComboBox Menu

	 Display JTextArea

	 Canvas JPanel

Component Hierarchy

Choice menu

Figure 15.15: User interface de-
sign for the real estate application.

Problem Decomposition: RealEstateViewer

The task of downloading and displaying information from the Internet is
best handled by two separate classes: One to perform the downloading
and user interface tasks and the other to take care of displaying the image.

The task of downloading the image and text files from the Web can be
handled by the program’s main class, the RealEstateViewer, which
will also handle the user interface (Fig. 15.16). As the application’s top-
level window, RealEstateViewer will is subclass of JFrame. Be-
cause its controls will include a JComboBox, it must implement the
itemStateChanged() method of the ItemListener interface.

What components and other instance variables will we need for this
class? According to our interface design, it will need a JComboBox,
a JTextArea, and the ImagePanel. Because it will be downloading
images, it will need an Image variable.

The constants used by this application include the URL string for the
data file. Also, because all the images and data files will start with the
same prefix,� �

http : //java . t r i n c o l l . edu/˜ j j j a v a /homes/
 	
we should make this a constant in the program. These preliminary de-
cisions lead to the initial version of RealEstateViewer shown in Fig-
ure 15.17. Note that the main() method merely creates an instance of
the application and shows it. Note also that the currentImage variable
is declared public. This will let the ImagePanel have direct access to
currentImage whenever it needs to display a new image.

SECTION 15.6 • Adding Text Network Resources for anApplication 713� �
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;
import j ava . net . ∗ ;
import j ava . io . ∗ ;
import j avax . swing . ∗ ;

public c l a s s RealEstateViewer extends JFrame
implements I t emLis tener {

public s t a t i c f i n a l i n t WIDTH=400 ,HEIGHT=200;
private f i n a l S t r i n g dataFileURL =

” http :// java . t r i n c o l l . edu/˜ j j j a v a /homes/homes . t x t ” ;
private f i n a l S t r i n g baseURL =

” http :// java . t r i n c o l l . edu/˜ j j j a v a /homes/” ;
private JTextArea display = new JTextArea (2 0 , 2 0) ;
private JComboBox homeChoice = new JComboBox () ;
private ImagePanel imagePanel = new ImagePanel (t h i s) ;
public Image currentImage = null ;

public RealEstateViewer () { } // S t u b C o n s t r u c t o r

// I t e m L i s t e n e r i n t e r f a c e

public void itemStateChanged (ItemEvent evt) { } // S t u b

public s t a t i c void main (S t r i n g args []) {
RealEstateViewer viewer = new RealEstateViewer () ;
viewer . s e t S i z e (viewer .WIDTH, viewer .HEIGHT) ;
viewer . s e t V i s i b l e (t rue) ;
viewer . addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent e) {
System . e x i t (0) ; // Q u i t t h e a p p l i c a t i o n

}
}) ;

}// m a i n ()

}// R e a l E s t a t e V i e w e r
 	
Figure 15.17: The RealEstateViewer, Version 1.

The ImagePanel Class
We’ll use a second class, the ImagePanel, to handle displaying the im-
age (Figs. 15.18 and 15.19). The reason we use a separate class for this +paintComponent()

JPanel

+ImagePanel(in f : RealEstateViewer)

+paintComponent()

-frame : RealEstateViewer

ImagePanel

Figure 15.18: An overview of the
ImagePanel class.

task is that we want the image to appear in its own panel (which appears
on the West border of the main window). In addition to its constructor,
the only method needed in this class is the paintComponent() method.
This method will be called automatically whenever the main window is
repainted. Its task is simply to get the current image from its parent frame
and display it. Note that a reference to the parent frame is passed to the
object in its constructor.

Method Decomposition
The stub methods listed in the initial version of RealEstateViewer
(Fig. 15.17) outline the main tasks required by the application. Some of
these methods are very simple and even trivial to implement. Others
should be broken up into subtasks.

714 CHAPTER 15 • Sockets and Networking� �
import j avax . swing . ∗ ;
import j ava . awt . ∗ ;

public c l a s s ImagePanel extends JPanel {

private RealEstateViewer frame ;

public ImagePanel (RealEstateViewer parent) {
frame = parent ;

}

public void paintComponent (Graphics g) {
i f (frame . currentImage != null)

g . drawImage (frame . currentImage , 0 , 0 , t h i s) ;
}

}// I m a g e P a n e l
 	
Figure 15.19: The ImagePanel class.

The constructor method should be responsible for creating the user in-
terface, most of which will involve the routine tasks of registering a lis-
tener for the homeChoice menu and setting up an appropriate layout
that implements the design we developed for the user interface:� �

public RealEstateViewer () {
super (”Home Viewer Appl icat ion ”) ; // S e t w i n d o w t i t l e

homeChoice . addItemListener (t h i s) ;
t h i s . getContentPane () . add (”North” , homeChoice) ;
t h i s . getContentPane () . add (” East ” , d isplay) ;
t h i s . getContentPane () . add (” Center ” , imagePanel) ;
d isplay . setLineWrap (t rue) ;
initHomeChoices () ; // S e t up c h o i c e b o x

showCurrentSelect ion () ; // D i s p l a y c u r r e n t home

}
 	
Note the last two statements of the method. The first sets up the
JComboBox by reading its contents from a file stored in the company’s
database. Because that task will require several statements, we define
it as a separate method, initHomeChoices(), and defer its develop-
ment for now. Similarly, the task of displaying the current menu choice
has been organized into the showCurrentSelection()method, whose
development we also defer for now.

The itemStateChanged() method is called automatically when the
user selects a home from the JComboBox menu. Its task is to downloadItemListener
and display information about the current menu selection. To do this, it
can simply call the showCurrentSelection() method:� �

public void itemStateChanged (ItemEvent evt) {
showCurrentSelect ion () ;

}
 	

SECTION 15.6 • Adding Text Network Resources for anApplication 715

Downloading the Menu Items

Recall that according to our specification, the real estate firm stores
its current listing of homes in a text file, one home per line. The
initHomeChoices() method downloads the text and uses its contents
to set up the items in the homeChoice JComboBox menu:� �

private void initHomeChoices () {
t r y {

URL u r l = new URL(dataFileURL) ;
BufferedReader data = new BufferedReader (

new InputStreamReader (u r l . openStream ())) ;
S t r i n g l i n e = data . readLine () ;
while (l i n e != null) {

homeChoice . addItem (l i n e) ;
l i n e = data . readLine () ;

}
data . c l o s e () ;

} catch (MalformedURLException e) {
System . out . p r i n t l n (”ERROR: ” + e . getMessage ()) ;

} catch (IOException e) {
System . out . p r i n t l n (”ERROR: ” + e . getMessage ()) ;

}
}// i n i t H o m e C h o i c e s ()
 	

It uses the algorithm we developed earlier for downloading a text file.
Each line of the text file represents a menu item, so, as each line is read by
readLine(data), it is added to the JComboBox menu.

Downloading and Displaying Home Information

The showCurrentSelection() method is responsible for download-
ing and displaying images and text files whenever the user selects a home
to view. Recall that our specification called for using the name of the menu
item as a basis for constructing the name of its corresponding text file and
image file. Therefore, the basic algorithm we need is

• Get the user’s home choice.
• Create a URL for the associated text file.
• Download and display the associated text file.
• Create a URL for the associated GIF file.
• Download and display the image.

Because downloading a text document requires stream processing, we
should handle that in a separate method. The task of downloading an
image file is also a good candidate for a separate method. Both of these Method decomposition
methods will use a URL, so we can leave that task up to showCurrent-
Selection() itself. The showCurrentSelection() method will cre-

716 CHAPTER 15 • Sockets and Networking

ate the URLs and then invoke the appropriate methods to download and
display the resources:� �

private void showCurrentSelect ion () {
URL u r l = null ;

// G e t u s e r ’ s c h o i c e

S t r i n g choice = homeChoice . ge tSe lec tedI tem () . t o S t r i n g () ;
t r y { // C r e a t e u r l a n d d o w n l o a d f i l e

u r l = new URL(baseURL + choice + ” . t x t ”) ;
readTextIntoDisplay (u r l) ;

// C r e a t e u r l a n d d o w n l o a d i m a g e

u r l = new URL(baseURL + choice + ” . g i f ”) ;
currentImage = ImageIO . read (u r l) ;
T o o l k i t . g e t D e f a u l t T o o l k i t () . beep () ; // B e e p u s e r

r e p a i n t () ;
} catch (MalformedURLException e) {

System . out . p r i n t l n (”ERROR: ” + e . getMessage ()) ;
} catch (IOException e) {

System . out . p r i n t l n (”ERROR: ” + e . getMessage ()) ;
} // T r y / c a t c h b l o c k

} // s h o w C u r r e n t S e l e c t i o n ()
 	
Note that we have also elected to handle both the MalformedURLException
and IOException in this method. The advantage of this design is that it
separates exception handling from the normal algorithm and organizes it
into one method. Finally, note how string concatenation is used to build
the URL specifications, each of which consists of three parts: the baseURL,
the user’s choice, and the file extension.

The task of reading the text file and displaying its contents has been en-
capsulated into the readTextIntoDisplay() method. This private
utility method performs a standard file-reading algorithm using the
readLine() method that we developed earlier. Figure 15.20 provides
a view of the program’s appearance as it is displaying information to a
user. Figure 15.21 provides the complete implementation of this program.

Figure 15.20: The RealEstate-
Viewer program downloads im-
ages and documents over the
Web.

15.6.2 Reusing Code

As in other examples we have developed, our discovery and use of the
javax.imageio.ImageIO.read() method and other classes from the

SECTION 15.6 • Adding Text Network Resources for anApplication 717

� �
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;
import j ava . net . ∗ ;
import j ava . io . ∗ ;
import j avax . swing . ∗ ;

public c l a s s RealEstateViewer extends JFrame
implements I t emLis tener {

public s t a t i c f i n a l i n t WIDTH=400 ,HEIGHT=200;
private f i n a l S t r i n g dataFileURL =

” http :// java . t r i n c o l l . edu/˜ j j j a v a /homes/homes . t x t ” ;
private f i n a l S t r i n g baseURL =

” http :// java . t r i n c o l l . edu/˜ j j j a v a /homes/” ;
private JTextArea display = new JTextArea (2 0 , 2 0) ;
private JComboBox homeChoice = new JComboBox () ;
private ImagePanel imagePanel = new ImagePanel (t h i s) ;
public Image currentImage = null ;

public RealEstateViewer () {
super (”Home Viewer Appl icat ion ”) ; // S e t w i n d o w t i t l e

homeChoice . addItemListener (t h i s) ;
t h i s . getContentPane () . add (”North” , homeChoice) ;
t h i s . getContentPane () . add (” East ” , d isplay) ;
t h i s . getContentPane () . add (” Center ” , imagePanel) ;
d isplay . setLineWrap (t rue) ;
initHomeChoices () ; // S e t up t h e c h o i c e b o x

showCurrentSelect ion () ; // D i s p l a y t h e c u r r e n t home

} // R e a l E s t a t e V i e w e r ()

private void initHomeChoices () {
t r y {

URL u r l = new URL(dataFileURL) ;
BufferedReader data = new BufferedReader (

new InputStreamReader (u r l . openStream ())) ;
S t r i n g l i n e = data . readLine () ;
while (l i n e != null) {

homeChoice . addItem (l i n e) ;
l i n e = data . readLine () ;

} data . c l o s e () ;
} catch (MalformedURLException e) {

System . out . p r i n t l n (”ERROR: ” + e . getMessage ()) ;
} catch (IOException e) {

System . out . p r i n t l n (”ERROR: ” + e . getMessage ()) ;
}

}// i n i t H o m e C h o i c e s ()
 	
Figure 15.21: The RealEstateViewer class, Part I.

718 CHAPTER 15 • Sockets and Networking

� �
private void readTextIntoDisplay (URL u r l) throws IOException {

BufferedReader data
= new BufferedReader (

new InputStreamReader (u r l . openStream ())) ;
d isplay . s e t T e x t (””) ; // R e s e t t h e t e x t a r e a

S t r i n g l i n e = data . readLine () ;
while (l i n e != null) { // R e a d e a c h l i n e

display . append (l i n e + ”\n”) ; // And a d d i t t o t h e d i s p l a y

l i n e = data . readLine () ;
} data . c l o s e () ;

}// r e a d T e x t I n t o D i s p l a y ()

private void showCurrentSelect ion () {
URL u r l = null ; // G e t u s e r ’ s c h o i c e

S t r i n g choice = homeChoice . ge tSe lec tedI tem () . t o S t r i n g () ;
t r y {

u r l = new URL(baseURL + choice + ” . t x t ”) ; // C r e a t e URL

readTextIntoDisplay (u r l) ; // D o w n l o a d a n d d i s p l a y t e x t f i l e

u r l = new URL(baseURL + choice + ” . g i f ”) ; // C r e a t e URL

// D o w n l o a d i m a g e

currentImage = ImageIO . read (u r l) ;
T o o l k i t . g e t D e f a u l t T o o l k i t () . beep () ; // A l e r t t h e u s e r

r e p a i n t () ;
} catch (MalformedURLException e) {

System . out . p r i n t l n (”ERROR: ” + e . getMessage ()) ;
} catch (IOException e) {

System . out . p r i n t l n (”ERROR: ” + e . getMessage ()) ;
}

}// s h o w C u r r e n t S e l e c t i o n ()

public void itemStateChanged (ItemEvent evt) {
showCurrentSelect ion () ;

} // i t e m S t a t e C h a n g e d ()

public s t a t i c void main (S t r i n g args []) {
RealEstateViewer viewer = new RealEstateViewer () ;
viewer . s e t S i z e (viewer .WIDTH, viewer .HEIGHT) ;
viewer . s e t V i s i b l e (t rue) ;
viewer . addWindowListener (new WindowAdapter () {

public void windowClosing (WindowEvent e) {
System . e x i t (0) ; // Q u i t t h e a p p l i c a t i o n

}
}) ;

}// m a i n ()

}// R e a l E s t a t e V i e w e r
 	
Figure 15.21: (continued) RealEstateViewer, Part II.

SECTION 15.6 • Client/Server Communication via Sockets 719

Java class library illustrate an important principle of object-oriented pro-
gramming.

JAVA EFFECTIVE DESIGN Code Reuse. Before writing code to
perform a particular task, search the available libraries to see if there is
already code that performs that task.

An important step in designing object-oriented programs is making ap-
propriate use of existing classes and methods. In some cases, you want
to directly instantiate a class and use its methods to perform the desired
tasks. In other cases, it is necessary to create a subclass (inheritance) or im-
plement an interface (inheritance) in order to gain access to the methods
you need.

Of course, knowing what classes exist in the libraries is something that
comes with experience. There’s no way that a novice Java programmer
would know about, say, the ImageIO.read() method. However, one
skill or habit that you should try to develop is always to ask yourself the
question: “Is there a method that will do what I’m trying to do here?” That
question should be the first question on your search through the libraries
and reference books.� �

http : //java . sun . com/ j 2 s e /1 .5 .0/ docs/api/
 	
15.7 Client/Server Communication via Sockets

As we said earlier, many networking applications are based on the client/
server model. According to this model, a task is viewed as a service that
can be requested by clients and handled by servers. In this section, we
develop a simple client/server framework based on a socket connection
between the client and the server.

A socket is a simple communication channel through which two pro-
grams communicate over a network. A socket supports two-way commu-
nication between a client and a server, using a well-established protocol.
The protocol simply prescribes rules and behavior that both the server and
client must follow in order to establish two-way communication.

According to this protocol, a server program creates a socket at a certain Sockets and ports
port and waits until a client requests a connection. A port is a particular
address or entry point on the host computer, which typically has hun-
dreds of potential ports. It is usually represented as a simple integer value.
For example, the standard port for an HTTP (Web) server is 80. Once the
connection is established, the server creates input and output streams to
the socket and begins sending messages to and receiving messages from

720 CHAPTER 15 • Sockets and Networking

the client. Either the client or the server can close the connection, but it’s
usually done by the client.

JAVA DEBUGGING TIP Reserved Port Numbers. Port numbers
below 1024 are reserved for system use and should not be used by an
application program.

To help clarify this protocol, think of some service performed by a hu-
man using a telephone connection. The “server” waits for the phone toClient/server protocol
ring. When it rings, the server picks it up and begins communicating
with the client. A socket, combined with input and output streams, is
something like a two-way phone connection.

From the client’s side, the protocol goes as follows: The client creates a
socket and attempts to make a connection to the server. The client has to
know the server’s URL and the port at which the service exists. Once
a connection has been established, the client creates input and output
streams to the socket and begins exchanging messages with the server.
The client can close the connection when the service is completed.

Think again of the telephone analogy. A human client picks up the
phone and dials the number of a particular service. This is analogous to
the client program creating a socket and making a connection to a server.
Once the service agent answers the phone, two-way communication be-
tween the client and the server can begin.

Figure 15.22 provides a view of the client/server connection. Note that
a socket has two channels. Once a connection has been established be-Sockets and channels
tween a client and a server, a single two-way channel exists between them.
The client’s output stream is connected to the server’s input stream. The
server’s output stream is connected to the client’s input stream.

JAVA PROGRAMMING TIP Socket Streams. Each socket has two
streams, one for input and one for output.

Figure 15.22: A socket is a two-
channel communication link.

Output stream

Input stream

Socket connection

ClientServer

15.7.1 The Server Protocol
Let’s now see how a client/server application would be coded in Java. The
template in Figure 15.23 shows the code that is necessary on the server
side. The first step the server takes is to create a ServerSocket. The
first argument to the ServerSocket() method is the port at which the
service will reside. The second argument specifies the number of clients
that can be backlogged, waiting on the server, before a client will be re-
fused service. If more than one client at a time should request service, Java

SECTION 15.7 • Client/Server Communication via Sockets 721

would establish and manage a waiting list, turning away clients when the
list is full.

The next step is to wait for a client request. The accept() method will Waiting for client requests
block until a connection is established. The Java system is responsible for
waking the server when a client request is received.� �
Socket socket ; // R e f e r e n c e t o t h e s o c k e t

ServerSocket port ; // T h e p o r t w h e r e t h e s e r v e r w i l l l i s t e n

t r y {
port = new ServerSocket (10001 , 5) ; // C r e a t e a p o r t

socket = port . accept () ; // W a i t f o r c l i e n t t o c a l l

// C o m m u n i c a t e w i t h t h e c l i e n t

socket . c l o s e () ;
} catch (IOException e) {

e . p r i n t S t a c k T r a c e () ;
}
 	

Figure 15.23: Template for the server protocol.

Once a connection is established, the server can begin communicating
with the client. As we have suggested, a socket connection is like a two-
way telephone conversation. Both the client and server can “talk” back
and forth to each other. The details of this step are not shown here. As
we will see, the two-way conversation is managed by connecting both an
input and an output stream to the socket.

Once the conversation between client and server is finished—once the
server has delivered the requested service—the server can close the con-
nection by calling close(). Thus, there are four steps involved on the
server side:

• Create a ServerSocket and establish a port number.
• Listen for and accept a connection from a client.
• Converse with the client.
• Close the socket.

What distinguishes the server from the client is that the server establishes
the port and accepts the connection.

15.7.2 The Client Protocol
The client protocol (Fig. 15.24) is just as easy to implement. Indeed, on
the client side there are only three steps involved. The first step is to re-
quest a connection to the server. This is done in the Socket() construc- Initiating a request
tor by supplying the server’s URL and port number. Once the connection
is established, the client can carry out two-way communication with the
server. This step is not shown here. Finally, when the client is finished,
it can simply close() the connection. Thus, from the client side, the
protocol involves just three steps:

• Open a socket connection to the server, given its address.
• Converse with the server.
• Close the connection.

722 CHAPTER 15 • Sockets and Networking

What distinguishes the client from the server is that the client initiates the
two-way connection by requesting the service.� �
Socket connect ion ; // R e f e r e n c e t o t h e s o c k e t

t r y { // R e q u e s t a c o n n e c t i o n

connect ion = new Socket (” java . cs . t r i n c o l l . edu” , 1 0 0 0 1) ;

// C a r r y o n a two −way c o m m u n i c a t i o n

connect ion . c l o s e () ; // C l o s e t h e s o c k e t

} catch (IOException e) {
e . p r i n t S t a c k T r a c e () ;

}
 	
Figure 15.24: Template for the client protocol.

15.7.3 A Two-Way Stream Connection
Now that we have seen how to establish a socket connection between
a client and server, let’s look at the actual two-way communication
that takes place. Because this part of the process will be exactly the
same for both client and server, we develop a single set of methods,
writeToSocket() and readFromSocket(), that may be called by ei-
ther.

The writeToSocket() method takes two parameters, the SocketOutput routine
and a String, which will be sent to the process on the other end of the
socket:� �

protected void writeToSocket (Socket sock , S t r i n g s t r)
throws IOException {

oStream = sock . getOutputStream () ;
for (i n t k = 0 ; k < s t r . length () ; k++)

oStream . wri te (s t r . charAt (k)) ;
}// w r i t e T o S o c k e t ()
 	

If writeToSocket() is called by the server, then the string will be sent
to the client. If it is called by the client, the string will be sent to the server.

The method is declared protected because we will define it in a
superclass so that it can be inherited and used by both the client andProtected methods
server classes. Note also that the method declares that it throws an
IOException. Because there’s no way to fix an IOException, we’ll just
let this exception be handled elsewhere, rather than handling it within the
method.

In order to write to a socket we need only get the socket’s
OutputStream and then write to it. For this example, oStream
is an instance variable of the client/server superclass. We use the
Socket.getOutputStream() method to get a reference to the socket’s
output stream. Note that we are not creating a new output stream here.
We are just getting a reference to an existing stream, which was created
when the socket connection was accepted. Note also that we do not close
the output stream before exiting the method. This is important. If you

SECTION 15.7 • Client/Server Communication via Sockets 723

close the stream, you will lose the ability to communicate through the
socket.

JAVA LANGUAGE RULE Socket Streams. When a socket is
created, it automatically creates its own streams. To use one you just
need to get a reference to it.

JAVA DEBUGGING TIP Socket Streams. After writing to or reading
from a socket I/O stream, do not close the stream. That would make
the socket unusable for subsequent I/O.

Given the reference to the socket’s output stream, we simply write each
character of the string using the OutputStream.write() method. This
method writes a single byte. Therefore, the input stream on the other
side of the socket must read bytes and convert them back into characters.

JAVA EFFECTIVE DESIGN Designing a Protocol. In designing
two-way communication between a client and a server, you are
designing a protocol that each side must use. Failure to design and
implement a clear protocol will cause the communication to break
down.

The readFromSocket() method takes a Socket parameter and returns Input routine
a String:� �

protected S t r i n g readFromSocket (Socket sock)
throws IOException {

iStream = sock . getInputStream () ;
S t r i n g s t r =”” ;
char c ;
while ((c = (char) iStream . read ()) != ’\n ’)

s t r = s t r + c + ”” ;
return s t r ;

}
 	
It uses the Socket.getInputStream() method to obtain a reference to
the socket’s input stream, which has already been created. So here again
it is important that you don’t close the stream in this method. A socket’s
input and output streams will be closed automatically when the socket
connection itself is closed.

The InputStream.read() method reads a single byte at a time from
the input stream until an end-of-line character is received. For this par-
ticular application, the client and server will both read and write one line
of characters at a time. Note the use of the cast operator (char) in the
read() statement. Because bytes are being read, they must be converted

724 CHAPTER 15 • Sockets and Networking

to char before they can be compared to the end-of-line character or con-
catenated to the String. When the read loop encounters an end-of-line
character, it terminates and returns the String that was input.

JAVA DEBUGGING TIP Bytes and Chars. It is a syntax error to
compare a byte and a char. One must be converted to the other
using an explicit cast operator.

15.8 CASE STUDY: Generic Client/Server Classes

Suppose your boss asks you to set up generic client/server classes thatProblem statement
can be used to implement a number of related client/server applications.
One application that the company has in mind is a query service, in which
the client would send a query string to the server, and the server would
interpret the string and return a string that provides the answer. For ex-
ample, the client might send the query, “Hours of service,” and the client
would respond with the company’s business hours.

Another application the company wants will enable the client to fill out
an order form and transmit it as a string to the server. The server will
interpret the order, fill it, and return a receipt, including instructions as to
when the customer will receive the order.

All of the applications to be supported by this generic clien-
t/server will communicate via strings, so something very much like the
readFromSocket() and writeToSocket() methods can be used for
their communication. Of course, you want to design classes so they can
be easily extended to support byte-oriented, two-way communications,
should that type of service become needed.

In order to test the generic models, we will subclass them to create a
simple echo service. This service will echo back to the client any messageThe echo service
that the server receives. For example, we’ll have the client accept key-
board input from the user and then send the user’s input to the server and
simply report what the server returns. The following shows the output
generated by a typical client session:� �

CLIENT : connected to ’ java . cs . t r i n c o l l . edu ’
SERVER : Hello , how may I help you?
CLIENT : type a l i n e or ’ goodbye ’ to qui t
INPUT : h e l l o
SERVER : You said ’ h e l l o ’
INPUT : t h i s i s fun
SERVER : You said ’ t h i s i s fun ’
INPUT : java java java
SERVER : You said ’ java java java ’
INPUT : goodbye
SERVER : Goodbye
CLIENT : connect ion closed
 	

On the server side, the client’s message will be read from the input stream
and then simply echoed back (with some additional characters attached)

SECTION 15.8 • CASE STUDY: Generic Client/Server Classes 725

through the output stream. The server doesn’t display a trace of its activity
other than to report when connections are established and closed. We
will code the server in an infinite loop so that it will accept connections
from a (potentially) endless stream of clients. In fact, most servers are
coded in this way. They are designed to run forever and must be restarted
whenever the host that they are running needs to be rebooted. The output
from a typical server session is as follows:� �

Echo server a t java . cs . t r i n c o l l . edu / 1 5 7 . 2 5 2 . 1 6 . 2 1 wait ing for connect ions
Accepted a connect ion from java . cs . t r i n c o l l . edu / 1 5 7 . 2 5 2 . 1 6 . 2 1
Closed the connect ion

Accepted a connect ion from java . cs . t r i n c o l l . edu / 1 5 7 . 2 5 2 . 1 6 . 2 1
Closed the connect ion
 	

JAVA EFFECTIVE DESIGN Infinite Loop. A server is an application
that’s designed to run in an infinite loop. The loop should be exited
only when some kind of exception occurs.

15.8.1 Object-Oriented Design
A suitable solution for this project will make extensive use of object-
oriented design principles. We want Server and Client classes that can
easily be subclassed to support a wide variety of services. The solution
should make appropriate use of inheritance and polymorphism in its design.
Perhaps the best way to develop our generic class is first to design the
echo service, as a typical example, and then generalize it.

The Threaded Root Subclass: ClientServer
One lesson we can draw at the outset is that both clients and servers
use basically the same socket I/O methods. Thus, as we’ve seen, the

+run()

Thread

+run()

Client

+run()

Server

readFromSocket(in s : Socket) : String

writeToSocket(in s : String, in str)

iStream : InputStream

oStream : OutputStream

ClientServer

Figure 15.25: Overall design of a
client/server application.

readFromSocket() and writeToSocket() methods could be used by
both clients and servers. Because we want all clients and servers to inherit
these methods, they must be placed in a common superclass. Let’s name
this the ClientServer class.

Where should we place this class in the Java hierarchy? Should it be a
direct subclass of Object, or should it extend some other class that would
give it appropriate functionality? One feature that would make our clients
and servers more useful is if they were independent threads. That way
they could be instantiated as part of another object and given the subtask
of communicating on behalf of that object.

Therefore, let’s define the ClientServer class as a subclass of
Thread (Fig. 15.25). Recall from Chapter 14 that the typical way to derive
functionality from a Thread subclass is to override the run() method.
The run() method will be a good place to implement the client and
server protocols. Because they are different, we’ll define run() in both
the Client and Server subclasses.

For now, the only methods contained in ClientServer (Fig. 15.26)
are the two I/O methods we designed. The only modification we have

726 CHAPTER 15 • Sockets and Networking

made to the methods occurs in the writeToSocket() method, where
we have added code to make sure that any strings written to the socket
are terminated with an end-of-line character.

This is an important enhancement, because the read loop in the
readFromSocket() method expects to receive an end-of-line character.
Rather than rely on specific clients to guarantee that their strings end with
\n, our design takes care of this problem for them. This ensures that ev-� �
import j ava . io . ∗ ;
import j ava . net . ∗ ;

public c l a s s C l i e n t S e r v e r extends Thread {

protected InputStream iStream ; // I n s t a n c e v a r i a b l e s

protected OutputStream oStream ;

protected S t r i n g readFromSocket (Socket sock)
throws IOException {

iStream = sock . getInputStream () ;
S t r i n g s t r =”” ;
char c ;
while ((c = (char) iStream . read ()) != ’\n ’)

s t r = s t r + c + ”” ;
return s t r ;

}

protected void writeToSocket (Socket sock , S t r i n g s t r)
throws IOException {

oStream = sock . getOutputStream () ;
i f (s t r . charAt (s t r . length () − 1) != ’\n ’)

s t r = s t r + ’\n ’ ;
for (i n t k = 0 ; k < s t r . length () ; k++)

oStream . wri te (s t r . charAt (k)) ;
} // w r i t e T o S o c k e t ()

}// C l i e n t S e r v e r
 	
Figure 15.26: The ClientServer class serves as the superclass for clien-
t/server applications.

ery communication that takes place between one of our clients and servers
will be line oriented.

JAVA EFFECTIVE DESIGN Defensive Design. Code that performs
I/O, whether across a network or otherwise, should be designed to
anticipate and remedy common errors. This will lead to more robust
programs.

15.8.2 The EchoServer Class
Let’s now develop a design for the echo server. This class will be a sub-
class of ClientServer (Fig. 15.27). As we saw in discussing the server
protocol, one task that echo server will do is create a ServerSocket

SECTION 15.8 • CASE STUDY: Generic Client/Server Classes 727
Figure 15.27: Design of the
EchoServer class.

+EchoServer(in por : int, in backlogs : int)

 # provideService(in s : Socket)

+run()

-port : ServerSocket

-socket : Socket

EchoServer

ClientServer

and establish a port number for its service. Then it will wait for a
Socket connection, and once a connection is accepted, the echo server
will then communicate with the client. This suggests that our server needs What data do we need?
at least two instance variables. It also suggests that the task of creat-
ing a ServerSocket would be an appropriate action for its constructor
method. This leads to the following initial definition:� �

import j ava . net . ∗ ;
import j ava . io . ∗ ;

public c l a s s EchoServer extends C l i e n t S e r v e r {

private ServerSocket port ;
private Socket socket ;

public EchoServer (i n t portNum , i n t nBacklog) {
t r y {

port = new ServerSocket (portNum , nBacklog) ;
} catch (IOException e) {

e . p r i n t S t a c k T r a c e () ;
}

}

public void run () { } // S t u b m e t h o d

}// E c h o S e r v e r
 	
Note that the constructor method catches the IOException. Note also
that we have included a stub version of run(), which we want to define
in this class.

Once EchoServer has set up a port, it should issue the port.accept()
method and wait for a client to connect. This part of the server protocol
belongs in the run()method. As we have said, most servers are designed The server algorithm
to run in an infinite loop. That is, they don’t just handle one request and
then quit. Instead, once started (usually by the system), they repeatedly

728 CHAPTER 15 • Sockets and Networking

handle requests until deliberately stopped by the system. This leads to the
following run algorithm:� �

public void run () {
t r y {

System . out . p r i n t l n (”Echo server a t ”
+ InetAddress . getLocalHost ()
+ ” wait ing f o r connect ions ”) ;

while (t rue) {
socket = port . accept () ;
System . out . p r i n t l n (”Accepted a connect ion from ”

+ socket . getInetAddress ()) ;
provideService (socket) ;
socket . c l o s e () ;
System . out . p r i n t l n (” Closed the connect ion\n”) ;

}
} catch (IOException e) {

e . p r i n t S t a c k T r a c e () ;
}

}// r u n ()
 	
For simplicity, we are printing the server’s status messages on
System.out. Ordinarily these should go to a log file. Note also
that the details of the actual service algorithm are hidden in the
provideService() method.

As described earlier, the provideService() method consists of writ-
ing a greeting to the client and then repeatedly reading a string from the
input stream and echoing it back to the client via the output stream. This
is easily done using the writeToSocket() and readFromSocket()
methods we developed. The implementation of this method is shown,
along with the complete implementation of EchoServer, in Figure 15.28.

The protocol used by EchoServer.provideService() starts by
saying “hello” and loops until the client says “goodbye.” When the client
says “goodbye,” the server responds with “goodbye.” In all other cases
it responds with “You said X,” where X is the string that was received
from the client. Note the use of the toLowerCase() method to con-
vert client messages to lowercase. This simplifies the task of checking for
“goodbye” by removing the necessity of checking for different spellings
of “Goodbye.”

JAVA EFFECTIVE DESIGN Defensive Design. Converting I/O to
lowercase helps to minimize miscommunication between a client and
server and leads to a more robust protocol.

This completes the design of the EchoServer. We have deliberately
designed it in a way that will make it easy to convert into a generic
server. Hence, we have the motivation for using provideService()
as the name of the method that provides the echo service. In order to
turn EchoServer into a generic Server class, we can simply make
provideService() an abstract method, leaving its implementation to
the Server subclasses. We’ll discuss the details of this change later.Designing for extensibility

SECTION 15.8 • CASE STUDY: Generic Client/Server Classes 729

� �
import j ava . net . ∗ ;
import j ava . io . ∗ ;
public c l a s s EchoServer extends C l i e n t S e r v e r {

private ServerSocket port ;
private Socket socket ;
public EchoServer (i n t portNum , i n t nBacklog) {

t r y {
port = new ServerSocket (portNum , nBacklog) ;

} catch (IOException e) {
e . p r i n t S t a c k T r a c e () ;

}
} // E c h o S e r v e r ()

public void run () {
t r y {

System . out . p r i n t l n (”Echo server a t ” +
InetAddress . getLocalHost () + ” wait ing f o r connect ions ”) ;

while (t rue) {
socket = port . accept () ;
System . out . p r i n t l n (”Accepted a connect ion from ” +

socket . getInetAddress ()) ;
provideService (socket) ;
socket . c l o s e () ;
System . out . p r i n t l n (” Closed the connect ion\n”) ;

} // w h i l e

} catch (IOException e) {
e . p r i n t S t a c k T r a c e () ;

} // t r y / c a t c h

}// r u n ()

protected void provideService (Socket socket) {
S t r i n g s t r =”” ;
t r y {

writeToSocket (socket , ” Hello , how may I help you?\n”) ;
do {

s t r = readFromSocket (socket) ;
i f (s t r . toLowerCase () . equals (”goodbye”))

writeToSocket (socket , ”Goodbye\n”) ;
e lse

writeToSocket (socket , ”You said ’ ” + s t r + ” ’\n”) ;
} while (! s t r . toLowerCase () . equals (”goodbye”)) ;

} catch (IOException e) {
e . p r i n t S t a c k T r a c e () ;

} // t r y / c a t c h

}// p r o v i d e S e r v e r ()

public s t a t i c void main (S t r i n g args []) {
EchoServer server = new EchoServer (1 0 0 0 1 , 3) ;
se rver . s t a r t () ;

}// m a i n ()

}// E c h o S e r v e r
 	
Figure 15.28: EchoServer simply echoes the client’s message.

730 CHAPTER 15 • Sockets and Networking

15.8.3 The EchoClient Class

ClientServer

+EchoClient(in url : String, in port : int)

 # requestService(in s : Socket)

 # readFromKeyboard() : String

+run()

 # socket : Socket

EchoClient

Figure 15.29: Design of the
EchoClient class.

The EchoClient class is just as easy to design (Fig. 15.29). It, too, will be a
subclass of ClientServer. It needs an instance variable for the Socket
that it will use, and its constructor should be responsible for opening a
socket connection to a particular server and port. The main part of its
protocol should be placed in the run() method. The initial definition is
as follows:� �

import j ava . net . ∗ ;
import j ava . io . ∗ ;

public c l a s s EchoClient extends C l i e n t S e r v e r {

protected Socket socket ;

public EchoClient (S t r i n g url , i n t port) {
t r y {

socket = new Socket (url , port) ;
System . out . p r i n t l n (”CLIENT : connected to ”

+ u r l + ” : ” + port) ;
} catch (Exception e) {

e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

}
}// E c h o C l i e n t ()

public void run () { }// S t u b m e t h o d

}// E c h o C l i e n t
 	
The constructor method takes two parameters that specify the URL and
port number of the echo server. By making these parameters, rather than
hard coding them within the method, we give the client the flexibility to
connect to servers on a variety of hosts.

As with other clients, EchoClient’s run() method will consist of re-
questing some kind of service from the server. Our initial design called for
EchoClient to repeatedly input a line from the user, send the line to theThe client algorithm
server, and then display the server’s response. Thus, for this particular
client, the service requested consists of the following algorithm:� �

Wait for the server to say ” h e l l o ” .
Repeat

Prompt and get and l i n e of input from the user .
Send the user ’ s l i n e to the server .
Read the server ’ s response .
Display the response to the user .

u n t i l the user types ”goodbye”
 	
With an eye toward eventually turning EchoClient into a generic
client, let’s encapsulate this procedure into a requestService()
method that we can simply call from the run() method. Like for the

SECTION 15.8 • CASE STUDY: Generic Client/Server Classes 731

provideService() method, this design is another example of the en-
capsulation principle:

JAVA EFFECTIVE DESIGN Encapsulation. Encapsulating a portion
of the algorithm into a separate method makes it easy to change the
algorithm by overriding the method.

The requestService() method will take a Socket parameter and per-
form all the I/O for this particular client:� �

protected void r e q u e s t S e r v i c e (Socket socket) throws IOException {
S t r i n g s e r v S t r = readFromSocket (socket) ;

// C h e c k f o r ” H e l l o ”

System . out . p r i n t l n (”SERVER : ” + s e r v S t r) ; // R e p o r t t h e s e r v e r ’ s r e s p o n s e

System . out . p r i n t l n (”CLIENT : type a l i n e or ’ goodbye ’ to qui t ”) ;
// P r o m p t

i f (s e r v S t r . subs t r ing (0 , 5) . equals (” Hello ”)) {
S t r i n g u s e r S t r = ”” ;
do {

u s e r S t r = readFromKeyboard () ; // G e t i n p u t

writeToSocket (socket , u s e r S t r + ”\n”) ; // S e n d i t t o s e r v e r

s e r v S t r = readFromSocket (socket) ; // R e a d t h e s e r v e r ’ s r e s p o n s e

System . out . p r i n t l n (”SERVER : ” + s e r v S t r) ; // R e p o r t s e r v e r ’ s r e s p o n s e

} while (! u s e r S t r . toLowerCase () . equals (”goodbye”)) ; // U n t i l ’ g o o d b y e ’

}
} // r e q u e s t S e r v i c e ()
 	

Although this method involves several lines, they should all be familiar
to you. Each time the client reads a message from the socket, it prints
it on System.out. The first message it reads should start with the sub-
string “Hello”. This is part of its protocol with the client. Note how the
substring() method is used to test for this. After the initial greeting
from the server, the client begins reading user input from the keyboard,
writing it to the socket, then reading the server’s response, and displaying
it on System.out.

Note that the task of reading user input from the keyboard has been
made into a separate method, which is one we’ve used before:� �

protected S t r i n g readFromKeyboard () throws IOException {
BufferedReader input = new BufferedReader (

new InputStreamReader (System . in)) ;
System . out . p r i n t (”INPUT : ”) ;
S t r i n g l i n e = input . readLine () ;
return l i n e ;

}// r e a d F r o m K e y b o a r d ()
 	
The only method remaining to be defined is the run(), which is

shown with the complete definition of EchoClient in Figure 15.30.
The run() method can simply call the requestService() method.
When control returns from the requestService() method, run()
closes the socket connection. Because requestService() might throw

732 CHAPTER 15 • Sockets and Networking

an IOException, the entire method must be embedded within a
try/catch block that catches that exception.

Testing the Echo Service
Both EchoServer and EchoClient contain main()methods (Figs. 15.28
and 15.30). In order to test the programs, you would run the server on one
computer and the client on another computer. (Actually they can both be
run on the same computer, although they wouldn’t know this and would
still access each other through a socket connection.)

The EchoServer must be started first, so that its service will be avail-
able when the client starts running. It also must pick a port number. In
this case it picks 10001. The only constraint on its choice is that it cannot
use one of the privileged port numbers—those below 1024—and it cannot
use a port that’s already in use.� �

public s t a t i c void main (S t r i n g args []) {
EchoServer server = new EchoServer (1 0 0 0 1 , 3) ;
se rver . s t a r t () ;

}// m a i n ()
 	
When an EchoClient is created, it must be given the server’s URL
(java.trincoll.edu) and the port that the service is using:� �

public s t a t i c void main (S t r i n g args []) {
EchoClient c l i e n t =

new EchoClient (” java . t r i n c o l l . edu” , 1 0 0 0 1) ;
c l i e n t . s t a r t () ;

}// m a i n ()
 	
As they are presently coded, you will have to modify both EchoServer
and EchoClient to provide the correct URL and port for your environ-
ment. In testing this program, you might wish to experiment by trying to
introduce various errors into the code and observing the results. When
you run the service, you should observe something like the following
output on the client side:� �

CLIENT : connected to java . t r i n c o l l . edu :10001
SERVER : Hello , how may I help you?
CLIENT : type a l i n e or ’ goodbye ’ to qui t
INPUT : t h i s i s a t e s t
SERVER : You said ’ t h i s i s a t e s t ’
INPUT : goodbye
SERVER : Goodbye
CLIENT : connect ion closed
 	

15.9 Playing One Row Nim Over the Network

In the previous section we developed and tested a generic echo service.
It is based on a common root class, ClientServer, which is a subclass
of Thread. Both EchoServer and EchoClient extend the root class,

SECTION 15.9 • Playing One Row Nim Over the Network 733� �
import j ava . net . ∗ ;
import j ava . io . ∗ ;

public c l a s s EchoClient extends C l i e n t S e r v e r {

protected Socket socket ;

public EchoClient (S t r i n g url , i n t port) {
t r y {

socket = new Socket (url , port) ;
System . out . p r i n t l n (”CLIENT : connected to ” + u r l + ” : ” + port) ;

} catch (Exception e) {
e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

}
}// E c h o C l i e n t ()

public void run () {
t r y {

r e q u e s t S e r v i c e (socket) ;
socket . c l o s e () ;
System . out . p r i n t l n (”CLIENT : connect ion closed ”) ;

} catch (IOException e) {
System . out . p r i n t l n (e . getMessage ()) ;
e . p r i n t S t a c k T r a c e () ;

}
}// r u n ()

protected void r e q u e s t S e r v i c e (Socket socket) throws IOException {
S t r i n g s e r v S t r = readFromSocket (socket) ; // C h e c k f o r ” H e l l o ”

System . out . p r i n t l n (”SERVER : ” + s e r v S t r) ; // R e p o r t t h e s e r v e r ’ s r e s p o n s e

System . out . p r i n t l n (”CLIENT : type a l i n e or ’ goodbye ’ to qui t ”) ; // P r o m p t u s e r

i f (s e r v S t r . subs t r ing (0 , 5) . equals (” Hello ”)) {
S t r i n g u s e r S t r = ”” ;
do {

u s e r S t r = readFromKeyboard () ; // G e t i n p u t f r o m u s e r

writeToSocket (socket , u s e r S t r + ”\n”) ; // S e n d i t t o s e r v e r

s e r v S t r = readFromSocket (socket) ; // R e a d s e r v e r ’ s r e s p o n s e

System . out . p r i n t l n (”SERVER : ” + s e r v S t r) ; // R e p o r t s e r v e r ’ s r e s p o n s e

} while (! u s e r S t r . toLowerCase () . equals (”goodbye”)) ; // U n t i l ’ g o o d b y e ’

}
}// r e q u e s t S e r v i c e ()

protected S t r i n g readFromKeyboard () throws IOException {
BufferedReader input = new BufferedReader (new InputStreamReader (System . in)) ;
System . out . p r i n t (”INPUT : ”) ;
S t r i n g l i n e = input . readLine () ;
return l i n e ;

}// r e a d F r o m K e y b o a r d ()

public s t a t i c void main (S t r i n g args []) {
EchoClient c l i e n t = new EchoClient (” java . t r i n c o l l . edu” , 1 0 0 0 1) ;
c l i e n t . s t a r t () ;

}// m a i n ()

}// E c h o C l i e n t
 	
Figure 15.30: The EchoClient class prompts the user for a string and
sends it to the EchoServer, which simply echoes it back.

734 CHAPTER 15 • Sockets and Networking
Figure 15.31: Class hierarchy for a
generic client/server application.

+Server(in port : int, in backlog : int)

+run()

 # provideService(in s : Socket)

 # port : ServerSocket

 # socket : Socket

Server

 # readFromSocket(in sock : Socket) : String

 # writetoSocket(in sock : Socket, in str : String)

 # iStream : InputStream

 # oStream : OutputStream

ClientServer

+NimServer(in portNum : int, in nBacklog : int)

 # provideService(in s : Socket)

+run()

-port : ServerSocket

-socket : ServerSocket

NimServer

+Client()

+run()

 # readFromKeyboard()

 # requestService(in s : Socket)

 # socket : Socket

Client

+NimClient(in url : String, in requestServer : Socket)

 # requestService(in s : Socket)

+main()

 # socket : Socket

NimClient

+main()

Thread

and each implements its own version of run(). In this section, we will
generalize this design so that it can support a wide range of services. To
illustrate the effectiveness of the design, we will use it as the basis for a
program that plays One Row Nim over the Internet.

In order to generalize our design, we begin by identifying those ele-
ments that are common to all servers and clients and what is particular toDesigning for extensibility
the echo service and client. Clearly, the general server and client protocols
that are defined here in their respective run() methods, are something
that all servers and clients have in common. What differs from one appli-
cation to another is the particular service provided and requested, as de-
tailed in their respective provideService() and requestService()
methods. In this example, the service that is provided will be One Row
Nim. The clients that use this service will be (human) players of the game.

Therefore, the way to generalize this application is to define the
run() method in the generic Server and Client classes. TheAbstract service methods
overall design of the One Row Nim service will now consist of five
classes organized into the hierarchy shown in Figure 15.31. At the
root of the hierarchy is the ClientServer class, which contains noth-
ing but I/O methods used by both clients and servers. The ab-
stract Server and Client classes contain implementations of the

SECTION 15.9 • Playing One Row Nim Over the Network 735

Thread.run() method, which defines the basic protocols for servers
and clients, respectively. The details of the particular service are
encoded in the provideService() and requestService() meth-
ods. Because the run() methods defined in Client and Server
call provideService() and requestService(), respectively, these
methods must be declared as abstract methods in the Server and
Client classes. Any class that contains an abstract method must itself
be declared abstract.

Note that we have left the readFromSocket() and writeToSocket()
methods in the ClientServer class. These methods are written in
a general way and can be used, without change, by a wide range
of clients and servers. If necessary, they can also be overridden by
a client or server. In fact, as we will see, the NimServer class
does override the writeToSocket() method. Similarly, note that the
readFromKeyboard() method is defined in the Client superclass.
This is a general method that can be used by a large variety of clients,
so it is best if they don’t have to redefine it themselves.

These design decisions lead to the definitions of Server and
Client shown in Figures 15.32 and 15.33, respectively. Note
that provideService() and requestService() are left unimple-
mented. Subclasses of Server, such as NimServer, and subclasses of
Client, such as NimClient, can implement provideService() and
requestService() in a way that is appropriate for the particular ser-
vice they are providing.

JAVA EFFECTIVE DESIGN Polymorphism. Defining a method as
abstract within a superclass, and implementing it in various ways
in subclasses, is an example of polymorphism. Polymorphism is a
powerful object-oriented design technique.

15.9.1 The NimServer Class
Given the abstract definition of the Server class, defining a new ser-
vice is simply a matter of extending Server and implementing the Extensibility
provideService() method in the new subclass. We will name the
subclass NimServer.

736 CHAPTER 15 • Sockets and Networking

� �
import j ava . net . ∗ ;
import j ava . io . ∗ ;

public a b s t r a c t c l a s s Server extends C l i e n t S e r v e r {
protected ServerSocket port ;
protected Socket socket ;

public Server (i n t portNum , i n t nBacklog) {
t r y {

port = new ServerSocket (portNum , nBacklog) ;
} catch (IOException e) {

e . p r i n t S t a c k T r a c e () ;
} // t r y / c a t c h

}// S e r v e r ()

public void run () {
t r y {

System . out . p r i n t l n (” Server a t ” +
InetAddress . getLocalHost () +
” wait ing f o r connect ions ”) ;

while (t rue) {
socket = port . accept () ;
System . out . p r i n t l n (”Accepted a connect ion from ”

+ socket . getInetAddress ()) ;
provideService (socket) ;
socket . c l o s e () ;
System . out . p r i n t l n (” Closed the connect ion\n”) ;

}// w h i l e

} catch (IOException e) {
e . p r i n t S t a c k T r a c e () ;

} // t r y / c a t c h

}// r u n ()

// I m p l e m e n t e d i n s u b c l a s s

protected a b s t r a c t void provideService (Socket socket) ;
}// S e r v e r
 	

Figure 15.32: The abstract Server class.

SECTION 15.9 • Playing One Row Nim Over the Network 737

� �
import j ava . net . ∗ ;
import j ava . io . ∗ ;

public a b s t r a c t c l a s s C l i e n t extends C l i e n t S e r v e r {
protected Socket socket ;

public C l i e n t (S t r i n g url , i n t port) {
t r y {

socket = new Socket (url , port) ;
System . out . p r i n t l n (”CLIENT : connected to ” + u r l +

” : ” + port) ;
} catch (Exception e) {

e . p r i n t S t a c k T r a c e () ;
System . e x i t (1) ;

} // t r y / c a t c h b l o c k

}// C l i e n t ()

public void run () {
t r y {

r e q u e s t S e r v i c e (socket) ;
socket . c l o s e () ;
System . out . p r i n t l n (”CLIENT : connect ion closed ”) ;

} catch (IOException e) {
System . out . p r i n t l n (e . getMessage ()) ;
e . p r i n t S t a c k T r a c e () ;

} // t r y / c a t c h b l o c k

}// r u n ()

// I m p l e m e n t e d i n s u b c l a s s

protected a b s t r a c t void r e q u e s t S e r v i c e (Socket socket)
throws IOException ;

protected S t r i n g readFromKeyboard () throws IOException {
BufferedReader input = new BufferedReader

(new InputStreamReader (System . in)) ;
System . out . p r i n t (”INPUT : ”) ;
S t r i n g l i n e = input . readLine () ;
return l i n e ;

}// r e a d F r o m K e y b o a r d ()

}// C l i e n t
 	
Figure 15.33: The abstract Client class.

738 CHAPTER 15 • Sockets and Networking� �
import j ava . net . ∗ ;
import j ava . io . ∗ ;

public c l a s s NimServer extends Server {
public NimServer (i n t port , i n t backlog) {

super (port , backlog) ;
}
protected void provideService (Socket socket) {

OneRowNim nim = new OneRowNim () ;
t r y {

writeToSocket (socket , ”Hi Nim player . You ’ re Player 1 and I ’m Player 2 . ” +
nim . reportGameState () + ” ” + nim . getGamePrompt () + ”\n”) ;

play (nim , socket) ;
} catch (IOException e) {

e . p r i n t S t a c k T r a c e () ;
} // t r y /catch

} // provideService ()

private void play (OneRowNim nim , Socket socket) throws IOException {
NimPlayer computerPlayer = new NimPlayer (nim) ;
nim . addComputerPlayer (computerPlayer) ;
S t r i n g s t r =”” , response=”” ;
i n t userTakes = 0 , computerTakes = 0 ;
do {

s t r = readFromSocket (socket) ;
boolean legalMove = f a l s e ;
do {

userTakes = I n t e g e r . p a r s e I n t (s t r) ;
i f (nim . t a k e S t i c k s (userTakes)) {

legalMove = t rue ;
nim . changePlayer () ;
response = nim . reportGameState () + ” ” ;
i f (! nim . gameOver ()) {

computerTakes = I n t e g e r . p a r s e I n t (computerPlayer . makeAMove(””)) ;
response = response + ” My turn . I take ” + computerTakes + ” s t i c k s . ” ;
nim . t a k e S t i c k s (computerTakes) ;
nim . changePlayer () ;
response = response + nim . reportGameState () + ” ” ;
i f (! nim . gameOver ())

response = response + nim . getGamePrompt () ;
} // i f not game over
writeToSocket (socket , response) ;

} e lse {
writeToSocket (socket , ” That ’ s an i l l e g a l move . Try again .\n”) ;
s t r = readFromSocket (socket) ;

} // i f user takes
} while (! legalMove) ;

} while (! nim . gameOver ()) ;
} // play

// Overriding writeToSocket to remove \n from s t r
protected void writeToSocket (Socket soc , S t r i n g s t r) throws IOException {

S t r i n g B u f f e r sb = new S t r i n g B u f f e r () ;
for (i n t k = 0 ; k < s t r . length () ; k++)

i f (s t r . charAt (k) != ’\n ’)
sb . append (s t r . charAt (k)) ;

super . writeToSocket (soc , sb . t o S t r i n g () + ”\n”) ;
}
public s t a t i c void main (S t r i n g args []) {

NimServer server = new NimServer (1 0 0 0 1 , 5) ;
se rver . s t a r t () ;

} // main ()
} // NimServer
 	

Figure 15.34: The NimServer class.

Figure 15.34 provides a definition of the NimServer subclass. Note
how its implementation of provideService() uses an instance of
the OneRowNim class from Chapter 8. Also, the play() method,
which encapsulates the game-playing algorithm, uses an instance of

SECTION 15.9 • Playing One Row Nim Over the Network 739

NimPlayer, also from Chapter 8. You might recall that OneRowNim is
a TwoPlayerGame and NimPlayer defines methods that allow a com-
puter to play an optimal game of One Row Nim. In this example, the
server acts as one of the players and use a NimPlayer to manage its play-
ing strategy. Thus, clients that connect to NimServer will be faced by a
computer that plays an optimal game.

If you compare the details of the NimServer’s play() method with
the play() method from the implementation of OneRowNim, you will
see that they are very similar. In this implementation, we use public
methods of the OneRowNim object to manage the playing of the game.
Thus, addComputerPlayer() adds an instance of NimPlayer to the
game. The takeSticks(), changePlayer(), and gameOver() meth-
ods are used to manage the moves made by both itself and the client. And
the getGamePrompt() and reportGameState() methods are used to
manage the interaction and communication with the client. Note also
that whenever it is the server’s turn to move, it uses the NimPlayer’s
makeAMove() method to determine the optimal move to make.

Although the programming logic employed in the play() method
looks somewhat complex, it is very similar to the logic employed in the
Chapter 8 version of the game. The main difference here is that the
server uses the writeToSocket() and readFromSocket() methods
to manage the communication with the client. In this regard, this instance
of provideService() is no different than the provideService()
method we used in the EchoServer class.

Finally, note that NimServer provides an implementation of the
writeToSocket() method. This method is implemented in the Overriding a method
ClientServer() class and is inherited by NimServer. However,
the default implementation assumes that the client will use the a car-
riage return (\n) to determine the end of a particular message in
the socket. Because OneRowNim’s methods, getGamePrompt() and
reportGameState(), contain embedded carriage returns, it is necessary
to filter these. The new version of writeToSocket() performs this fil-
tering and calls the default method (super.writeToSocket(), after it
has finished its filtering task.

15.9.2 The NimClient Class

The NimClient class is even easier to implement. As its task is sim-
ply to manage the communication between the human user and the
NimServer, it is very similar to the requestService() method we
used in EchoClient. The relationship between the abstract Client class
(Fig. 15.33) and its extension in NimClient (Fig. 15.35) is very similar
to the relationship between Server and NimServer. The request-
Service() method is called by Client.run(). It is implemented in
NimClient. In this way, the Client class can serve as a superclass
for any number of clients. New clients for new services can be derived Creating new clients
from Client by simply implementing their own requestService()
method.

740 CHAPTER 15 • Sockets and Networking� �
import j ava . net . ∗ ;
import j ava . io . ∗ ;

public c l a s s NimClient extends C l i e n t {
private KeyboardReader kb = new KeyboardReader () ;
public NimClient (S t r i n g url , i n t port) {

super (url , port) ;
}

protected void r e q u e s t S e r v i c e (Socket socket) throws IOException {
S t r i n g s e r v S t r = readFromSocket (socket) ; // G e t s e r v e r ’ s r e s p o n s e

kb . prompt (”NIM SERVER : ” + s e r v S t r +”\n”) ; // R e p o r t s e r v e r ’ s r e s p o n s e

i f (s e r v S t r . subs t r ing (0 , 6) . equals (”Hi Nim”)) {
S t r i n g u s e r S t r = ”” ;
do {

u s e r S t r = kb . getKeyboardInput () ; // G e t u s e r ’ s move

writeToSocket (socket , u s e r S t r + ”\n”) ; // S e n d i t t o s e r v e r

s e r v S t r = readFromSocket (socket) ; // R e a d s e r v e r ’ s r e s p o n s e

kb . prompt (”NIM SERVER : ” + s e r v S t r + ”\n”) ; // R e p o r t r e s p o n s e

} while (s e r v S t r . indexOf (”Game over ! ”) == −1); // U n t i l g a m e o v e r

}
}// r e q u e s t S e r v i c e ()

public s t a t i c void main (S t r i n g args []) {
NimClient c l i e n t = new NimClient (” l o c a l h o s t ” , 1 0 0 0 1) ;
c l i e n t . s t a r t () ;

} // m a i n ()

} // N i m C l i e n t
 	
Figure 15.35: The derived NimClient class.

JAVA EFFECTIVE DESIGN Inheritance. By placing as much
functionality as possible into a generic client/server superclass, you
can simplify the creation of new services. This is an effective use of
Java’s inheritance mechanism.

15.9.3 Testing the Nim Service
Testing the One Row Nim service will be no different than testing the
Echo service. To test the service, you want to run both NimServer and
NimClient at the same time and preferably on different computers. As
they are presently coded, you will have to modify the main() methods
of both NimServer and NimClient to provide the correct URL and port
for your environment.

SELF-STUDY EXERCISE
EXERCISE 15.7 The design of the client/server hierarchy makes it easy

to create a new service by extending both the Server and Client classes.
Describe how you would implement a scramble service with this model.
A scramble service can be used by people trying to solve the daily scram-
ble puzzles found in many newspapers. Given a string of letters, the

SECTION 15.10 • Java Network Security Restrictions 741

scramble service will return a string containing all possible letter com-
binations. For example, given “cat,” the scramble service will return “act
atc cat cta tac tca.”

EXERCISE 15.8 Describe what happens when each of the following
errors is introduced into the EchoClient or EchoServer programs:

• Specify the wrong host name when running EchoClient.

• Specify the wrong port number when running EchoClient.

• Remove the reference to \n in the writeToSocket() call in
requestService().

15.10 Java Network Security Restrictions

One of the most attractive features of Java is that extensive effort has been
made to make it a secure language. This is especially important for a lan-
guage that makes it so easy to implement networking applications. After
all, nobody wants to download a Java applet that proceeds to erase the
hard disk. Such an applet might be written by a cyber terrorist, deliber-
ately aiming to cause severe damage, or it might be written by a cyber
doofus, who inadvertently writes code that does severe damage.

What are some of Java’s techniques for guarding against either deliber-
ate or inadvertent insecure code? One level of security is Java’s bytecode Code verification
verification process, which the Java Virtual Machine performs on any “un-
trusted” code that it receives. Java checks every class that it loads into
memory to make sure it doesn’t contain illegal or insecure code. Another
line of defense is the so-called sandbox security model, which refers to
the practice of restricting the kinds of things that certain programs can do.
For example, the “sandbox” environment for Java applets restricts them Limited privileges
from having any access whatsoever to the local file system.

Another restriction imposed on applets is to limit their networking ca-
pabilities. For example, a Java applet cannot create a network connection
to any computer except the one from which its code was downloaded.
Also, a Java applet cannot listen for, or accept, connections on privileged Limited network access
ports—those numbered 1024 or lower. Together, these two restrictions
severely limit the kinds of client/server programs that can be built as
applets.

Java sets aside certain locations as repositories for trusted code. For
example, the Java class libraries would be placed in such a location, as
would the directories where your Java programs are stored. Any class
loaded from some other directory is considered untrusted. By this def-
inition, applets downloaded over the Internet would be considered un-
trusted code.

In addition to the restrictions for applets, which apply to all untrusted Trusted code
code, Java defines a number of other limitations:

• Untrusted code cannot make use of certain system facilities, such as
System.exit() and classes in the java.security package.
• Untrusted code cannot make use of certain AWT methods, such as

methods that access the system clipboard. Another AWT restriction

742 CHAPTER 15 • Sockets and Networking

is that any window created by untrusted code must display a mes-
sage informing the user that it is untrusted. You might have seen such
messages on windows opened from applets.
• Untrusted code is limited in the kinds of threads it can create.

Security enhancements introduced in JDK 1.2 are based on the concepts
of “permission” and “policy.” Code is assigned “permissions” based on
the security policy currently in effect. Each permission specifies the type
of access allowed for a particular resource (such as “read” and “write”
access to a specified file or directory, or “connect” access to a given host
and port). The policy that controls permissions can be initialized from an
external configurable policy file. Unless a permission is explicitly granted
to code, it cannot access the resource that is guarded by that permis-
sion. These new enhancements offer a more fine-grained and extensible
approach to security for both applets and applications.

As this brief overview illustrates, the Java Virtual Machine is designed
with security as one of its primary issues. This doesn’t guarantee 100 per-
cent security, but it is a big improvement over some of the languages and
systems that preceded Java. Moreover, security is an ongoing concern
of the Java development process. Flaws in the existing security system
are fixed very quickly. Advanced methods are constantly being devel-
oped and incorporated into the system. One such enhancement is the
use of encryption to guarantee the integrity of classes transferred over the
network.

15.11 Java Servlets and Java Server Pages

In this chapter we have been discussing the client/server model of com-
puting. Thus far we have learned how to implement client/server ap-
plications using socket connections between programs running on differ-
ent computers. Because it requires the programmer to directly create and
manage the socket protocol, this socket-level approach is a low-level ap-
proach. It is important to know about sockets and how they are used, but
most client/server applications are programmed at a much higher level
by using Java library classes.

Our focus in this section will be to give you a brief sense of how Java
programs can be integrated into the Web pages. We will discuss two
approaches: Java Server Pages (JSP) and Java servlets. As Web-based ap-
proaches, both of these require the use of HTML (HyperText Markup Lan-
guage) code, the language that is used for coding Web pages. This means
that in order to write your own servlets and JSPs you would really have to
learn a little about HTML code. Fortunately, learning HTML code is not
difficult and although it doesn’t fit within the scope of this book, you can
easily find books or Web sites that cover basic HTML coding. Moreover,
in order for servlets and JSPs to work, they must be associated with a Web
server that is specially configured to understand Java code. At the end of
this section we will provide links to a Web site where you can learn more
about HTML and about how to set up your own JSPs and servlets.

SECTION 15.11 • Java Servlets and Java Server Pages 743

15.11.1 Java Server Pages

A Java Server Page (JSP) is a Web page that contains small snippets of
Java code. The simple example discussed here was downloaded from on
online tutorial at� �

http : //developer . apple . com/ i n t e r n e t / java/tomcat1 . html
 	
The Java code on a JSP embedded within <% ... %> brackets and inter-
spersed among a page’s HTML tags. The Java code can extend over one
or more lines. Figure 15.36 shows the complete sourcecode for a simple
JSP.

� �
<html><head><t i t l e >Very Simple JSP Example</t i t l e ></head>
<body bgcolor=” white ”>

<h1>Very Bas ic JSP</h1>

Current time : <%= new j ava . u t i l . Date () %>

Reload t h i s page to watch the g r e e t i n g change .

<!−− inc luding l i n e s of Java code in an HTML page −−>
<%

i n t um = (i n t) (Math . random () ∗ 5) ;
switch (um)
{

case 0 : out . p r i n t l n (”Welcome”) ; break ;
case 1 : out . p r i n t l n (” Bienvenidos ”) ; break ;
case 2 : out . p r i n t l n (”Bienvenue”) ; break ;
case 3 : out . p r i n t l n (” Bienvenuti ”) ; break ;
case 4 : out . p r i n t l n (”Willkommen”) ; break ;
default : out . p r i n t l n (”Huh? ” + um) ;

}
out . p r i n t l n (”
”) ;

%>

</body>
</html>
 	

Figure 15.36: A simple JavaServer Page (JSP).

In this example we see two uses of Java code. In the first case, a JSP
expression tag is used to display the current date on the Web page:� �

Current time : <%= new j ava . u t i l . Date () %>
 	
A JSP expression element begins with <%= and ends with %>. The expres-
sion contained within the tag is evaluated, converted into a Java String

744 CHAPTER 15 • Sockets and Networking
Figure 15.37: A screen shot of a
JSP.

and inserted into the Web page. In this case the Date object is evaluated
and its string value is displayed on the Web page (Fig. 15.37).

In the second case, a scriptlet of Java code uses the Math.random()
method to display a random greeting on the Web page. A scriptlet extends
over several lines and is contained within the <%...%> tag (Fig. 15.36).
Note the use of the output statement, out.println(). The out object is
a built-in output stream. Anything written to out will be transmitted as
part of the HTML code that is sent to the Web page. In this case, one of
the greetings is displayed each time the page is reloaded.

Obviously, this simple example only scratches the surface of what you
can do with JSP. If you want to learn more about JSP, there are many help-
ful online tutorials available, such as http://www.jsptut.com/. How-
ever, remember that in order to experiment with JSP, it will be necessary
to have access to a JSP-aware Web server either on your own computer or
on one provided by your service provider.

15.11.2 Java Servlets

A Java servlet is another high-level approach to developing client/server
applications. A servlet is a Java program that runs on a Web server and
processes Web pages using the HyperText Transfer Protocol (HTTP). In a
Web application, the browser serves as the client.

Many URLs that we access on the web are pure HTML files that are
simply transmitted back to the browser by the Web server. For example,
the URL for a simple HTML document on the author’s Web site is:� �

http : //www. cs . t r i n c o l l . edu/˜ram/ j j j / h e l l o . html
 	

SECTION 15.11 • Java Servlets and Java Server Pages 745

If you type that URL into a Web browser, the Web server at
www.cs.trincoll.edu would transmit the following text file to your
browser, which would then render and display the document.� �

<HTML>
<HEAD>

<TITLE>Very Simple HTML Document</TITLE>
</HEAD>

<BODY>
<CENTER><H1>Hello</H1></CENTER>

</BODY>
</HTML>
 	

If we want the server to do some processing and submit the results of
that processing to the browser, we could use a Java servlet. A servlet can
perform some processing task and return the results of that task to the
browser in the form of an HTML document.

The difference between a Java servlet and a Java applet is that an applet Servlets vs. Applets
performs all of its processing on the client side of the client/server connec-
tion. A servlet performs its processing on the server side. When you load
a Java applet into a browser, the Web server downloads the applet’s byte-
code into the browser. The browser then runs the byte code, assuming, of
course, it is equipped with a plugin for the Java Virtual Machine (JVM).
When you access a Java servlet from a browser, the Web server performs
some computation and transmits just the results to the browser.

There are several advantages of servlets over applets. First, servlets cut
down significantly on the amount of data that has to be transmitted to
the browser. Second, because the servlet returns an HTML-encoded page,
there are many fewer platform-related problems. All browsers can inter-
pret HTML code, but not all browsers have the right plugins for interpret-
ing Java applets. Third, servlets are not subject to the same security and
privacy restrictions as Java applets, which, as we saw earlier in the chap-
ter, must be run as untrusted code. Finally, Java servlets can directly access
large databases and other resources that are stored on the server. Access
to such resources via an applet would be very difficult and inefficient.

So, servlets have many advantages over applets. Because of these ad-
vantages they have quickly become an industry standard for developing
client/server applications on the Web.

15.11.3 A Simple Servlet Example

To illustrate the difference between a Java servlet and a simple HTML
page, Figure 15.38 shows a servlet that creates a Web page that says
“Hello.” As you can see, a servlet is a Java program. In addi-
tion to libraries that you are already familiar with, such as java.io,
it also imports names from two new libraries: javax.servlet and
javax.servlet.http. The program defines a single class, the
HelloServlet class, which is a subclass of HttpServlet, the standard
superclass for all Java servlets.

The servlet defines the doGet() method. This is a method that is de-
fined in the HttpServlet superclass. Our HelloServlet is overriding

746 CHAPTER 15 • Sockets and Networking� �
import j ava . io . ∗ ;
import j ava . t e x t . ∗ ;
import j ava . u t i l . ∗ ;
import j avax . s e r v l e t . ∗ ;
import j avax . s e r v l e t . ht tp . ∗ ;

public c l a s s H e l l o S e r v l e t extends HttpServ le t {

public void doGet (HttpServletRequest request ,
HttpServletResponse response)

throws IOException , S e r v l e t E x c e p t i o n
{

response . setContentType (” t e x t /html”) ;
P r i n t W r i t e r out = response . getWri ter () ;

out . p r i n t l n (”<HTML>”) ;
out . p r i n t l n (”<HEAD>”) ;
out . p r i n t l n (”<TITLE>Simple S e r v l e t</TITLE>”) ;
out . p r i n t l n (”</HEAD>”) ;
out . p r i n t l n (”<BODY>”) ;
out . p r i n t l n (”<H1> Hi , from a Java S e r v l e t .</H1>”) ;
out . p r i n t l n (”</BODY>”) ;
out . p r i n t l n (”</HTML>”) ;

}
}
 	

Figure 15.38: A simple Java servlet.

that method. In general, Web browsers make two types of requests when
they request a Web page, a get or a post. We won’t go into the differences
between these requests. The result in either case is that the Web server
will respond to the request by transmitting some text data to the browser.
When a browser makes a get request, the server will automatically call
the servlet’s doGet() method. That’s why we have to override it. The
HttpServlet class also has a default doPost() method, which is called
automatically to handle post requests.

Note the two parameters in the doGet() method: the HttpServlet-
Request and the HttpServletResponse. The doPost() method has
the same two parameters. These are the objects that are used to hold the
data that are communicated between the client and the server. When the
client (browser) makes a get request, the HttpServletRequest objects
hold the data contained in the request. These data might include data that
a user has typed into an HTML form. We will see an example of how to
extract these data in the next section.

The HttpServletResponse object is where the servlet will write its
response. As you can see from examining the code, the HttpServlet-
Response object has an associated output stream, a PrintWriter, and
it is a simple matter to write text to that output stream. Note that the text
we write is HTML code that is practically identical to the code contained
in the previous HTML example.

SECTION 15.11 • Java Servlets and Java Server Pages 747

15.11.4 The Nim Servlet
The simple servlet in the preceding section illustrates how the servlet com-
municates with the client—by writing HTML code to the HttpServlet-
Response object. Let’s now look at an example that uses two-way com-
munication between the client and server. To keep the example simple,
we will revisit once again on our One Row Nim game. In this application
the servlet will manage the One Row Nim game and will play against a
human player, who will access the game through a Web browser.

Figure 15.39: The interface for the
Nim servlet.

The browser interface for this version of the game is shown in Fig-
ure 15.39. As you can see, it is a simple Web page. The sticks in this
instance are replaced by pennies. In addition to reporting the total num-
ber of pennies left, the page displays images of pennies. This Web page
itself is organized as a simple HTML form, which contains one text field
for the user’s input. Each time the user hits the RETURN key in the text

748 CHAPTER 15 • Sockets and Networking� �
import j ava . io . ∗ ;
import j ava . u t i l . ∗ ;
import j avax . s e r v l e t . ∗ ;
import j avax . s e r v l e t . ht tp . ∗ ;

public c l a s s NimServlet extends HttpServ le t {

private OneRowNim nim = null ;
private NimPlayer nimPlayer = null ;

public void doPost (HttpServletRequest request ,
HttpServletResponse response)

throws IOException , S e r v l e t E x c e p t i o n
{

doGet (request , response) ;
}

// T h e d o G e t () m e t h o d g o e s h e r e .

} // N i m S e r v l e t
 	
Figure 15.40: Java code for the NimServlet, minus the doGet()method.

field, the user’s input is transmitted to the servlet where it is processed.
The servlet then transmits a new page to the user’s browser, which shows
the updated state of the game.

Let’s now look at the servlet program itself, whose code is shown in
Figures 15.40 and 15.41. This servlet program is quite a bit longer than
the simple hello server, but it is not really any more complex or difficult.
The NimServlet extends the HttpServlet superclass and overrides
the doGet() method. Note that it also overrides the doPost() method,
by simply having that method call the doPost() method. So this servlet
will work for both get and post requests.

NimServlet uses two other objects: a OneRowNim object and a
NimPlayer object. You should be familiar with these from Chapter 8,
so we won’t go over their internal details here. The OneRowNim object
manages the playing of the game and the NimPlayer object acts as a
computer-based player of the game. Note that variable references for
these two objects are declared in the beginning of the class definition, but
the objects themselves are declared within the doGet() method.

One of the tricky parts of NimServlet is how we declare the
OneRowNim object. As you might already know, the HTTP protocol is
said to be a stateless protocol, which means that each time a browser sub-
mits a request to a Web server, the Web server sees the request as a com-
pletely independent communication. The server does not, in and of itself,
maintain an internal state that keeps track of a series of transactions with
a particular browser session. For example, when you are shopping for
books on Amazon, each time you go to a new page, the Amazon web
server treats that request as a completely independent action. Web appli-
cations use various techniques to get around the stateless nature of the

SECTION 15.11 • Java Servlets and Java Server Pages 749� �
public void doGet (HttpServletRequest request , HttpServletResponse response)

throws IOException , S e r v l e t E x c e p t i o n
{

response . setContentType (” t e x t /html”) ;
P r i n t W r i t e r out = response . getWri ter () ;
HttpSession s e s s i o n = request . ge tSess ion (t rue) ;

out . p r i n t l n (”<html>”) ;
out . p r i n t l n (”<body>”) ;
out . p r i n t l n (”<head>”) ;
out . p r i n t l n (”<t i t l e >Simple Nim Game</t i t l e >”) ;
out . p r i n t l n (”</head>”) ;
out . p r i n t l n (”<body>”) ;

out . p r i n t l n (”<center><h1>One Row Nim</h1></center>”) ;
out . p r i n t l n (”<center><h3>The Rules</h3>”) ;
out . p r i n t l n (”A random number of pennies i s thrown on the t a b l e .
”) ;
out . p r i n t l n (”Two players a l t e r n a t e making moves,
”) ;
out . p r i n t l n (” picking up between 1 and 3 pennies on each move.
”) ;
out . p r i n t l n (”The player who picks up the l a s t penny l o s e s .

”) ;

i f (nim == null) {
nim = new OneRowNim(7 + (i n t) (Math . random () ∗ 1 1)) ;
nimPlayer = new NimPlayer (nim) ;
out . p r i n t l n (”<h4>You go f i r s t !</h4></center>”) ;

} e lse {
i n t userTakes = I n t e g e r . p a r s e I n t (request . getParameter (”pickup”)) ;
i f (! nim . t a k e S t i c k s (userTakes)) {

out . p r i n t l n (”<h4>Woops . That ’ s an i l l e g a l move ! . Try again . <h4>”) ;
} e lse i f (! nim . gameOver ()) {

nim . changePlayer () ;
out . p r i n t l n (”<h4>So , you took ” + userTakes + ”
”) ;
out . p r i n t l n (” That leaves me with ” + nim . g e t S t i c k s () + ”
”) ;
i n t iTake = nimPlayer . move () ;
out . p r i n t l n (”OK. I take ” + iTake + ” pennies .
</h4>”) ;
nim . t a k e S t i c k s (iTake) ;
nim . changePlayer () ;

} // i f not gameover
} // e l s e nim != n u l l
i f (! nim . gameOver ()) {

i f (nim . getP layer () == 1)
out . p r i n t l n (”<center><h3>Who ’ s Turn : Your turn <h3></center>”) ;

e lse
out . p r i n t l n (”<center><h3>Who ’ s Turn : My turn <h3></center>”) ;

out . p r i n t l n (”<center><h3>Pennies L e f t : ” + nim . g e t S t i c k s () + ”<h3></center>”) ;
out . p r i n t l n (”<center>”) ;
for (i n t k =0; k < nim . g e t S t i c k s () ; k++)

out . p r i n t l n (””) ;
out . p r i n t l n (”</center>
”) ;

out . p r i n t l n (”<center>”) ;
out . p r i n t l n (”<form a c t i o n =’/ j j j 3 e /NimServlet ’ method= ’POST’>”) ;
out . p r i n t l n (”<t a b l e border =’0’>”) ;
out . p r i n t l n (”<t r><td>How many do you pickup ? : </td>” +

”<td><input type = ’ t e x t ’ name= ’ pickup ’ value=’0’></td></tr>”) ;
out . p r i n t l n (”</tab le>”) ;
out . p r i n t l n (”</center>”) ;
out . p r i n t l n (”</form>”) ;

} e lse {
out . p r i n t l n (”<h3>Game over!<h3>”) ;
i f (nim . getP layer () == 1)

out . p r i n t l n (”<center><h4>And the winner i s : Me.<h4></center>”) ;
e lse

out . p r i n t l n (”<center><h4>And the winner i s : You.<h4></center>”) ;
out . p r i n t l n (”<center><h4> Nice game!<h4></center>”) ;
out . p r i n t l n (”<center><h4>To play again , j u s t re load the page.<h4></center>”) ;
nim = null ;

} // e l s e game over
out . p r i n t l n (”</body>”) ;
out . p r i n t l n (”</html>”) ;

}// doGet
 	
Figure 15.41: Java code for the NimServlet’s doGet() method.

750 CHAPTER 15 • Sockets and Networking

HTTP protocol. One technique is to use cookies to record the progress of a
session. A cookie is a small text file containing data that the server uses to
keep track of a user’s session. Data that identifies the user and the state of
the transaction—for example, buying a book—are passed back and forth
between the browser and the server each time the user visits the Amazon
Web site.

Java’s servlet library contains methods and objects that support the use
of cookies. But rather than use cookies, we will use the OneRowNim ob-
ject itself to keep track of the state of the Nim game. The first time the
user submits a request to Nim servlet—that is, when the user first visits
the servlet’s URL—the servlet will create an instance of the OneRowNim
object. Creating a OneRowNim object will have the effect of initializing the
game, including the creation of a NimPlayer to play the server’s moves.
The OneRowNim object will persist throughout the playing of the game
and will handle all subsequent user’s move. When the game is over, the
NimServlet will, in effect, dispose of the OneRowNim object by setting
its reference to null. Thus, in outline form, the code for creating and
disposing of the OneRowNim object goes as follows:� �

// F i r s t r e q u e s t : S t a r t a new Nim g a m e

i f (nim == null) {
nim = new OneRowNim(7 + (i n t) (Math . random () ∗ 1 1)) ;
nimPlayer = new NimPlayer (nim) ;

// C o d e d e l e t e d h e r e .

e lse {
// C o d e f o r p l a y i n g t h e g a m e g o e s h e r e .

}
i f (! nim . gameOver ()) {

// C o d e f o r p l a y i n g t h e g a m e g o e s h e r e .

} e lse {
// C o d e d e l e t e d h e r e .

nim = null ;
}
 	

Those places where code has been deleted in this segment would con-
tain Java code for responding to the user’s input and deciding how many
pennies to take.

Unlike the HelloServlet, the NimServlet accepts input from the
client. The code for handling user input is as follows:� �

i n t userTakes =
I n t e g e r . p a r s e I n t (request . getParameter (”pickup”)) ;
 	

This statements reads the user’s input from the text field on the Web page
by using the request.getParameter() method. This is one of the
public methods of the HttpServletRequest object. The name of the
text field is ’pickup’, which is provided as an argument in this method
call. As we noted above, the text field itself is on element of the HTML

CHAPTER 15 • Chapter Summary 751

form contained in the servlet’s Web page. The HTML code for creating
the form element is also generated by the servlet:� �

out . p r i n t l n (”<form a c t i o n =’/ j j j 3 e /NimServlet ’ method= ’POST’>”) ;
out . p r i n t l n (”<t a b l e border =’0 ’>”) ;
out . p r i n t l n (”<t r><td>How many do you pick up ? : </td>” +

”<td><input type = ’ t e x t ’ name= ’ pickup ’ value=’0’></td></tr>”) ;
 	
Unless you already know something about HTML, you won’t completely
understand this code. We will give a minimal explanation. In HTML, a
text field is known as a input element of type ’text’. Note that this code
segment names the element ’pickup’, which allows our program to refer
to it by that name.

The remaining details in the servlet have to do with managing the game
and repeat concepts that were covered in Chapter 8. We won’t repeat them
here, other than to note that any output sent to the client must be in the
form of HTML statements, hence the appearance throughout the code of
HTML tags, which are the elements in the angle brackets.

15.11.5 Setting Up and Using Java Servlets
Java servlets can only run on a Web server that is specially configured to
interpret them. To experiment with the servlets discussed in this chapter,
just go to the following URL:� �

http : //www. cs . t r i n c o l l . edu/˜ram/ j j j / s e r v l e t s
 	
That web page contains links to both the HelloServlet and NimServlet.
It also contains links to Web sites where you can learn more about creat-
ing servlets. In order to create and run your own servlets, you will need
access to a Web server that has been specially configured to run servlets.
There are several very good free servers that support Java servlets. You
can download one of these onto your own computer and follow the direc-
tions on how to set it up. Links to Java servlet sites are also provided on
our servlets page.

CHAPTER SUMMARYTechnical Terms
busy waiting
callback method
client
client/server

protocols
domain name
ethernet protocol
File Transfer Protocol

(FTP)
get

HyperText Transfer
Protocol (HTTP)

internet
Internet
Internetworking

Protocol (IP)
Java Server Page

(JSP)
packet
port

post
protocol
router
sandbox security

model
scriptlet
server
servlet
Simple Mail Transfer

Protocol (SMTP)

752 CHAPTER 15 • Sockets and Networking

socket
trusted code

Uniform Resource
Locator (URL)

World Wide Web
(WWW)

Summary of Important Points
• An internet is a collection of two or more distinct networks joined by

routers, which have the task of translating one network’s language to
the other’s. The Internet is a network of networks that uses the Internet
Protocol (IP) as the translation medium.
• A protocol is a set of rules that controls the transfer of information

between two computers in a network. The HyperText Transfer Pro-
tocol (HTTP) governs information exchange on the World Wide Web
(WWW). The Simple Mail Transfer Protocol controls mail service on the
Internet. The File Transfer Protocol (FTP) controls the transfer of files
between Internet computers. The Domain Name System (DNS) governs
the use of names on the Internet.
• A client/server application is one that divides its task between a client,

which requests service, and a server, which provides service. Many In-
ternet applications and protocols are based on the client/server model.
• Lower-level protocols, such as the ethernet protocol and token ring pro-

tocol, govern the transmission of data between computers on a single
network. The Internet Protocol (IP) translates between such protocols.
• A Uniform Resource Locator (URL) is a standard way of specifying

addresses on the Internet. It consists of several parts separated
by slashes and colons: method://host:port/path/file. The
java.net.URL class is used to represent URLs.
• Files of text or data (images, audio files) on the Internet or Web can be

downloaded using the same InputStreams and OutputStreams as
files located on a disk. To read or write a resource located on a network,
you need to connect its URL to an input or output stream.
• The java.awt.Toolkit class contains useful methods for down-

loading Images into an application.
• A socket is a two-way communication channel between two running

programs on a network. The java.net.Socket class can be used
to set up communication channels for client/server applications. The
server process listens at a socket for requests from a client. The client
process requests service from a server listening at a particular socket.
Once a connection exists between client and server, input and output
streams are used to read and write data over the socket.

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 15.1 The fully connected mesh topology requires the most cables.

SOLUTION 15.2 The fully connected mesh topology would have the most po-
tential to use alternate routes if one of the host computers crashed.

SOLUTION 15.3 The star topology would be rendered completely useless if its
central hub crashed.

SOLUTION 15.4 Prentice Hall’s Web server is located at� �
http : //www. prenhal l . com
 	

CHAPTER 15 • Solutions to Self-Study Exercises 753

The protocol is http. The host computer is named www. Prentice Hall’s domain
name is prenhall, and it is part of the com (commercial) Internet domain.

SOLUTION 15.5
• For buying a piece of software at a bookstore, the server would be the sales

clerk. The protocol would be to select the software from off the shelf, bring it to
the checkout counter, give the sales clerk money, and get a receipt.

• For buying a piece of software over the phone, the server would be the tele-
phone sales clerk. The protocol would be to select from a catalog, provide the
sales clerk with your credit card information, and say goodbye.

• For buying a piece of software over the Internet, the server would be the
computer that handles the transaction. The protocol would be to select the
item from a Web-based form, provide the form with personal and payment
information, and click on the Buy button.

SOLUTION 15.6 To play sounds along with slides in the SlideShowFrame,
you would make the following modifications to the code:� �
private Clip soundClip [] = new Clip [NIMGS] ;
private Clip currentCl ip = null ;
 	
Declare an array of URLs to store the URLs of the audio files you want to play.

Assign Clips to the array at the same time you input the images:� �
for (i n t k =0; k < NIMGS; k++) {

u r l =
new URL(” http ://www. cs . t r i n c o l l . edu/˜ram/ j j j / s l i d e ” +

k + ” . g i f ”) ;
s l i d e [k] = imageIO . read (u r l) ;
URL soundURL =

new URL(” http ://www. cs . t r i n c o l l . edu/˜ram/ j j j /sound” +
k + ” . au”) ;

AudioInputStream audio =
AudioSystem . getAudioInputStream (u r l) ;

DataLine . Info i n f o = new DataLine . Info (Clip . c lass ,
audio . getFormat ()) ;

soundClip [k] = (Clip) AudioSystem . getLine (i n f o) ;
}
 	
Change the nextSlide() code to the following� �
public void n e x t S l i d e () {

currentCl ip . stop () ; // s t o p s o u n d p l a y b a c k

currentCl ip = soundClip [nextImg] ; // g e t n e x t s o u n d C l i p

currentCl ip . setFramePosi t ion (0) ; // s t a r t c l i p a t b e g i n n i n g

currentImage = s l i d e [nextImg] ;
nextImg = (nextImg + 1) % NIMGS;
r e p a i n t () ;

}
 	

754 CHAPTER 15 • Sockets and Networking

Each time an image is displayed in paint(), play the corresponding sound by
using the URL from the array:� �
public void paint (Graphics g) {

i f (currentImage != null) {
g . drawImage (currentImage , 1 0 , 1 0 , t h i s) ;
currentCl ip . s t a r t () ;

}
}
 	
SOLUTION 15.7 The scramble service would be implemented by defining two
new classes: The ScrambleServer class is a subclass of Server, and the
ScrambleClient class is a subclass of Client. The ScrambleClient would
implement the requestService() method and the ScrambleServer would
implement the provideService() method.

SOLUTION 15.8
• If you specify the wrong host name or port, you will get the following excep-

tion: java.net.ConnectException: Connection refused.
• If you leave off the \n in the writeToSocket() call, nothing will go wrong

because the writeToSocket() method will catch this error and add the end-
of-line character to the string before sending it to the server. The server reads
lines from the client, so every communication must end with \n or the protocol
will break down.

EXERCISES EXERCISE 15.1 Explain the difference between each of the following pairs of
terms:
a. Stream and socket.
b. Internet and internet.
c. Domain name and port.

d. Client and server.
e. Ethernet and Internet.
f. URL and domain name.Note: For programming exercises,

first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

EXERCISE 15.2 What is a protocol? Give one or two examples of protocols that
are used on the Internet.

EXERCISE 15.3 What service is managed by the HTTP protocol?

EXERCISE 15.4 Give examples of client applications that use the HTTP
protocol.

EXERCISE 15.5 Why is it important that applets be limited in terms of their
network and file system access? Describe the various networking restrictions that
apply to Java applets.

EXERCISE 15.6 What does the Internet Protocol do? Describe how it
would be used to join an ethernet and a token ring network.

EXERCISE 15.7 Describe one or two circumstances under which a Connect-
Exception would be thrown.

EXERCISE 15.8 Modify the SlideShowFrame so that it plays an audio file
along with each slide.

EXERCISE 15.9 Design and implement a Java applet that downloads a random
substitution cryptogram and provides an interface that helps the user try to solve
the cryptogram. The interface should enable the user to substitute an arbitrary
letter for the letters in the cryptogram. The cryptogram files should be stored in
the same directory as the applet itself.

CHAPTER 15 • Exercises 755

EXERCISE 15.10 Design and implement a Java application that displays a ran-
dom message (or a random joke) each time the user clicks a GetMessage button.
The messages should be stored in a set of files in the same directory as the applet
itself. Each time the button is clicked, the applet should download one of the
message files.

EXERCISE 15.11 Write a client/server application of the message or joke ser-
vice described in the previous exercise. Your implementation should extend the
Server and Client classes.

EXERCISE 15.12 Write an implementation of the scramble service. Given a
word, the scramble service will return a string containing all possible permuta-
tions of the letter combinations in the word. For example, given “man,” the scram-
ble service will return “amn, anm, man, mna, nam, nma.” Use the Server and
Client classes in your design. (See the Self-Study Exercises for a description of
the design.)

EXERCISE 15.13 Challenge: Modify the Nim server game in this chapter so
that the client and server can negotiate the rules of the game, including how many
sticks, how many pick ups per turn, and who goes first.

756 CHAPTER 15 • Sockets and Networking

OBJECTIVES
After studying this chapter, you will

• Understand the concepts of a dynamic data structure and an Abstract Data Type (ADT).
• Be able to create and use dynamic data structures such as linked lists and binary search trees.
• Understand the stack, queue, set, and map ADTs.
• Be able to use inheritance to define extensible data structures.
• Know how to use the TreeSet, TreeMap, HashSet, and HashMap library classes.
• Be able to use the Java generic type construct.

OUTLINE
16.1 Introduction
16.2 The Linked List Data Structure
16.3 Object-Oriented Design: The List Abstract Data Type (ADT)
16.4 The Stack ADT
16.5 The Queue ADT

Special Topic: The LISP Language
16.6 From the Java Library: The Java Collections Framework and Generic Types
16.7 Using the Set and Map interfaces
16.8 The Binary Search Tree Data Structure

Chapter Summary

Solutions to Self-Study Exercises

Exercises

Chapter 16

Data Structures: Lists,
Stacks, and Queues

757

758 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

16.1 Introduction

A data structure is used to organize information that a computer can ac-
cess and process easily and efficiently. You are already familiar with one
type of data structure—arrays, which we discussed in Chapter 9. If you
remember, an array is an example of a data structure in which all of the
data are of the same type or class and in which individual elements are ac-
cessed by their position (index or subscript). An array is an example of a
static structure, because its size is fixed for the duration of the program’s
execution. (This is a different meaning of static than the Java keyword
static.)

The Vector class from Chapter 9 is another example of a data struc-
ture. Like an array, individual vector elements are accessed by their posi-
tion. However, unlike arrays, a vector is an example of a dynamic struc-
ture—that is, one that can grow and shrink during a program’s execution.

These are only two of the many data structures developed by computer
scientists. For more advanced problems, it is often necessary to develop
specialized structures to store and manipulate information. Some of these
structures—linked lists, stacks, queues, binary trees, hash tables—have
become classic objects of study in computer science.

This chapter describes how to implement a linked list and how to use
inheritance to extend the list to implement the stack and queue struc-
tures. Then the Java Collections Framework implementation of numerous
data structures in the java.util package will be described. The data
structure classes in this library make use of a new Java construct, called
generic types. Finally, the binary tree data structure that is used in the Java
Collections Framework will be studied briefly.

16.2 The Linked List Data Structure

As we said, a static data structure is one whose size is fixed during aStatic vs. dynamic
program’s execution—a static structure’s memory is allocated at compile
time. By contrast, a dynamic structure is one that can grow and shrink as
needed. In this section, we will develop a dynamic list, which is a data
structure whose elements are arranged in a linear sequence. There is a
first element in the list, a second element, and so on. Lists are quite gen-
eral and, as we will discuss later, lists have a broad range of applications.
Depending on how elements are inserted and removed from a list, they
can be used for a range of specialized purposes.

16.2.1 Using References to Link Objects

As you know from earlier chapters, when you create an object using the
new operator you get back a reference to the object that you then can assignReferring to objects
to a reference variable. In the following example, b is a reference to a
JButton:� �

JButton b = new JButton () ;
 	

SECTION 16.2 • The Linked List Data Structure 759

Node Data Link Reference Null reference

Abby John Kelly

Figure 16.1: A linked list of Nodes
terminated by a null link.

We have defined many classes that contained references to other objects:� �
public c l a s s Student {

private S t r i n g name ;
}
 	

In this example, name is a reference to a String object.
A linked list is a list in which a collection of nodes are linked together

by references from one node to the next. To make a linked list, we will de-
fine a class of self-referential objects. A self-referential object is an object Self-referential objects
that contains a reference to an object of the same class. The convention is
to name these objects Nodes:� �

public c l a s s Node {
private S t r i n g name ;
private Node next ;

}
 	 +Node(in o : Object)

+setData(in o : Object)

+getData() : Object

+setNext(in link : Node)

+getNext() : Node

-data : Object

-next : Node

Node

FIGURE 16.2 The Node class.

fig-nodeuml In addition to the reference to a String object, each Node
object contains a reference to another Node object. The next variable is
often called a link because it is used to link together two Node objects. For
example, Figure 16.1 provides an illustration of a linked list of Nodes.

By assigning references to the next variables in each Node, we can
chain together arbitrarily long lists of objects. Therefore, we will want to
add methods to our Node class that enable us to manipulate a Node’s next
variable (Fig. 16–2). By assigning it a reference to another Node, we can
link two Nodes together. By retrieving the link’s value, we can find the
next Node in the list.

JAVA LANGUAGE RULE Self-Referential Object. A self-referential
object is one that contains an instance variable that refers to an object of
the same class.

In addition to the link variable, each Node stores some data. In this exam-
ple, the data is a single String. But there’s no real limit to the amount
and type of data that can be stored in a linked list. Therefore, in addition Linking objects together
to methods that manipulate a Node’s link, we will also want methods to

760 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

manipulate its data. These points suggest the following basic design for a
Node:� �

public c l a s s Node {
private Object data ;
private Node next ;

public Node(Object ob j) ; // C o n s t r u c t o r

public void setData (Object ob j) ; // D a t a a c c e s s

public Object getData () ;

public void setNext (Node l i n k) ; // L i n k a c c e s s

public Node getNext () ;
} // Node
 	

Note that we have defined the Node’s data in the most general possible
way: As a reference to an Object. Because the Object class is the root of
Java’s entire class hierarchy, an Object can encompass any kind of data.
By using Java’s wrapper classes, such as Integer and Double, a Node’s
data can even include primitive data.

The important point is that regardless of its type of data, a Node will
have data access methods and link access methods. The data access meth-Divide and conquer
ods differ, depending on the type of data, but the link access methods will
generally be the same.

JAVA EFFECTIVE DESIGN Link Versus Data. Making a clear
distinction between an object’s data and those elements used to
manipulate the object is an example of the divide-and-conquer
principle.

SELF-STUDY EXERCISES
EXERCISE 16.1 Write a statement to create a new Node whose data

consist of the String “Hello.”

EXERCISE 16.2 Write a statement to create a new Node whose data
consist of the Student named “William.” Assume that the Student class
has a constructor with a String parameter for the student’s name.

16.2.2 Example: The Dynamic Phone List
Let’s define a PhoneListNode class that can be used to implement a
phone list (Fig. 16.3). This definition will be a straightforward specializa-
tion of the generic Node list defined in the previous section. Each element
of the phone list will consist of a person’s name and phone number. These
will be the node’s data and can be stored in two String variables. To
access these data, we will provide a constructor and a basic set of accessAccessing a list’s data
methods. Thus, we have the definition shown in Figure 16.4.

SECTION 16.2 • The Linked List Data Structure 761

+PhoneListNode(in name : String, in phone : String)

+setData(in name : String, in phone : String)

+getName() : String

+getData() : String

+toString() : String

+setNext(in next : PhoneListNode)

+getNext() : PhoneListNode

-name : String

-phone : String

-next : PhoneListNode

PhoneListNode

Figure 16.3: Design of the
PhoneListNode class.

� �
public c l a s s PhoneListNode {

private S t r i n g name ;
private S t r i n g phone ;
private PhoneListNode next ;

public PhoneListNode (S t r i n g s1 , S t r i n g s2) {
name = s1 ;
phone = s2 ;
next = null ;

} // P h o n e L i s t N o d e ()

public void setData (S t r i n g s1 , S t r i n g s2) {
name = s1 ;
phone = s2 ;

} // s e t D a t a ()

public S t r i n g getName () {
return name ;

} // g e t N a m e ()

public S t r i n g getData () {
return name + ” ” + phone ;

} // g e t D a t a ()

public S t r i n g t o S t r i n g () {
return name + ” ” + phone ;

} // t o S t r i n g ()

public void setNext (PhoneListNode nextPtr) {
next = nextPtr ;

} // s e t N e x t ()

public PhoneListNode getNext () {
return next ;

} // g e t N e x t ()

} // P h o n e L i s t N o d e
 	
Figure 16.4: The PhoneListNode class.

762 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

The constructor and data access methods should be familiar to you.
Note that the constructor sets the initial value of next to null, which
means that it refers to no object.

JAVA DEBUGGING TIP Null Reference. A common programming
error is the attempt to use a null reference to refer to an object. This
usually means the reference has not been successfully initialized.

Let’s discuss the details of the link access methods—the setNext() and
getNext() methods—which are also simple to implement. Because this
is a PhoneListNode, these methods take PhoneListNode as a parame-Manipulating a list’s nodes
ter and return type, respectively. Given a reference to a PhoneListNode,
the setNext() method assigns it to next. The getNext() method
simply returns the value of its next link.

Let’s now see how we would use these methods to construct a list. The
following statements create three nodes:� �

PhoneListNode node1 =
new PhoneListNode (”Roger M” , ”090−997−2918”) ;

PhoneListNode node2 =
new PhoneListNode (” Jane M” , ”090−997−1987”) ;

PhoneListNode node3 =
new PhoneListNode (” Stacy K” , ”090−997−9188”) ;
 	

The next two statements chain the nodes together into the list shown in
Figure 16.5:� �

node1 . setNext (node2) ;
node2 . setNext (node3) ;
 	

If we wanted to add a fourth node to the end of this list, we could use the

Roger M

090-997-2918

Jane M

090-997-1987

Stacy K

090-997-9188

Figure 16.5: The phone list: a
linked list of nodes, each of which
contains a person’s name and
phone number.

following statements:� �
PhoneListNode node4 =

new PhoneListNode (” gary g” , ”201−119−8765”) ;
node3 . setNext (node4) ;
 	

Although this example illustrates the basic technique for inserting nodes
at the end of the list, it depends too much on our knowledge of the list.
In order to be truly useful we will have to develop a more general set of
methods to create and manipulate a list of nodes. As we will see, a better
design would be able to find the end of the list without knowing anything
about the list’s data.

JAVA EFFECTIVE DESIGN Generality. In a well-designed list data
structure, you should be able to manipulate its elements without
knowing anything about its data.

SECTION 16.2 • The Linked List Data Structure 763

SELF-STUDY EXERCISE
EXERCISE 16.3 Suppose you know that nodeptr is a reference to the

last element of a linked list of PhoneListNodes. Create a new element
for “Bill C” with phone number “111-202-3331” and link it into the end of
the list.

16.2.3 Manipulating the Phone List
In addition to the Nodes that make a list, we must define a class containing
methods to manipulate the list. This class will include the insert, access,
and remove methods. It must also contain a reference to the list itself.
This leads to the basic design shown in Figure 16.6. Because this is a list
of PhoneListNodes, we need a PhoneListNode reference to point to
fig-phonelistclass the list, which is the purpose of the head variable.

+PhoneList()

+isEmpty() : boolean

+insert(in node : PhoneListNode)

+getPhone(in name : String) : String�
+remove(in name : String)

-head : PhoneListNode

PhoneList

FIGURE 16.6 The PhoneList class
has a reference to the first node of the
list (head) and methods to insert,
remove, and look up information.A preliminary coding of the PhoneList class is shown in Figure 16.7.

As you can see there, when a new PhoneList instance is constructed,
head is initialized to null, meaning the list is initially empty. Since An empty list
we will frequently want to test whether the list is empty, we define the
boolean isEmpty() method for that purpose. As you can see, its defi-
nition says that a list is empty when the reference to the head of this list
is null.

JAVA PROGRAMMING TIP The null Reference. A null reference
is useful for defining limit cases, such as an empty list or an
uninstantiated object.

� �
public c l a s s PhoneList {

private PhoneListNode head ;

public PhoneList () {
head = null ; // S t a r t w i t h e m p t y l i s t

}
public boolean isEmpty () { // D e f i n e s a n e m p t y l i s t

return head == null ;
}
public void i n s e r t (PhoneListNode node) { }
public S t r i n g getPhone (S t r i n g name) { }
public S t r i n g remove (S t r i n g name) { }
public void p r i n t () { }

} // P h o n e L i s t
 	
Figure 16.7: A preliminary version of the PhoneList class.

Inserting Nodes into a List
The insert() method will have the task of inserting new PhoneList-
Nodes into the list. There are a number of ways to do this. The node could
be inserted at the beginning or at the end of the list, or in alphabetical
order, or possibly in other ways. As we’ll see, it is easiest to insert a new
node at the head of the list. But for this example, let’s develop a method
that inserts the node at the end of the list.

764 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues
Figure 16.8: Two cases. (a) The
list is empty before the insertion,
which takes place at head. (b) The
list is not empty, so the insertion
takes place at the end of the list.

Abby

529-8109

Gary

529-5112

Newnode

529-8109

Before insertion

Head Head

(a) Insertion into empty list

(b) Insertion into existing list

After insertion

Head

Newnode

529-0011

Abby

529-8109

Head

Gary

529-5112

There are two cases we need to worry about for this algorithm. First, if Insertion algorithm
the list is empty, we can insert the node by simply setting head to point
to the node [Figure 16.8(a)]. Second, if the list is not empty, we must move
through, or traverse, the links of the list until we find the last node and
insert the new node after it [Figure 16.8(b)]. In this case, we want to set
the next variable of the last node to point to the new node. This gives us
the following algorithm:� �

public void i n s e r t (PhoneListNode newNode) {
i f (isEmpty ())

head = newNode ; // I n s e r t a t h e a d o f l i s t

e lse {
PhoneListNode current = head ; // S t a r t t r a v e r s a l a t h e a d

while (current . getNext () != null) // W h i l e n o t l a s t n o d e

current = current . getNext () ; // g o t o n e x t n o d e

current . setNext (newNode) ; // Do t h e i n s e r t i o n

}
} // i n s e r t ()
 	

Recall that when nodes are linked, their next variables are non-null.
So when a node’s next variable is null, that indicates the end of the
list—there’s no next node. Thus, our algorithm begins by checking if
the list is empty. If so, we assign head the reference to newNode, the
PhoneListNode that’s being inserted.

If the list is not empty, then we need to find the last node. In order toTraversing a list
traverse the list, we will need a temporary variable, current, which will

SECTION 16.2 • The Linked List Data Structure 765

always point to the current node. It’s important to understand the while
loop used here:� �

PhoneListNode current = head ; // I n i t i a l i z e r

while (current . getNext () != null) // E n t r y c o n d i t i o n

current = current . getNext () ; // U p d a t e r
 	
The loop variable, current, is initialized by setting it to point to the head
of the list. The entry condition tests whether the next link, leading out
of current, is null (Fig. 16.9). That is, when the link coming out of a
node is null, then that node is the last node in the list [Figure 16.9(c)].
Inside the while loop, the update expression simply assigns the next node
to current. In that way, current will point to each successive node
until the last node is found. It’s very important that the loop exits when
current.getNext() is null—that is, when the next pointer of the cur-
rent node is null. That way current is pointing to the last node and can Loop-exit condition
be used to set its next variable to the node being inserted [Figure 16.9(d)].
Thus, after the loop is exited, current still points to the last node. At that
point, the setNext() method is used to link newNode into the list as the
new last node.

Head
(a) Start at the head of the list

Current

Head

(b) Traverse by following the links

Current

Head

(c) Find the end of the list

Current

Head
(d) Insert the new node

Current

New

Figure 16.9: The temporary vari-
able current is used to traverse
the list to find its end.

JAVA DEBUGGING TIP List Traversal. A common error in
designing list-traversal algorithms is an erroneous loop-entry or
loop-exit condition. One way to avoid this error is to hand trace your
algorithm to make sure your code is correct.

766 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

Printing the Nodes of a List

The print() method also uses a traversal strategy to print the data from List traversal
each node of the list. Here again it is necessary to test whether the list
is empty. If so, we must print an error message. (This would be a good
place to throw a programmer-defined exception, such as an EmptyList-
Exception.) If the list is not empty, then we use a temporary variable to
traverse the list, printing each node’s data along the way:� �

public void p r i n t () {
i f (isEmpty ())

System . out . p r i n t l n (”Phone l i s t i s empty”) ;
PhoneListNode current = head ; // S t a r t t r a v e r s a l a t h e a d

while (current != null) { // W h i l e n o t e n d o f l i s t

System . out . p r i n t l n (current . t o S t r i n g ()) ; // p r i n t d a t a

current = current . getNext () ; //

g o t o n e x t n o d e

}
} // p r i n t ()
 	

Note the differences between this while loop and the one used in the
insert() method. In this case, we exit the loop when current becomes
null; there’s no action to be taken after the loop is exited. The print-
ing takes place within the loop. Thus, in this case, the entry condition,
(current != null), signifies that the task has been completed.

JAVA PROGRAMMING TIP Terminating a Traversal. In designing
list-traversal algorithms where the reference, p, points to the nodes in
the list, if you need to refer to the last node in the list after the traversal
loop exits, then your exit condition should be p.getNext() ==
null. If you have finished processing the nodes when the loop exits,
your exit condition should be p == null.

Looking up a Node in a List

Because the record associated with a person can be located anywhere in
the list, the traversal strategy must also be used to look up someone’sList traversal
phone number in the PhoneList. Here again we start at the head of the
list and traverse through the next links until we find the node containing
the desired phone number. This method takes the name of the person as a
parameter. There are three cases to worry about: (1) The list is empty; (2)
the normal case where the person named is found in the list; and (3) the

SECTION 16.2 • The Linked List Data Structure 767

person named is not in the list. Because the method returns a String, we
can return error messages in the first and third cases:� �

public S t r i n g getPhone (S t r i n g name) {
i f (isEmpty ()) // C a s e 1 : E m p t y l i s t

return ”Phone l i s t i s empty” ;
e lse {

PhoneListNode current = head ;
while ((current . getNext () != null) &&

(! current . getName () . equals (name)))
current = current . getNext () ;
i f (current . getName () . equals (name))

return current . getData () ; // C a s e 2 : F o u n d n a m e

e lse
// C a s e 3 : No s u c h p e r s o n

return (” Sorry . No entry f o r ” + name) ;
}

} // g e t P h o n e ()
 	
Note the while loop in this case. As in the insert() method, when the
loop exits, we need a reference to the current node so that we can print
its phone number [current.getData()]. But here there are three ways
to exit the loop: (1) We reach the end of the list without finding the named
person; (2) we find the named person in the interior of the list; or (3) we
find the named person in the last node of the list. In any case, it is nec- Compound exit condition
essary to test whether the name was found or not after the loop is exited.
Then appropriate action can be taken.

SELF-STUDY EXERCISE

EXERCISE 16.4 What if the exit condition for the while loop in
getPhone() were stated as� �
((current . getNext () != null) | |

(! current . getName () . equals (name)))
 	
Removing a Node from a List
By far the most difficult task is that of removing a node from a list. In Node-removal algorithm
the PhoneList we use the person’s name to identify the node, and we
return a String that can be used to report either success or failure. There
are four cases to worry about in designing this algorithm: (1) The list is
empty, (2) the first node is being removed, (3) some other node is being
removed, and (4) the named person is not in the list. The same traversal
strategy we used in getPhone() is used here, with the same basic while
loop for cases 3 and 4.

As Figure 16.10 shows, the first two cases are easily handled. If the list is
empty, we just return an error message. We use current as the traversal
variable. If the named node is the first node, we simply need to set head
to current.getNext(), which has the effect of making head point to
the second node in the list [Figure 16.11(a)]. Once the node is cut out from

768 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues� �
public S t r i n g remove (S t r i n g name) { // R e m o v e a n e n t r y b y n a m e

i f (isEmpty ()) // C a s e 1 : e m p t y l i s t

return ”Phone l i s t i s empty” ;
PhoneListNode current = head ;
PhoneListNode previous = null ;
i f (current . getName () . equals (name)) { // C a s e 2 : r e m o v e f i r s t n o d e

head = current . getNext () ;
return ”Removed ” + current . t o S t r i n g () ;

}
while ((current . getNext () != null) &&

(! current . getName () . equals (name))) {
previous = current ;
current = current . getNext () ;

}
i f (current . getName () . equals (name)) { // C a s e 3 : r e m o v e n a m e d n o d e

previous . setNext (current . getNext ()) ;
return ”Removed ” + current . t o S t r i n g () ;

} e lse
return (” Sorry . No entry f o r ” + name) ; // C a s e 4 : n o d e n o t f o u n d

} // r e m o v e ()
 	
Figure 16.10: The remove() method.

the chain of links, there will be no further reference to it. In this case, Java
will recapture the memory it uses when it does garbage collection.

JAVA LANGUAGE RULE Garbage Collection. Java’s garbage
collector handles the disposal of unused objects automatically. This
helps to simplify linked-list applications. In languages such as C++,
the programmer would have to dispose of the memory occupied by the
deleted node.

In order to remove some other node besides the first, two traversal vari-
ables are needed: previous and current. They proceed together down
the list, with previous always pointing to the node just before theTandem traversal
current node. The reason, of course, is that to remove the current
node, you need to adjust the link pointing to it contained in the previous
node [Figure 16.11(b)]. That is, the new value of previous.next will
be the current value of current.next. We use the getNext() and
setNext() methods to effect this change:� �

previous . setNext (current . getNext ()) ;
 	

SECTION 16.2 • The Linked List Data Structure 769

Head

(a) Removing first node

(b) Removing other node

Removed nodes

will be garbage

collectedHead

Head

Previous

Head

Previous

Current

Current

Figure 16.11: Removing different
nodes from a linked list.

Testing the List
In developing list-processing programs, it is important to design good test
data. As we have seen, both the insertion and removal operations involve
several distinct cases. Proper testing of these methods ideally would test Designing test data
every possible case. The main() program in Figure 16.12 illustrates the
kinds of tests that should be performed. This method could be incorpo-
rated directly into the PhoneList class, or it could be made part of a
separate class.
Of course, there are often so many combinations of list operations that ex-
haustive testing might not be feasible. At the very least you should design
test data that test each of the different conditions identified in your algo-
rithms. For example, in testing removals from a list, you should test all
four cases that we discussed. In testing insertions or lookups, you should
test all three cases that we identified.

JAVA EFFECTIVE DESIGN Test Data. Test data for validating
list-processing algorithms should (at least) test each of the cases
identified in each of the removal and insertion methods.

SELF-STUDY EXERCISES
EXERCISE 16.5 Trace through the main() method line by line and

predict its output.

EXERCISE 16.6 Design a test of PhoneList that shows that new ele-
ments can be inserted into a list after some or all of its previous nodes
have been removed.

770 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues� �
public s t a t i c void main (S t r i n g argv []) {

// C r e a t e l i s t a n d i n s e r t n o d e s

PhoneList l i s t = new PhoneList () ;
l i s t . i n s e r t (new PhoneListNode (”Roger M” , ”997−0020”)) ;
l i s t . i n s e r t (new PhoneListNode (”Roger W” , ”997−0086”)) ;
l i s t . i n s e r t (new PhoneListNode (” Rich P” , ”997−0010”)) ;
l i s t . i n s e r t (new PhoneListNode (” Jane M” , ”997−2101”)) ;
l i s t . i n s e r t (new PhoneListNode (” Stacy K” , ”997−2517”)) ;

// T e s t w h e t h e r i n s e r t i o n s w o r k e d

System . out . p r i n t l n (”Phone Direc tory ”) ;
l i s t . p r i n t () ;

// T e s t w h e t h e r l o o k u p s w o r k

System . out . p r i n t l n (”Looking up numbers by name”) ;
System . out . p r i n t l n (l i s t . getPhone (”Roger M”)) ;
System . out . p r i n t l n (l i s t . getPhone (” Rich P”)) ;
System . out . p r i n t l n (l i s t . getPhone (” Stacy K”)) ;
System . out . p r i n t l n (l i s t . getPhone (”Mary P”)) ;
System . out . p r i n t l n (l i s t . remove (” Rich P”)) ;

System . out . p r i n t l n (”Phone Direc tory ”) ;
l i s t . p r i n t () ;

// T e s t r e m o v a l s , p r i n t i n g l i s t a f t e r e a c h r e m o v a l

System . out . p r i n t l n (l i s t . remove (”Roger M”)) ;
System . out . p r i n t l n (”Phone Direc tory ”) ;
l i s t . p r i n t () ;
System . out . p r i n t l n (l i s t . remove (” Stacy K”)) ;
System . out . p r i n t l n (”Phone Direc tory ”) ;
l i s t . p r i n t () ;
System . out . p r i n t l n (l i s t . remove (” Jane M”)) ;
System . out . p r i n t l n (”Phone Direc tory ”) ;
l i s t . p r i n t () ;
System . out . p r i n t l n (l i s t . remove (” Jane M”)) ;
System . out . p r i n t l n (”Phone Direc tory ”) ;
l i s t . p r i n t () ;
System . out . p r i n t l n (l i s t . remove (”Roger W”)) ;
System . out . p r i n t l n (”Phone Direc tory ”) ;
l i s t . p r i n t () ;
System . out . p r i n t l n (l i s t . remove (”Roger W”)) ;
System . out . p r i n t l n (”Phone Direc tory ”) ;
l i s t . p r i n t () ;

} // m a i n ()
 	
Figure 16.12: A main() method containing a set of tests for the
PhoneList class.

16.3 OBJECT-ORIENTED DESIGN:
The List Abstract Data Type (ADT)

The PhoneList example from the previous section illustrates the basic
concepts of the linked list. Keep in mind that there are other implemen-
tations that could have been described. For example, some linked lists
use a reference to both the first and last elements of the list. Some lists

SECTION 3 • OOD: The List ADT 771

use nodes that have two pointers, one to the next node and one to the
previous node. This enables traversals in two directions—front to back
and back to front—as well as making it easier to remove nodes from the
list. The example we showed was intended mainly to illustrate the basic
techniques involved in list processing.

Also, the PhoneList example is limited to a particular type of data— A generic list structure
namely, a PhoneListNode. Let’s develop a more general linked list class
and a more general node class that can be used to store and process lists
of any kind of data.

An Abstract Data Type (ADT) involves two components: the data that
are being stored and manipulated and the methods and operations that
can be performed on those data. For example, an int is an ADT. The
data are the integers ranging from some MININT to some MAXINT. The
operations are the various integer operations: addition, subtraction, mul-
tiplication, and division. These operations prescribe the ways that ints
can be used. There are no other ways to manipulate integers.

Moreover, in designing an ADT, it’s important to hide the implemen-
tation of the operations from the users of the operations. Thus, our pro- Information hiding
grams have used all of these integer operations on ints, but we have no
real idea how they are implemented—that is, what exact algorithm they
use.

Objects can be designed as ADTs, because we can easily distinguish
an object’s use from its implementation. Thus, the private parts of an
object—its instance variables and private methods—are hidden from the
user while the object’s interface—its public methods—are available. As
with the integer operators, the object’s public methods prescribe just how
the object can be used.

So let’s design a list ADT. We want it to be able to store any kind of data,
and we want to prescribe the operations that can be performed on those
data—the insert, delete, and so on. Also, we want to design the ADT so Design specifications
that it can be extended to create more specialized kinds of lists.

The Node Class

JAVA EFFECTIVE DESIGN Generalizing a Type. An effective
strategy for designing a list abstract data type is to start with a specific
list and generalize it. The result should be a more abstract version of
the original list.

Our approach will be to generalize the classes we created in the Phone-
List example. Thus, the PhoneListNode will become a generic Node
that can store any kind of data (Fig. 16–13). Some of the changes are
merely name changes. Thus, wherever we had PhoneListNode, we now
have just Node. The link access methods have not changed significantly.
What has changed is that instead of instance variables for the name, phone

+Node(in o : Object)

+setData(in o : Object)

+getData() : Object

+setNext(in link : Node)

+getNext() : Node

+toString() : String

-data : Object

-next : Node

Node

Figure 16.13: The Node class
is a generalization of the
PhoneListNode class.

number, and so on, we now have just a single data reference to an Object.
This is as general as you can get, because, as we pointed out earlier, data
can refer to any object, even to primitive data.

The implementation of the Node class is shown in Figure 16.14. Note
that the data access methods, getData() and setData(), use references

772 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues� �
public c l a s s Node {

private Object data ; // S t o r e s a n y k i n d o f d a t a

private Node next ;

public Node(Object ob j) { // C o n s t r u c t o r

data = obj ;
next = null ;

} // D a t a a c c e s s m e t h o d s

public void setData (Object ob j) {
data = obj ;

}
public Object getData () {

return data ;
}
public S t r i n g t o S t r i n g () {

return data . t o S t r i n g () ;
} // L i n k a c c e s s m e t h o d s

public void setNext (Node nextPtr) {
next = nextPtr ;

}
public Node getNext () {

return next ;
}

} // Node
 	
Figure 16.14: The Node class is a more abstract version of the Phone-
ListNode class.

to Object for their parameter and return type. Note also how we’ve de-
fined the toString() method. It just invokes data.toString(). Be-
cause toString() is defined in Object, every type of data will have this
method. And because toString() is frequently overridden in defining
new objects, it is useful here.

The List Class
Let’s now generalize the PhoneList class (Fig. 16–15). The List class
will still contain a reference to the head of the list, which will now be a
list of Nodes. It will still define its constructor, its fig-listuml isEmpty()

+List()

+isEmpty() : boolean

+print()

+insertAtFront(in o : Object)

+insertAtRear(in o : Object)

+removeFirst() : Object

+removeLast() : Object

-head : Node

List

FIGURE 16.15 The List class
contains a pointer to the head of the
list and public methods to insert and
remove objects from both the front
and rear of the list.

method, and its print() method in the same way as in the PhoneList.
However, in designing a generic List class, we want to design some

new methods, particularly because we want to use this class as the basis
for more specialized lists. The PhoneList.insert() method was used
to insert nodes at the end of a list. In addition to this method, let’s design a
method that inserts at the head of the list. Also, PhoneList had a method
to remove nodes by name. However, now that we have generalized our
data, we don’t know if the list’s Objects have a name field, so we’ll scrap
this method in favor of two new methods that remove a node from the
beginning or end of the list, respectively.

We already know the basic strategies for implementing these new
methods, which are shown in the definition in Figure 16.16. We have re-
named the insertAtRear() method, which otherwise is very similar

SECTION 3 • OOD: The List ADT 773� �
public c l a s s L i s t {

private Node head ;
public L i s t () { head = null ; }
public boolean isEmpty () { return head == null ; }
public void p r i n t () {

i f (isEmpty ())
System . out . p r i n t l n (” L i s t i s empty”) ;

Node current = head ;
while (current != null) {

System . out . p r i n t l n (current . t o S t r i n g ()) ;
current = current . getNext () ;

}
} // p r i n t ()

public void i n s e r t A t F r o n t (Object ob j) {
Node newnode = new Node(ob j) ;
newnode . setNext (head) ;
head = newnode ;

}
public void inser tAtRear (Object ob j) {

i f (isEmpty ())
head = new Node(ob j) ;

e lse {
Node current = head ; // S t a r t a t h e a d o f l i s t

while (current . getNext () != null) // F i n d t h e e n d o f t h e l i s t

current = current . getNext () ;
current . setNext (new Node(ob j)) ; // C r e a t e a n d i n s e r t n e w N o d e

}
} // i n s e r t A t R e a r ()

public Object removeFirst () {
i f (isEmpty ()) // E m p t y L i s t

return null ;
Node f i r s t = head ;
head = head . getNext () ;
return f i r s t . getData () ;

} // r e m o v e F i r s t ()

public Object removeLast () {
i f (isEmpty ()) // e m p t y l i s t

return null ;
Node current = head ;
i f (current . getNext () == null) {// S i n g l e t o n l i s t

head = null ;
return current . getData () ;

}
Node previous = null ; // A l l o t h e r c a s e s

while (current . getNext () != null) {
previous = current ;
current = current . getNext () ;

}
previous . setNext (null) ;
return current . getData () ;

} // r e m o v e L a s t ()

} // L i s t
 	
Figure 16.16: The List ADT.

774 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

to the PhoneList.insert() method. The key change is that now its
parameter must be an Object, because we want to be able to insert any
kind of object into our list. At the same time, our list consists of Nodes, so
we have to use the Object to create a Node in our insert methods:� �

head = new Node(ob j) ;
 	
Recall that the Node constructor takes an Object argument and simply
assigns it to the data reference. So when we insert an Object into the list,
we make a new Node and set its data variable to point to that Object.
Note that we check whether the list is empty before traversing to the last
node.

The new insertAtFront() method (Fig. 16.16) is simple to imple-
ment, since no traversal of the list is necessary. You just need to create
a new Node with the Object as its data element and then link the new
node into the head of the list:� �

Node newnode = new Node(ob j) ;
newnode . setNext (head) ;
head = newnode ;
 	

See Figure 16.8a for a graphical representation of this type of insertion.
The new removeFirst() method is also quite simple to implement.

In this case, you want to return a reference to the Object that’s stored in
the first node, but you need to adjust head so that it points to whatever the
previous head.next was pointing to before the removal. This requires
the use of a temporary variable, as shown in the method.

The new removeLast() method is a bit more complicated. It handles
three cases: (1) The empty list case, (2) the single node list, and (3) all other
lists. If the list is empty, it returns null. Obviously, it shouldn’t even be
called in this case. In designing subclasses of List we will first invoke
isEmpty() before attempting to remove a node.

If the list contains a single node, we treat it as a special case and set
head to null, thus resulting in an empty list. In the typical case, case
3, we traverse the list to find the last node, again using the strategy of
maintaining both a previous and a current pointer. When we find
the last node, we must adjust previous.next so that it no longer points
to it.

Testing the List ADT

Testing the list ADT follows the same strategy used in the PhoneList
example. However, one of the things we want to test is that we can indeedHeterogeneous lists
create lists of heterogeneous types—lists that include Integers mixed
with Floats, mixed with other types of objects. The main() method in
Figure 16.17 illustrates this feature.

SECTION 3 • OOD: The List ADT 775� �
public s t a t i c void main (S t r i n g argv []) {

// C r e a t e l i s t a n d i n s e r t h e t e r o g e n e o u s n o d e s

L i s t l i s t = new L i s t () ;
l i s t . i n s e r t A t F r o n t (new PhoneRecord (”Roger M” , ”997−0020”)) ;
l i s t . i n s e r t A t F r o n t (new I n t e g e r (8 6 4 7)) ;
l i s t . i n s e r t A t F r o n t (new S t r i n g (” Hello , World ! ”)) ;
l i s t . inser tAtRear (new PhoneRecord (” Jane M” , ”997−2101”)) ;
l i s t . inser tAtRear (new PhoneRecord (” Stacy K” , ”997−2517”)) ;

// P r i n t t h e l i s t

System . out . p r i n t l n (” Generic L i s t ”) ;
l i s t . p r i n t () ;

// R e m o v e o b j e c t s a n d p r i n t r e s u l t i n g l i s t

Object o ;
o = l i s t . removeLast () ;
System . out . p r i n t l n (” Removed ” + o . t o S t r i n g ()) ;
System . out . p r i n t l n (” Generic L i s t : ”) ;
l i s t . p r i n t () ;
o = l i s t . removeLast () ;
System . out . p r i n t l n (” Removed ” + o . t o S t r i n g ()) ;
System . out . p r i n t l n (” Generic L i s t : ”) ;
l i s t . p r i n t () ;
o = l i s t . removeFirst () ;
System . out . p r i n t l n (” Removed ” +o . t o S t r i n g ()) ;
System . out . p r i n t l n (” Generic L i s t : ”) ;
l i s t . p r i n t () ;

} // m a i n ()
 	
Figure 16.17: A series of tests for the List ADT.

JAVA EFFECTIVE DESIGN The List ADT. One advantage of
defining a List ADT is that it lets you avoid having to write the
relatively difficult list-processing algorithms each time you need a list
structure.

The list we create here involves various types of data. The Phone-
Record class is a scaled-down version of the PhoneListNodewe used in
the previous example (Fig. 16.18). Its definition is shown in Figure 16.19.
Note how we use an Object reference to remove objects from the list in
main(). We use the Object.toString() method to display the object
that was removed.

+PhoneRecord(in name : String, in phone : String)

+toString() : String

+getName() : String

+getPhone() : String

-name : String

-phone : String

PhoneRecord
Figure 16.18: The PhoneRecord
class stores data for a phone direc-
tory.

776 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues� �
public c l a s s PhoneRecord {

private S t r i n g name ;
private S t r i n g phone ;

public PhoneRecord (S t r i n g s1 , S t r i n g s2) {
name = s1 ;
phone = s2 ;

}
public S t r i n g t o S t r i n g () {

return name + ” ” + phone ;
}
public S t r i n g getName () {

return name ;
}
public S t r i n g getPhone () {

return phone ;
}

} // P h o n e R e c o r d
 	
Figure 16.19: A PhoneRecord class.

SELF-STUDY EXERCISES
EXERCISE 16.7 Trace through the main() method line by line and

predict its output.

EXERCISE 16.8 Design a test of the List program that shows that it is
possible to insert new elements into a list after some or all of its previous
nodes have been removed.

16.4 The Stack ADT

A stack is a special type of list that allows insertions and removals to be
performed only to the front of the list. Therefore, it enforces last-in–first-
out (LIFO) behavior on the list. Think of a stack of dishes at the salad
bar. When you put a dish on the stack, it goes onto the top of the stack.
When you remove a dish from the stack, it comes from the top of the stack
(Fig. 16.20).

The stack operations are conventionally called push, for insert, and
pop, for remove, respectively. Thus, the stack ADT stores a list of data
and supports the following operations:

• Push—inserts an object onto the top of the stack.
• Pop—removes the top object from the stack.
• Empty—returns true if the stack is empty.
• Peek—retrieves the top object without removing it.

Stacks are useful for a number of important computing tasks. For ex-Stack applications
ample, during program execution, method call and return happens in a
LIFO fashion. The last method called is the first method exited. There-
fore, a stack structure known as the run-time stack is used to manage
method calls during program execution. When a method is called, an

SECTION 16.4 • The Stack ADT 777

Top

In a stack, insertions

and deletions occur

at the top

Top New

Figure 16.20: A stack is a list that
permits insertions and removals
only at its top.

activation block is created, which includes the method’s parameters, lo-
cal variables, and return address. The activation block is pushed onto
the stack. When that method call returns, the return address is retrieved
from the activation block and the whole block is popped off the stack.
The Exception.printStackTrace() method uses the run-time stack
to print a trace of the method calls that led to an exception.

16.4.1 The Stack Class
Given our general definition of List and Node, it is practically trivial to
define the stack ADT as a subclass of List (Fig. 16–21). As a subclass of
List, a Stack will inherit all of the public and protected methods de-
fined in List. Therefore, we can simply use the insertAtFront() and
removeFirst() methods for the push and pop operations, respectively

+List()

 # isEmpty() : boolean

 # print()

 # insertAtFront(in o : Object)

 # insertAtRear(in o : Object)

 # removeFirst() : Object

 # removeLast() : Object

 # head : Node

List

+Stack()

+push(in o : Object)

+pop() : Object

+peek() : Object

Stack

Figure 16.21: As a subclass of
List, a Stack inherits all of
its public (+) and protected (#)
elements. Therefore, push()
can be defined in terms of
insertAtFront() and pop()
can be defined in terms of
removeFirst().

(Fig. 16.22). Because the isEmpty() method is defined in List, there’s
no need to override it in Stack. In effect, the push() and pop()methods� �
public c l a s s Stack extends L i s t {

public Stack () {
super () ; // I n i t i a l i z e t h e l i s t

}
public void push (Object ob j) {

i n s e r t A t F r o n t (ob j) ;
}
public Object pop () {

return removeFirst () ;
}

} // S t a c k
 	
Figure 16.22: The Stack ADT.

merely rename the insertAtFront() and removeFirst() methods.
Note that the Stack() constructor calls the superclass constructor. This
is necessary so that the list can be initialized.

Do we have to make any changes to the List class in order to use it
this way? Yes. We want to change the declaration of head from private
to protected, so it can be accessed in the Stack class. And we want

778 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

to declare List’s public access methods, such as insertAtFront()
and removeFirst(), as protected. That will allow them to be used
in Stack, and in any classes that extend List, but not by other classes.
This is essential. Unless we do this we haven’t really restricted the stack
operations to push and pop and, therefore, we haven’t really defined a
stack ADT. Remember, an ADT defines the data and the operations on the
data. A stack ADT must restrict access to the data to just the push and pop
operations.

JAVA LANGUAGE RULE Protected Elements. An object’s
protected elements are hidden from all other objects except
instances of the same class or its subclasses.

JAVA EFFECTIVE DESIGN Information Hiding. Use the private
and protected qualifiers to hide an ADT’s implementation details
from other objects. Use public to define the ADT’s interface.

SELF-STUDY EXERCISE
EXERCISE 16.9 Define the peek() method for the Stack class. It

should take no parameters and return an Object. It should return the
Object on the top of the stack.

16.4.2 Testing the Stack Class
Now let’s test our stack class by using a stack to reverse the letters in a
String. The algorithm is this: Starting at the front of the String, push
each letter onto the stack until you reach the end of the String. ThenReversing a string
pop letters off the stack and concatenate them, left to right, into another
String, until the stack is empty (Fig. 16.23).

Note that because our Nodes store Objects, we must convert each
char into a Character, using the wrapper class. Note also that we can
use the toString() method to convert from Object to String as we
are popping the stack.

16.5 The Queue ADT

A queue is a special type of list that limits insertions to the end of the list
and removals to the front of the list. Therefore, it enforces first-in–first-out
(FIFO) behavior on the list. Think of the waiting line at the salad bar. You
enter the line at the rear and you leave the line at the front (Fig. 16.24).

The queue operations are conventionally called enqueue, for insert, and
dequeue, for remove, respectively. Thus, the queue ADT stores a list of
data and supports the following operations:

• Enqueue—insert an object onto the rear of the list.
• Dequeue—remove the object at the front of the list.
• Empty—return true if the queue is empty.
Queues are useful for a number of computing tasks. For example, the

ready, waiting, and blocked queues used by the CPU scheduler all use a

SECTION 16.5 • The Queue ADT 779� �
public s t a t i c void main (S t r i n g argv []) {

Stack s tack = new Stack () ;
S t r i n g s t r i n g = ” Hello t h i s i s a t e s t s t r i n g ” ;

System . out . p r i n t l n (” S t r i n g : ” + s t r i n g) ;
for (i n t k = 0 ; k < s t r i n g . length () ; k++)

s tack . push (new Character (s t r i n g . charAt (k))) ;

Object o = null ;
S t r i n g reversed = ”” ;
while (! s tack . isEmpty ()) {

o = s tack . pop () ;
reversed = reversed + o . t o S t r i n g () ;

}
System . out . p r i n t l n (” Reversed S t r i n g : ” + reversed) ;

} // m a i n ()
 	
Figure 16.23: A method to test the Stack ADT, which is used here to
reverse a String of letters.

FIFO protocol. Queues are also useful in implementing certain kinds of
simulations. For example, the waiting line at a bank or a bakery can be
modeled using a queue.

Figure 16.24: A queue is a list that
permits insertions at the rear and
removals at the front only.

Head

In a queue, insertions

take place at the rear, and

removals occur at the front

Head

New

780 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

16.5.1 The Queue Class
The Queue class is also trivial to derive from List (Fig. 16.25). Here we
just restrict operations to the insertAtRear() and removeFirst()
methods (Fig. 16.26). To test the methods of this class, we replace the
push() and pop() operations of the last example to enqueue() and
dequeue(), respectively (Fig. 16.27). In this case, the letters of the test
string will come out of the queue in the same order they went in—FIFO.

+List()

 # isEmpty() : boolean

 # print()

 # insertAtFront(in o : Object)

 # insertAtRear(in o : Object)

 # removeFirst() : Object

 # removeLast() : Object

 # head : Node

List

+Queue()

+enqueue(in o : Object)

+dequeue() : Object

Queue

Figure 16.25: The Queue’s
enqueue() and dequeue()
methods can use the List’s
insertAtRear() and
removeFirst() methods,
respectively.

� �
public c l a s s Queue extends L i s t {

public Queue () {
super () ; // I n i t i a l i z e t h e l i s t

}
public void enqueue (Object ob j) {

inser tAtRear (ob j) ;
}
public Object dequeue () {

return removeFirst () ;
}

}// Q u e u e
 	
Figure 16.26: The Queue ADT.

� �
public s t a t i c void main (S t r i n g argv []) {

Queue queue = new Queue () ;
S t r i n g s t r i n g = ” Hello t h i s i s a t e s t s t r i n g ” ;
System . out . p r i n t l n (” S t r i n g : ” + s t r i n g) ;
for (i n t k = 0 ; k < s t r i n g . length () ; k++)

queue . enqueue (new Character (s t r i n g . charAt (k))) ;
System . out . p r i n t l n (”The current queue : ”) ;
queue . p r i n t () ;

Object o = null ;
System . out . p r i n t l n (”Dequeuing : ”) ;
while (! queue . isEmpty ()) {

o = queue . dequeue () ;
System . out . p r i n t (o . t o S t r i n g ()) ;

}
} // m a i n ()
 	
Figure 16.27: A method to test the Queue ADT. Letters inserted in a queue
come out in the same order they went in.

JAVA EFFECTIVE DESIGN ADTs. ADTs encapsulate and manage
the difficult tasks involved in manipulating the data structure. But
because of their extensibility, they can be used in a wide range of
applications.

SECTION 16.5 • The Queue ADT 781

SELF-STUDY EXERCISE

EXERCISE 16.10 Define a peekLast() method for the Queue class.
It should take no parameters and return an Object. It should return
a reference to the Object stored in the last Node of the list without
removing it.

Special Topic: The LISP Language

One of the very earliest computer languages, and the one that’s most of-
ten associated with artificial intelligence (AI), is LISP, which stands for
LISt Processor. LISP has been, and still is, used to build programs for hu-
man learning, natural language processing, chess playing, human vision
processing, and a wide range of other applications.

The earliest (pure) versions of LISP had no control structures and the
only data structure they contained was the list structure. Repetition in the
language was done by recursion. Lists are used for everything in LISP,
including LISP programs themselves. LISP’s unique syntax is simple. A
LISP program consists of symbols, such as 5 and x, and lists of symbols,
such as (5), (1 2 3 4 5), and ((this 5) (that 10)), where a list is anything en-
closed within parentheses. The null list is represented by ().

Programs in LISP are like mathematical functions. For example, here’s
a definition of a function that computes the square of two numbers:� �

(def ine (square x) (∗ x x))
 	
The expression (square x) is a list giving the name of the function and its
parameter. The expression (* x x) gives the body of the function.

LISP uses prefix notation, in which the operator is the first symbol in
the expression, as in (* x x). This is equivalent to (x * x) in Java’s infix
notation, where the operator occurs between the two operands. To run
this program, you would simply input an expression like (square 25) to the
LISP interpreter, and it would evaluate it to 625.

LISP provides three basic list operators. The expression (car x) returns
the first element of the (nonempty) list x. The expression (cdr x) returns
the tail of the list x. Finally, (cons z x) constructs a list by making z the head
of the list and x its tail. For example, if x is the list (1 3 5), then (car x) is 1,
(cdr x) is (3 5), and (cons 7 x) is (7 1 3 5).

Given these basic list operators, it is practically trivial to define a stack
in LISP:� �

(def ine (push x s tack) (cons x s tack))
(def ine (pop s tack) (s e t f s tack (cdr s tack)) (car s tack))
 	

The push operation creates a new stack by forming the cons of the element
x and the previous version of the stack. The pop operation returns the
car of the stack but first changes the stack (using setf) to the tail of the
original stack.

782 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

These simple examples show that you can do an awful lot of computa-
tion using just a simple list structure. The success of LISP, particularly its
success as an AI language, shows the great power and generality inherent
in recursion and lists.

16.6 From the Java Library: The Java Collections
Framework and Generic Types

java.sun.com/j2se/1.5.0/docs/api/
THE JAVA CLASS LIBRARY contains implementations of some abstract

data types. The Java utility package, java.util.*, contains a good
number of classes and interfaces designed to facilitate storing and ma-
nipulating groups of objects. This family of related interfaces and classes
is called the Java collections framework. It contains structures that corre-
spond to the ADTs that we have just discussed, plus other data structures.
Java 5.0 has reimplemented the Java collections framework using generic
types that allow a programmer to specify a type for the objects that are
stored in the structure.

16.6.1 Generic types in Java

Declaring classes that use the generic type construct introduced in Java 5.0
involves using new syntax to refer to the class name. Such classes and in-generic types
terfaces, including those in the collections framework, use angle brackets
containing one or more variables (separated by commas) to refer to un-
specified type names. For example, you would use <E> or <K,V> to refer
to unspecified type names. Thus, names of classes or interfaces imple-
mented with generic types are written with the syntax ClassName<E>.

Let’s reconsider the Vector class, which was introduced in Chapter 9.
The Vector class, which is part of the Java collections framework, has
a generic type implementation in Java 5.0. Figure 16.28 describes the

+Vector()

+Vector(in size : int)

+addElement(in o : E)

+elementAt(in index : int) : E

+insertElementAt(in o : E, in x : int)

+indexOf(in o : Object) : int

+lastIndexOf(in o : Object) : int

+removeElementAt(in index : int)

+size() : int

Vector<E>

Figure 16.28: The java.util.-
Vector class is implemented
with a generic type in Java 5.0.

Vector<E> class. Notice that the E refers to an unspecified type name,
that is, the name of a class or interface. This type is specified when a
corresponding variable is declared. The type must also be included after a
constructor’s type name when an object is instantiated and assigned to the
variable. The following code demonstrates how to create a Vector<E>
object for storing String objects.� �

Vector<Str ing> s trVec = new Vector<Str ing > () ;
s t rVec . addElement (” alpha ”) ;
s t rVec . addElement (” beta ”) ;
S t r i n g s t r = strVec . elementAt (0) ;
 	

In effect, the <E> serves as parameter for the type of objects that will be
stored in the Vector. Java 5.0 still allows the use of the unparameterized
Vector class which is equivalent to instantiating a Vector<Object>

SECTION 6 • Java Collections and Generic Types 783

object. If you use a Vector object, the above code would be written as
follows.� �

Vector s trVec = new Vector () ;
s t rVec . addElement (” alpha ”) ;
s t rVec . addElement (” beta ”) ;
S t r i n g s t r = (S t r i n g) s t rVec . elementAt (0) ;
 	

One benefit a generic type provides is type checking of method argu-
ments at compile time. If strVec is a Vector<String> object, then the
statement� �

s trVec . addElement (new I n t e g e r (5 7)) ;
 	
will generate a compile-time error. By contrast, if strVec was just a
plain Vector object, no error would be found at compile time. Thus, if
a programmer wishes to create an array of String objects, using generic
types will help guarantee that the objects being stored are actually of type
String. In this way, using generic types helps to reduce the number of
programming errors and thereby makes programs safer and more robust.

A second benefit of using generic types is that the return type of objects
retrieved from the data structure will be of the specified type rather than
of type Object. If you compare the last statement in each of the two
code segments above, you can see that using a generic type eliminates the
need to cast an Object to a String. This is a big convenience for the
programmer, because forgetting to cast objects from one type to another is
a common programming error.

+empty() : boolean

+peek() : E

+pop() : E

+push(in o : E) : E

+search(in o : Object) : int

Stack<E>

Vector<E>

Figure 16.29: The java.util.-
Stack<E> class is a subclass of
Vector<E>.

The java.util.Stack<E> class

The Java collections framework includes the Stack<E> class, imple-
mented as a subclass of the Vector<E> class. It contains the methods
shown in Figure 16.29. For the most part, its methods provide the same
functionality as the methods we developed earlier in this chapter.
Note that the methods provide the functionality of a stack ADT but the de-
tails of its implementation are hidden from the user. An object of this class
can be declared, instantiated, and used in a manner like the Vector<E>
code.� �

Stack<Str ing> s tk = new Stack<Str ing > () ;
s tk . push (” alpha ”) ;
s tk . push (” beta ”) ;
S t r i n g s t r = s tk . pop () ;
 	

SELF-STUDY EXERCISE

EXERCISE 16.11 Write a class with only a main() method that modi-
fies Figure 16.23 so that it uses the parameterized java.util.Stack<E>
class instead of the Stack class used there.

784 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

16.6.2 The List<E> interface
and the LinkedList<E> class

The java.util.LinkedList<E> is an implementation of a linked list
(Fig. 16.30). Like our implementation earlier in this chapter, it contains
methods that can be used to define the standard stack and queue methods.

+add(in index : int, in o : E)

+addFirst(in o : E)

+addLast(in o : E)

+get(in index : int) : E

+getFirst() : E

+getLast() : E

+removeFirst() : E

+removeLast() : E

LinkedList<E>

+add(in index : int, in o : E)

+remove(in index : int) : E

+get(in index : int) : E

AbstractSequentialList<E>

«interface»

List<E>

Figure 16.30: The
LinkedList<E> class imple-
ments the List<E> interface.
Only a partial list of methods are
shown.

Many of the standard list-processing methods are defined as part of
the java.util.List<E> interface. The advantage of defining list op-
erations as an interface is that they can be implemented by a number of
data structures. Code for using the list methods can be written to work
independently of the data structure being used.

For example, the collections framework contains LinkedList<E> and
ArrayList<E>, both of which implement the List<E> interface. In
this section, we will demonstrate how to make appropriate use of the
List<E> interface and data structures that implement it.

Suppose that a programmer is developing an application to track ac-
tivity of employees working at a small company’s phone-in help desk.
The programmer has decided to use the LinkedList<E> data structure
to store objects of the PhoneRecord class that was defined earlier in this
chapter and will use methods of the List<E> interface to manipulate the
data. A list seems to be an appropriate structure for this problem since

• An unknown (but relatively small) amount of data will be involved.

• The company wants the data stored in the order it is generated.

• The main use of the data will be to print out the list’s phone records.

The programmer might write a short method like that in Figure 16.31 to
demonstrate how the List<E> and LinkedList<E> structures will be
used.� �

public s t a t i c void t e s t L i s t () {
Lis t<PhoneRecord> t h e L i s t = new LinkedList<PhoneRecord > () ;
// new A r r a y L i s t <P h o n e R e c o r d > () ; c o u l d a l s o b e u s e d .

t h e L i s t . add (new PhoneRecord (”Roger M” , ”090−997−2918”)) ;
t h e L i s t . add (new PhoneRecord (” Jane M” , ”090−997−1987”)) ;
t h e L i s t . add (new PhoneRecord (” Stacy K” , ”090−997−9188”)) ;
t h e L i s t . add (new PhoneRecord (”Gary G” , ”201−119−8765”)) ;
t h e L i s t . add (new PhoneRecord (” Jane M” , ”090−997−1987”)) ;
System . out . p r i n t l n (” Test ing a LinkedList L i s t ”) ;
for (PhoneRecord pr : t h e L i s t)

System . out . p r i n t l n (pr) ;
} // t e s t L i s t
 	

Figure 16.31: A method that demonstrates the interface List<E> and the
class LinkedList<E>.

Note that the statement� �
Lis t<PhoneRecord> t h e L i s t = new LinkedList<PhoneRecord > () ;
 	

SECTION 16.7 • Using the Set and Map Interfaces 785

declares a variable theList of interface type List<E> but assigns an ob-
ject of class type LinkedList<E>. This is appropriate because the class
implements the interface and the code uses only methods from the inter-
face. The class ArrayList<E> in the collections framework also imple-
ments the List<E> interface. It uses an array rather than a linked list to
store elements and has a constructor with an int parameter that sets the
size of the array. If the programmer knew that theList would contain
close to, but always less than, 100 elements, then it might be better to
declare:� �

Lis t<PhoneRecord> t h e L i s t = new ArrayList<PhoneRecord > (100) ;
 	
Also note the unusual looking for loop at the end of the method. This is a
new feature of Java 5.0 which can be used to simplify the coding of loops
that iterate through every object in a collection of objects. The statement The for–each loop� �

for (PhoneRecord pr : t h e L i s t) { ∗∗∗ }
 	
should be thought of as executing the enclosed statements for each
PhoneRecord object, pr, in the theList data structure. In previous ver-
sions of Java, an interface named Iterator had to be used to enumerate
all the elements in a collection. The Iterator approach is more flexible—
for example, it allows you to iterate through just some of the members of
the collection— and will therefore still have to be used for more complex
loops.

The output of the method will be:� �
Roger M 090−997−2918
Jane M 090−997−1987
Stacy K 090−997−9188
Gary G 201−119−8765
Jane M 090−997−1987
 	

In the next section we will examine two other structures in the collec-
tions framework, the Set interface and the Map interface.

JAVA EFFECTIVE DESIGN Code Reuse. Given the relative
difficulty of writing correct and efficient list-processing algorithms,
applications that depend on lists should make use of library classes
whenever possible.

16.7 Using the Set and Map Interfaces

The Set and Map interfaces are similar to the List interface in that there
are multiple classes in the collections framework that implement them.

16.7.1 Using the Set Interface.
The Set interface is modeled after the set theory principles taught in math-
ematics. In mathematics, sets are groups of elements with a clearly defined

786 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

algorithm for deciding if any given element is in any given set. Elements
can be added to sets and can be removed from sets. Sets cannot have
duplicate elements; if an element is added to a set that already contains
an element equal to it, the new set still has a single such element. The ele-
ments of a set have no natural order; two sets that have the same elements
listed in different orders are considered to be the same set.

In computer science and in Java, data structures that model sets are
designed for large collections of data. Such data structures have a method
that determines if an object is in a given set with an efficient algorithm. For
large data sets, using such a method is much faster than iterating through
a list. Sometimes, you may or may not be able to list the elements of
a set data structure in some natural order, depending on how the data

Figure 16.32: A partial list of
methods of the Set<E> interface.

structure is implemented. An incomplete listing of the methods of the
Set<E> interface is given in the UML diagram in Figure 16.32.
TreeSet<E> and HashSet<E> are two classes in the collections

framework that implement the Set<E> interface. They both provide fast
operations to check whether an element is in a set. They also provide quick
insertion of an element into the set or removal of an element from a set. For
large sets—those having at least several thousand elements—where there
are large numbers of insertions, deletions, and tests for whether elements
are in a set, linked lists would be much slower.

When using the Set<E> interface for a user-defined class E, you will
likely want to override the definition of the equals() method from the
Object class in E because that method is used when computing theOverriding methods
value of aSet.contains(anElement). When using the TreeSet<E>
class for a user defined class E, you should implement the compareTo()
method of the Comparable interface because it is used to order the el-
ements of E. In the next section, we will discuss the specific manner in
which elements are ordered. Finally, when using the HashSet<E> class
for a user defined class E, you should override the hashCode() method
of the Object class because it is used HashSet<E>. Hash codes are in-
dexes that are computed from the particular object that is being stored
in the HashSet. Given an object’s hash code, the object can be retrieved
directly, as we do with object’s stored in an array. However, we will not
discuss hash codes in any detail in this text.

Problem Statement

Let’s think about a simple example for using a set data structure. Sup-
pose that a programmer is developing an application for a large com-
pany for maintaining a no–call list. The programmer has decided to use
the TreeSet<E> data structure to store objects of the PhoneRecord
class that was defined earlier in this chapter and will use methods of the
Set<E> interface to manipulate the data.

A TreeSet seems to be an appropriate structure for this problem, since

• A large amount of data will be involved.

• The company wants the PhoneRecord data stored in alphabeti-
cal order.

• The main use of the data will be to test whether names are in the
set.

SECTION 16.7 • Using the Set and Map Interfaces 787

The programmer might write a short method like that in Figure 16.33 to
demonstrate how the Set<E> and TreeSet<E> structures will be used.

� �
public s t a t i c void t e s t S e t () {

Set<PhoneRecord> t h e S e t = new TreeSet<PhoneRecord > () ;
// new H a s h S e t <P h o n e R e c o r d > () ; c o u l d a l s o b e u s e d .

t h e S e t . add (new PhoneRecord (”Roger M” , ”090−997−2918”)) ;
t h e S e t . add (new PhoneRecord (” Jane M” , ”090−997−1987”)) ;
t h e S e t . add (new PhoneRecord (” Stacy K” , ”090−997−9188”)) ;
t h e S e t . add (new PhoneRecord (”Gary G” , ”201−119−8765”)) ;
t h e S e t . add (new PhoneRecord (” Jane M” , ”090−987−6543”)) ;

System . out . p r i n t l n (” Test ing TreeSet and Set ”) ;
PhoneRecord ph1 =

new PhoneRecord (”Roger M” , ”090−997−2918”) ;
PhoneRecord ph2 =

new PhoneRecord (”Mary Q” , ”090−242−3344”) ;
System . out . p r i n t (”Roger M contained in t h e S e t i s ”) ;
System . out . p r i n t l n (t h e S e t . conta ins (ph1)) ;
System . out . p r i n t (”Mary Q contained in t h e S e t i s ”) ;
System . out . p r i n t l n (t h e S e t . conta ins (ph2)) ;
for (PhoneRecord pr : t h e S e t)

System . out . p r i n t l n (pr) ;
} // t e s t S e t
 	
Figure 16.33: A method that demonstrates use of the interface Set<E>
and the class TreeSet<E>.

In order for the testSet()method to work as we would like, we need
to have the PhoneRecord class implement the Comparable interface
and to override the equals() method. For this example, it is reason-
able to assume that the name field of PhoneRecord objects should be
unique so that it can be used to decide if two PhoneRecord objects are
equal. The name field of PhoneRecord can also be used to define the
other two methods discussed above. Thus, add the following code to the
PhoneRecord class.� �

public boolean equals (Object ob){
return name . equals (((PhoneRecord) ob) . getName ()) ;

} // e q u a l s ()

public i n t compareTo (Object ob){
return name . compareTo (((PhoneRecord) ob) . getName ()) ;

} // c o m p a r e T o ()

public i n t hashCode () {
return name . hashCode () ;

} // h a s h C o d e ()
 	

788 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

The output of the TestSet() method is listed below:� �
Test ing TreeSet and Set
Roger M i s contained in t h e S e t i s t rue
Mary Q i s contained in t h e S e t i s f a l s e
Gary G 201−119−8765
Jane M 090−997−1987
Roger M 090−997−2918
Stacy K 090−997−9188
 	

Notice that Jane M PhoneRecord appears only once in the listing of
elements in the set.

16.7.2 Using the Map<K,V> Interface.

The Map<K,V> interface is modeled after looking up definitions for words
in a dictionary. In computer science, maps are considered to be a collection
of pairs of elements. A pair consists of a key that corresponds to a word
being looked up and a value corresponding to the definition of the word.
Pairs can be added to maps and can be removed from maps. Maps cannot
have distinct pairs with the same keys; if you attempt to add a pair to a

Figure 16.34: A partial list of
methods of Map<K,V>.

map that already contains a pair with the same key, the second pair will
replace the first. An incomplete listing of the methods of the Map<K,V>
interface is given in the UML diagram in Figure 16.34. TreeMap<K,V>
and HashMap<K,V> are two classes in the collections framework that
implement the Map<K,V> interface.

Let’s now consider a simple example of using a map data structure.
Suppose that our programmer has been hired by a large company to de-
velop an application that maintains an electronic phone list for company
employees. The programmer has decided to use the TreeMap<E> data
structure to store pairs of names and telephone numbers and will use
methods of the Map<V,K> interface to manipulate the data.

A TreeMap seems like an appropriate data structure for this problem,
since

• A large amount of data will be involved.

• The company wants the PhoneRecord data stored in alphabeti-
cal order.

• The main use of the data will be to use names to access telephone
numbers.

The programmer might write a short method like that in Figure 16.35 to
demonstrate how the Map<K,V> and TreeMap<K,V> structures will be
used.

The output for this test program is:� �
Stacy K has phone 090−997−9188
Jane M has phone 090−233−0000
 	

Notice the the second phone number for Jane M is the one that is stored
in the data structure.

SECTION 16.8 • The Binary Search Tree Data Structure 789� �
public s t a t i c void testMap () {

Map<Str ing , Str ing> theMap =
new TreeMap<Str ing , Str ing > () ;

// new HashMap<K , V > () ; c o u l d a l s o b e u s e d

theMap . put (”Roger M” , ”090−997−2918”) ;
theMap . put (” Jane M” , ”090−997−1987”) ;
theMap . put (” Stacy K” , ”090−997−9188”) ;
theMap . put (”Gary G” , ”201−119−8765”) ;
theMap . put (” Jane M” , ”090−233−0000”) ;
System . out . p r i n t l n (” Test ing TreeMap and Map”) ;
System . out . p r i n t (” Stacy K has phone ”) ;
System . out . p r i n t (theMap . get (” Stacy K”) ;
System . out . p r i n t (” Jane M has phone ”) ;
System . out . p r i n t (theMap . get (” Jane M”) ;

} // t e s t L i s t
 	
Figure 16.35: A method that demonstrates use of the interface Map<K,V>
and the class TreeMap<K,V>.

16.8 The Binary Search Tree Data Structure

To gain some appreciation of what binary search trees are and why they
are useful in implementing the Set and Map interfaces, let’s make a few
comments about implementing very simple versions of these structures.

Like a linked list, a binary tree is a data structure consisting of a col-
lection of nodes that are linked together by references from one node to
another. However, unlike a linked list, each node in a binary tree contains
references to two other other nodes, (left and right), corresponding to
the left- and right-subtrees growing out of a particular node. A subtree is
a tree that is part of larger tree. This creates a tree-like structure, as shown
in Figure 16.36. Note that some of the references to other nodes might
be null. The trunk of the tree corresponds to the node labeled root. In
computer science, trees are almost always drawn upside down. Thus the
trunk of the tree, root, is at the top of the figure.

If we assume that the objects contained in a tree are from a class that
implements the Comparable interface, then a binary search tree is a bi-
nary tree in which the objects are ordered so that the object at a particular
node is greater than the objects stored in its left subtree and less than the
objects stored in its right subtree.

Figure 16.36 shows a binary search tree with the phone list data that we
have used throughout the chapter. Objects are compared by comparing
the names alphabetically. From the figure it is easy to see that searching
for a object should start at the root of the tree. At each node, examining the
name at the node will tell you whether you have found the object there.
Otherwise, by checking the name at the node, you can decide which sub-
tree the data could be in, and you can traverse either left or right through
each level of the tree. One can deduce that if the tree is balanced—that is,
if at most nodes the size of the left subtree is about the same size as the
right subtree—searching the tree much faster than searching a linked list.

790 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues
Figure 16.36: A binary search tree
of PhoneTreeNodes.

This is one of the main advantages of using a binary search tree over a
linked list.

The TreeSet and TreeMap classes implement sophisticated algo-
rithms for inserting and removing data from a tree, which guarantees
that the tree remains relatively balanced. The details of these algorithms
are beyond the scope of this book, but would be a subject of study in a
standard Data Structures and Algorithms course.

We will conclude this subsection by giving a brief outline of an imple-
mentation of a simple binary search tree that stores our phone list data.
Like our LinkedList example, you need to define a node class and a
tree class. The node class with unimplemented methods, would look like:� �

public c l a s s PhoneTreeNode {
private S t r i n g name ;
private S t r i n g phone ;
private PhoneTreeNode l e f t ;
private PhoneTreeNode r i g h t ;

public PhoneTreeNode (S t r i n g nam, S t r i n g pho){ }
public void setData (S t r i n g nam, S t r i n g pho){ }
public S t r i n g getName () { }
public boolean conta ins (S t r i n g nam, S t r i n g pho){ }
public void i n s e r t (S t r i n g nam, S t r i n g pho){ }
// o t h e r m e t h o d s

} // P h o n e T r e e N o d e
 	

SECTION 16.8 • The Binary Search Tree Data Structure 791

The tree structure itself contains a reference to a node:� �
public c l a s s PhoneTree {

private PhoneTreeNode root ;

public PhoneTree () { }
public boolean conta ins (S t r i n g nam, S t r i n g pho){ }
public void i n s e r t (S t r i n g nam, S t r i n g pho){ }
// o t h e r m e t h o d s

} // P h o n e T r e e N o d e
 	
We will implement only the two contains() methods. The PhoneTree
version is very simple:� �

public boolean conta ins (S t r i n g nam, S t r i n g pho){
i f (root == null) return f a l s e ;
e lse return root . conta ins (nam, pho) ;

} // c o n t a i n s () i n P h o n e T r e e
 	
The implementation of the contains() method of PhoneTreeNode is
only slightly more involved.� �

public boolean conta ins (S t r i n g nam, S t r i n g pho){
i f (name . equals (nam))

return true ;
e lse i f (name . compareTo (nam) < 0) { // n a m e < nam

i f (r i g h t == null) return f a l s e ;
e lse return r i g h t . conta ins (nam, pho) ;

} e lse { {\ c o l o r {cyan} // n a m e > nam }
i f (l e f t == null) return f a l s e ;
e lse return l e f t . conta ins (nam, pho) ;

}
} // c o n t a i n s () i n P h o n e T r e e N o d e
 	

792 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

CHAPTER SUMMARY In this chapter, we have given you a brief introduction to the concept of
a dynamic data structure and tried to illustrate how they work and why
they are useful for organizing and managing large amounts of data. We
also introduced you to an important new language feature introduced in
Java 5.0, the concept of generic types. Obviously, we have only scratched
the surface of the important topic of data structures and the algorithms
used to manage them. For a broader and deeper treatment of this subject,
you will have to take a Data Structures and Algorithms course, which is a
fundamental course in most computer science curricula.
Technical Terms
Abstract Data Type

(ADT)
binary search tree
data structure
dequeue
dynamic structure
enqueue
first-in–first-out

(FIFO)
generic type

Java collections
framework

key
last-in–first-out

(LIFO)
link
list
linked list
pop
push

queue
reference
self-referential object
stack
static structure
traverse
value
vector

Summary of Important Points
• A data structure is used to organize data and make them more efficient

to process. An array is an example of a static structure, since its size
does not change during a program’s execution. A vector is an example
of a dynamic structure, one whose size can grow and shrink during a
program’s execution.
• A linked list is a linear structure in which the individual nodes of the list

are joined together by references. A reference is a variable that refers to
an object. Each node in the list has a link variable that refers to another
node. An object that can refer to the same kind of object is said to be
self-referential.
• The Node class is an example of a self-referential class. It contains a

link variable that refers to a Node. By assigning references to the link
variable, Nodes can be chained together into a linked list. In addition
to their link variables, Nodes contain data variables, which should be
accessible through public methods.
• Depending on the use of a linked list, nodes can be inserted at various

locations in the list: at the head, the end, or in the middle of the list.
• Traversal algorithms must be used to access the elements of a singly

linked list. To traverse a list you start at the first node and follow the
links of the chain until you reach the desired node.
• Depending on the application, nodes can be removed from the front,

rear, or middle of a linked list. Except for the front node, traversal
algorithms are used to locate the desired node.
• In developing list algorithms, it is important to test them thoroughly.

Ideally, you should test every possible combination of insertions and

CHAPTER 16 • Solutions to Self-Study Exercises 793

removals that the list can support. Practically, you should test every
independent case of insertions and removals that the list supports.
• An Abstract Data Type (ADT) is a concept that combines two elements:

A collection of data, and the operations that can be performed on the
data. For the list ADT, the data are the values (Objects or ints)
contained in the nodes that make up the list, and the operations are
insertion, removal, and tests of whether the list is empty.
• In designing an ADT, it’s important to provide a public interface that

can be used to access the ADT’s data. The ADT’s implementation de-
tails should not matter to the user and should, therefore, be hidden. A
Java class definition, with its public and private aspects, is perfectly
suited to implement an ADT.
• A stack is a list that allows insertions and removals only at the front

of the list. A stack insertion is called a push and a removal is called a
pop. The first element in a stack is usually called the top of the stack.
The Stack ADT can easily be defined as a subclass of List. Stacks are
used for managing the method call and return in most programming
languages.
• A queue is a list that only allows insertions at the rear and removals

from the front of a list. A queue insertion is called enqueue, and a re-
moval is called dequeue. The Queue ADT can easily be defined as a
subclass of List. Queues are used for managing the various lists used
by the CPU scheduler—such as the ready, waiting, and blocked queues.
• A binary search tree is a binary tree in which the ordered data stored at

any node is greater than all data stored in the left subtree and is less
than all data stored in the right subtree.

SOLUTIONS TO
SELF-STUDY EXERCISES

SOLUTION 16.1� �
Node node = new Node(new S t r i n g (” Hello ”)) ;
 	
SOLUTION 16.2� �
Node node = new Node(new Student (” William ”)) ;
 	
SOLUTION 16.3� �
PhoneListNode newNode =

new PhoneListNode (” B i l l C” , ”111−202−3331”) ;
nodeptr . setNext (newNode) ;
 	

794 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

SOLUTION 16.4 The following condition is too general. It will cause the loop to
exit as soon as a nonnull node is encountered, whether or not the node matches
the one being sought.� �
((current . getNext () != null) | |

(! current . getName () . equals (name)))
 	

SOLUTION 16.5 The PhoneList program will generate the following output,
which has been edited slightly to improve its readability:� �
Phone Direc tory
−−−−−−−−−−−−−−−
Roger M 997−0020 Roger W 997−0086 Rich P 997−0010
Jane M 997−2101 Stacy K 997−2517
Looking up numbers by name

Roger M 997−0020
Rich P 997−0010
Stacy K 997−2517
Sorry . No entry for Mary P

Removed Rich P 997−0010
Phone Direc tory
−−−−−−−−−−−−−−−
Roger M 997−0020 Roger W 997−0086 Jane M 997−2101
Stacy K 997−2517
Removed Roger M 997−0020
Phone Direc tory
−−−−−−−−−−−−−−−
Roger W 997−0086 Jane M 997−2101 Stacy K 997−2517
Removed Stacy K 997−2517
Phone Direc tory
−−−−−−−−−−−−−−−
Roger W 997−0086 Jane M 997−2101
Removed Jane M 997−2101
Phone Direc tory
−−−−−−−−−−−−−−−
Roger W 997−0086
Sorry . No entry for Jane M
Phone Direc tory
−−−−−−−−−−−−−−−
Roger W 997−0086
Removed Roger W 997−0086
Phone Direc tory
−−−−−−−−−−−−−−−
Phone l i s t i s empty
 	

CHAPTER 16 • Solutions to Self-Study Exercises 795

SOLUTION 16.6 Executing the following method calls will test whether it is
possible to insert items into a list after items have been removed:� �

// C r e a t e a n d i n s e r t s o m e n o d e s

PhoneList l i s t = new PhoneList () ;
l i s t . i n s e r t (new PhoneListNode (”Roger M” , ”997−0020”)) ;
l i s t . i n s e r t (new PhoneListNode (”Roger W” , ”997−0086”)) ;
System . out . p r i n t l n (l i s t . remove (”Roger M”)) ;
l i s t . i n s e r t (new PhoneListNode (” Rich P” , ”997−0010”)) ;
System . out . p r i n t l n (l i s t . remove (”Roger W”)) ;
l i s t . i n s e r t (new PhoneListNode (” Jane M” , ”997−2101”)) ;
l i s t . i n s e r t (new PhoneListNode (” Stacy K” , ”997−2517”)) ;
System . out . p r i n t l n (l i s t . remove (” Jane M”)) ;
System . out . p r i n t l n (l i s t . remove (” Stacy K”)) ;
l i s t . p r i n t () ;

// L i s t s h o u l d b e e m p t y
 	

SOLUTION 16.7 The List ADT program will produce the following output:� �
Generic L i s t
−−−−−−−−−−−−−−−
Hello , World !
8647
Roger M 997−0020
Jane M 997−2101
Stacy K 997−2517

Removed Stacy K 997−2517
Generic L i s t :
Hello , World !
8647
Roger M 997−0020
Jane M 997−2101

Removed Jane M 997−2101
Generic L i s t :
Hello , World !
8647
Roger M 997−0020

Removed Hello , World !
Generic L i s t :
8647
Roger M 997−0020
 	

796 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

SOLUTION 16.8 Executing the following method calls will test whether it is
possible to insert items into a List after items have been removed:� �

// C r e a t e a n d i n s e r t s o m e n o d e s

L i s t l i s t = new L i s t () ;
l i s t . i n s e r t A t F r o n t (new PhoneRecord (”Roger M” , ”997−0020”)) ;
l i s t . i n s e r t A t F r o n t (new PhoneRecord (”Roger W” , ”997−0086”)) ;
System . out . p r i n t l n (” Current L i s t Elements ”) ;
l i s t . p r i n t () ;
Object o = l i s t . removeLast () ; // R e m o v e l a s t e l e m e n t

l i s t . i n s e r t A t F r o n t (o) ; // I n s e r t a t t h e f r o n t o f t h e l i s t

System . out . p r i n t l n (” Current L i s t Elements ”) ;
l i s t . p r i n t () ;
o = l i s t . removeFirst () ;
System . out . p r i n t l n (”Removed ” + o . t o S t r i n g ()) ;
o = l i s t . removeFirst () ;
System . out . p r i n t l n (”Removed ” + o . t o S t r i n g ()) ;
l i s t . inser tAtRear (o) ;
System . out . p r i n t l n (” Current L i s t Elements ”) ;
l i s t . p r i n t () ; // L i s t s h o u l d h a v e o n e e l e m e n t
 	

SOLUTION 16.9 The peek() method should just return the first node without
deleting it:� �
public Object peek () {

return head ;
}
 	

SOLUTION 16.10 The peekLast()method can be modeled after the List.re-
moveLast() method:� �
public Object peekLast () {

i f (isEmpty ())
return null ;

e lse {
Node current = head ; // S t a r t a t h e a d o f l i s t

while (current . getNext () != null) // F i n d e n d o f l i s t

current = current . getNext () ;
return current ;

// R e t u r n l a s t n o d e

}
} // p e e k L a s t ()
 	

CHAPTER 16 • Exercises 797

SOLUTION 16.11 The following class tests the java.util.Stack<E> class:� �
import j ava . u t i l . ∗ ;
public c l a s s StackTes t {
public s t a t i c void main (S t r i n g argv []) {

Stack<Character> s tack = new Stack<Character > () ;
S t r i n g s t r i n g = ” Hello t h i s i s a t e s t s t r i n g ” ;

System . out . p r i n t l n (” S t r i n g : ” + s t r i n g) ;
for (i n t k = 0 ; k < s t r i n g . length () ; k++)

s tack . push (new Character (s t r i n g . charAt (k))) ;

Character ch = null ;
S t r i n g reversed = ”” ;
while (! s tack . empty ()) {

ch = s tack . pop () ;
reversed = reversed + ch . charValue () ;

}
System . out . p r i n t l n (” Reversed S t r i n g : ” + reversed) ;

} // m a i n ()

} // S t a c k T e s t c l a s s
 	
EXERCISESEXERCISE 16.1 Explain the difference between each of the following pairs of

terms:
a. Stack and queue.
b. Static structure and dynamic structure.
c. Data structure and Abstract Data Type.

d. Push and pop.
e. Enqueue and dequeue.
f. Linked list and node. Note: For programming exercises,

first draw a UML class diagram
describing all classes and their
inheritance relationships and/or
associations.

EXERCISE 16.2 Fill in the blanks.

a. An Abstract Data Type consists of two main parts: and .
b. An object that contains a variable that refers to an object of the same class is a

.
c. One application for a is to manage the method call and returns in a

computer program.
d. One application for a is to balance the parentheses in an arithmetic

expression.
e. A operation is one that starts at the beginning of a list and processes

each element.
f. A vector is an example of a data structure.
g. An array is an example of a data structure.
h. By default, the initial value of a reference variable is .

EXERCISE 16.3 Add a removeAt() method to the List class to return the
object at a certain index location in the list. This method should take an int
parameter, specifying the object’s position in the list, and it should return an
Object.

EXERCISE 16.4 Add an insertAt() method to the List class that will insert
an object at a certain position in the list. This method should take two parameters,
the Object to be inserted, and an int to designate where to insert it. It should
return a boolean to indicate whether the insertion was successful.

798 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

EXERCISE 16.5 Add a removeAll() method to the List class. This void
method should remove all the members of the list.

EXERCISE 16.6 Write an int method named size() that returns the number
of elements in a List.

EXERCISE 16.7 Write an boolean method named contains(Object o)
that returns true if its Object parameter is contained in the list.

EXERCISE 16.8 The head of a list is the first element in the list. The tail of a list
consists of all the elements except the head. Write a method named tail() that
returns a reference to the tail of the list. Its return value should be Node.

EXERCISE 16.9 Write a program that uses the List ADT to store a list of 100
random floating-point numbers. Write methods to calculate the average of the
numbers.

EXERCISE 16.10 Write a program that uses the List ADT to store a list of
Student records, using a variation of the Student class defined in Chapter 11.
Write a method to calculate the mean grade point average for all students in the
list.

EXERCISE 16.11 Write a program that creates a copy of a List. It is necessary
to copy each node of the list. This will require that you create new nodes that
are copies of the nodes in the original list. To simplify this task, define a copy
constructor for your node class and then use that to make copies of each node of
the list.

EXERCISE 16.12 Write a program that uses a Stack ADT to determine if a
string is a palindrome—spelled the same way backward and forward.

EXERCISE 16.13 Design and write a program that uses a Stack to determine
whether a parenthesized expression is well-formed. Such an expression is well
formed only if there is a closing parenthesis for each opening parenthesis.

EXERCISE 16.14 Design and write a program that uses Stacks to determine
whether an expression involving both parentheses and square brackets is well
formed.

EXERCISE 16.15 Write a program that links two lists together, appending the
second list to the end of the first list.

EXERCISE 16.16 Design a Stack class that uses a Vector instead of a linked
list to store its elements. This is the way Java’s Stack class is defined.

EXERCISE 16.17 Design a Queue class that uses a Vector instead of a linked
list to store its elements.

EXERCISE 16.18 Write a program that uses the List<E> and LinkedList<E>
classes to store a list of Student records, using a variation of the Student class
defined in Chapter 11. Write a method to calculate the mean grade point average
for all students in the list.

EXERCISE 16.19 Write an implementation of the insert() method of the
PhoneTree class described at the end of this chapter.

EXERCISE 16.20 Write an implementation of the insert() method of the
PhoneTreeNode class described at the end of this chapter.

CHAPTER 16 • Exercises 799

EXERCISE 16.21 Challenge: Design a List class, similar in functionality to the
one we designed in this chapter, that uses an array to store the list’s elements. Set
it up so that the middle of the array is where the first element is placed. That
way you can still insert at both the front and rear of the list. One limitation of this
approach is that, unlike a linked list, an array has a fixed size. Allow the user to
set the initial size of the array in a constructor, but if the array becomes full, don’t
allow any further insertions.

EXERCISE 16.22 Challenge: Add a method to the program in the previous
exercise that lets the user increase the size of the array used to store the list.

EXERCISE 16.23 Challenge: Recursion is a useful technique for list processing.
Write recursive versions of the print()method and the lookup-by-name method
for the PhoneList. (Hint: The base case in processing a list is the empty list. The
recursive case should handle the head of the list and then recurse on the tail of the
list. The tail of the list is everything but the first element.)

EXERCISE 16.24 Challenge: Design an OrderedList class. An ordered list is
one that keeps its elements in order. For example, if it’s an ordered list of integers,
then the first integer is less than or equal to the second, the second is less than or
equal to the third, and so on. If it’s an ordered list of employees, then perhaps
the employees are stored in order according to their social security numbers. The
OrderedList class should contain an insert(Object o) method that inserts
its object in the proper order. One major challenge in this project is designing
your class so that it will work for any kind of object. (Hint: Define an Orderable
interface that defines an abstract precedes() method. Then define a subclass of
Node that implements Orderable. This will let you compare any two Nodes to
see which one comes before the other.)

800 CHAPTER 16 • Data Structures: Lists, Stacks, and Queues

Appendix A

Coding Conventions

This appendix covers various aspects of programming style and coding conven-
tions. It follows the conventions suggested in the Java Language Specification
(http://java.sun.com/docs/books/jls/), which is summarized on Sun’s
Java Web site (http://java.sun.com/docs/). The conventions have been
modified somewhat to fit the needs of an academic programming course. For
further details see� �

http : //java . sun . com/docs/codeconv/index . html
 	
Coding conventions improve the readability and maintainability of the code.

Because maintenance is often done by programmers who did not have a hand in
designing or writing the original code, it is important that the code follow certain
conventions. For a typical piece of commercial software, much more time and
expense are invested in maintaining the code than in creating the code.

Comments

Java recognizes two types of comments: C-style comments use the same syntax
found in C and C++. They are delimited by /* ... */ and //. The first set of
delimiters is used to delimit a multiline comment. The Java compiler will ignore
all text that occurs between /* and */. The second set of delimiters is used for a
single-line comment. Java will ignore all the code on the rest of the line following
a double slash (//). C-style comments are called implementation comments and are
mainly used to describe the implementation of your code.

Documentation comments are particular to Java. They are delimited by
/** ... */. These are used mainly to describe the specification or design of
the code rather than its implementation. When a file containing documentation
comments is processed by the javadoc tool that comes with the Java Development
Kit (JDK), the documentation comments will be incorporated into an HTML doc-
ument. This is how online documentation has been created for the Java library
classes.

Implementation Commenting Guidelines
Implementation (C-style) comments should be used to provide an overview of the
code and to provide information that is not easily discernible from the code itself.
They should not be used as a substitute for poorly written or poorly designed
code.

801

802 APPENDIX A • Coding Conventions

In general, comments should be used to improve the readability of the code. Of
course, readability depends on the intended audience. Code that’s easily readable
by an expert programmer may be completely indecipherable to a novice. Our
commenting guidelines are aimed at someone who is just learning to program in
Java.

Block Comments
A block comment or comment block is a multiline comment that is used to describe
files, methods, data structures, and algorithms:� �

/∗
∗ M u l t i l i n e c o m m e n t b l o c k

∗/
 	
Single-Line Comments
A single-line comment can be delimited either by // or by /* ... */. The // is
also used to comment out a line of code that you want to skip during a particular
run. The following example illustrates these uses:� �

/∗ S i n g l e l i n e c o m m e n t ∗/

System . out . p r i n t l n (” Hello ”) ; // E n d o f l i n e c o m m e n t

// S y s t e m . o u t . p r i n t l n (” G o o d b y e ”) ;
 	
Note that the third line is commented out and would be ignored by the Java
compiler.

In this text, we generally use slashes for single-line and end-of-line comments.
And we frequently use end-of-line comments to serve as a running commentary
on the code itself. These types of comments serve a pedagogical purpose—to teach
you how the code works. In a “production environment” it would be unusual to
find this kind of running commentary.

Java Documentation Comments
Java’s online documentation has been generated by the javadoc tool that comes
with the Java Development Kit (JDK). To conserve space, we use documentation
comments only sparingly in the programs listed in this textbook itself. However,
javadoc comments are used more extensively to document the online source
code that accompanies the textbook.

Documentation comments are placed before classes, interfaces, constructors,
methods, and fields. They generally take the following form:� �

/∗ ∗
∗ T h e E x a m p l e c l a s s b l a h b l a h

∗ @ a u t h o r J . P r o g r a m m e r

∗/

public c l a s s Example { . . .
 	
Note how the class definition is aligned with the beginning of the comment.
Javadoc comments use special tags, such as author and param, to identify certain
elements of the documentation. For details on javadoc, see� �

http : //java . sun . com/ j 2 s e /1 .5 .0/ docs/tooldocs/
 	

APPENDIX A • Coding Conventions 803

Indentation and White Space

The use of indentation and white space helps to improve the readability of the
program. White space refers to the use of blank lines and blank space in a program.
It should be used to separate one program element from another, with the goal
being to draw attention to the important elements of the program.

• Use a blank line to separate method definitions and to separate a class’s in-
stance variables from its methods.

• Use blank spaces within expressions and statements to enhance their readabil-
ity.

• Be consistent in the way you use white space in your program.

Code should be indented in a way that shows the logical structure of the pro-
gram. You should use a consistent number of spaces as the size of the indentation
tab. The Java Language Specification recommends four spaces.

In general, indentation should represent the contained in relationships within
the program. For example, a class definition contains declarations for instance
variables and definitions of methods. The declarations and definitions should be
indented by the same amount throughout the class definition. The statements
contained in the body of a method definition should be indented:� �

public void instanceMethod () {
System . out . p r i n t l n (” Hello ”) ;
return ;

}
 	
An if statement contains an if clause and an else clause, which should be indented:� �

i f (condi t ion)
System . out . p r i n t l n (” I f part ”) ; // I f c l a u s e

e lse
System . out . p r i n t l n (” Else part ”) ; // E l s e c l a u s e
 	

The statements contained in the body of a loop should be indented:� �
for (i n t k = 0 ; k < 1 0 0 ; k++) {

System . out . p r i n t l n (” Hello ” + ’ k ’) ; // L o o p b o d y

}
 	
Finally, indentation should be used whenever a statement or expression is too

long to fit on a single line. Generally, lines should be no longer than 80 characters.

Naming Conventions

The choice of identifiers for various elements within a program can help improve
the readability of the program. Identifiers should be descriptive of the element’s
purpose. The name of class should be descriptive of the class’s role or function.
The name of a method should be descriptive of what the method does.

The way names are spelled can also help improve a program’s readability. Ta-
ble A.1 summarizes the various conventions recommended by the Java Language
Specification and followed by professional Java programmers.

804 APPENDIX A • Coding Conventions

TABLE A.1 Naming rules for Java identifiers.

Identifier Type Naming Rule Example

Class Nouns in mixed case with the first OneRowNim
letter of each internal word capitalized. TextField

Interfaces Same as class names. Many interface names Drawable
end with the suffix able. ActionListener

Method Verbs in mixed case with the first letter in actionPerformed()
lowercase and the first letter of internal sleep()
words capitalized. insertAtFront()

Instance Variables Same as method names. The name should maxWidth
be descriptive of how the variable is used. isVisible

Constants Constants should be written in uppercase with MAX LENGTH
internal words separated by . XREF

Loop Variables Temporary variables, such as loop variables, int k;
may have single character names: i, j, k. int i;

Use of Braces

Curly braces { } are used to mark the beginning and end of a block of code.
They are used to demarcate a class body, a method body, or simply to combine a
sequence of statements into a single code block. There are two conventional ways
to align braces and we have used both in the text. The opening and closing brace
may be aligned in the same column with the enclosed statements indented:� �

public void sayHello ()
{

System . out . p r i n t l n (” Hello ”) ;
}
 	

This is the style that’s used in the first part of the book, because it’s easier for
someone just learning the syntax to check that the braces match up.

Alternatively, the opening brace may be put at the end of the line where the
code block begins, with the closing brace aligned under the beginning of the line
where the code block begins:� �

public void sayHello () {
System . out . p r i n t l n (” Hello ”) ;

}
 	
This is the style that’s used in the last two parts of the book, and it seems the style
preferred by professional Java programmers.

APPENDIX A • Coding Conventions 805

Sometimes even with proper indentation, it it difficult to tell which closing
brace goes with which opening brace. In those cases, you should put an end-
of-line comment to indicate what the brace closes:� �

public void sayHello () {
for (i n t k =0; k < 1 0 ; k++) {

System . out . p r i n t l n (” Hello ”) ;
} // f o r l o o p

} // s a y H e l l o ()
 	

File Names and Layout

Java source files should have the .java suffix, and Java bytecode files should have
the .class suffix.

A Java source file can only contain a single public class. Private classes and
interfaces associated with a public class can be included in the same file.

Source File Organization Layout

All source files should begin with a comment block that contains important iden-
tifying information about the program, such as the name of the file, author, date,
copyright information, and a brief description of the classes in the file. In the
professional software world, the details of this “boilerplate” comment will vary
from one software house to another. For the purposes of an academic computing
course, the following type of comment block would be appropriate:� �

/∗
∗ F i l e n a m e : E x a m p l e . j a v a

∗ A u t h o r : J . P r o g r a m m e r

∗ D a t e : A p r i l , 2 0 1 9 9 9

∗ D e s c r i p t i o n : T h i s p r o g r a m i l l u s t r a t e s b a s i c

∗ c o d i n g c o n v e n t i o n s .

∗/
 	
The beginning comment block should be followed by any package and import
statements used by the program:� �

package j ava . mypackage ;
import j ava . awt . ∗ ;
 	

The package statement should only be used if the code in the file belongs to the
package. None of the examples in this book use the package statement. The import
statement allows you to use abbreviated names to refer to the library classes used
in your program. For example, in a program that imports java.awt.* we can
refer to the java.awt.Button class as simply Button. If the import statement
were omitted, we would have to use the fully qualified name.

The import statements should be followed by the class definitions contained
in the file. Figure A–1 illustrates how a simple Java source file should be formatted
and documented.

806 APPENDIX A • Coding Conventions

� �
/∗
∗ F i l e n a m e : E x a m p l e . j a v a

∗ A u t h o r : J . P r o g r a m m e r

∗ D a t e : A p r i l , 2 0 1 9 9 9

∗ D e s c r i p t i o n : T h i s p r o g r a m i l l u s t r a t e s b a s i c

∗ c o d i n g c o n v e n t i o n s .

∗/

import j ava . awt . ∗ ;

/∗ ∗
∗ T h e E x a m p l e c l a s s i s a n e x a m p l e o f a s i m p l e

∗ c l a s s d e f i n i t i o n .

∗ @ a u t h o r J . P r o g r a m m e r

∗/

public c l a s s Example {

/∗ ∗ D o c c o m m e n t f o r i n s t a n c e v a r i a b l e , v a r 1 ∗/

public i n t var1 ;

/∗ ∗
∗ C o n s t r u c t o r m e t h o d d o c u m e n t a t c o m m e n t d e s c r i b e s

∗ w h a t t h e c o n s t r u c t o r d o e s .

∗/

public Example () {
// . . . m e t h o d i m p l e m e n t a t i o n g o e s h e r e

}

/∗ ∗
∗ An i n s t a n c e M e t h o d () d o c u m e n t a t i o n c o m m e n t d e s c r i b e s

∗ w h a t t h e m e t h o d d o e s .

∗ @ p a r a m N i s a p a r a m e t e r t h a n

∗ @ r e t u r n T h i s m e t h o d r e t u r n s b l a h b l a h

∗/

public i n t instanceMethod (i n t N) {
// . . . m e t h o d i m p l e m e n t a t i o n g o e s h e r e }
}

} // E x a m p l e
 	
Figure A–1: A sample Java source file.

APPENDIX A • Coding Conventions 807

Statements

Declarations

There are two kinds of declaration statements: field declarations, which include a
class’s instance variables, and local variable declarations.

• Put one statement per line, possibly followed by an end-of-line comment if the
declaration needs explanation.

• Initialize local variables when they are declared. Instance variables are given
default initializations by Java.

• Place variable declarations at the beginning of code blocks in which they are
used rather than interspersing them throughout the code block.

The following class definition illustrates these points:� �
public c l a s s Example {

private i n t s i z e = 0 ; // Window l e n g t h a n d w i d t h

private i n t area = 0 ; // Window ’ s c u r r e n t a r e a

public void myMethod () {
i n t mouseX = 0 ; // B e g i n n i n g o f m e t h o d b l o c k

i f (condi t ion) {
i n t mouseY = 0 ; // B e g i n n i n g o f i f b l o c k

. . .
} // i f

} // m y M e t h o d ()

} // E x a m p l e
 	

Executable Statements

Simple statements, such as assignment statements, should be written one per
line and should be aligned with the other statements in the block. Compound
statements are those that contain other statements. Examples would include if
statements, for statements, while statements, and do-while statements. Com-
pound statements should use braces and appropriate indentation to highlight the

808 APPENDIX A • Coding Conventions

statement’s structure. Here are some examples of how to code several kinds of
compound statements:� �

i f (condi t ion) { // A s i m p l e i f s t a t e m e n t

statement1 ;
statement2 ;

} // i f

i f (condi t ion1) { // An i f − e l s e s t a t e m e n t

statement1 ;
} e lse i f (condi t ion2) {

statement2 ;
statement3 ;

} e lse {
statement4 ;
statement5 ;

} // i f / e l s e

for (i n i t i a l i z e r ; entry−condi t ion ; updater) { // F o r l o o p

statement1 ;
statement2 ;

} // f o r

while (condi t ion) { // W h i l e s t a t e m e n t

statement1 ;
statement2 ;

} // w h i l e

do { // Do−w h i l e s t a t e m e n t

statement1 ;
statement2 ;

} while (condi t ion) ;
 	
Preconditions and Postconditions

A good way to design and document loops and methods is to specify their pre-
conditions and postconditions. A precondition is a condition that must be true be-
fore the method (or loop) starts. A postcondition is a condition that must be true
after the method (or loop) completes. Although the conditions can be represented
formally—using boolean expressions—this is not necessary. It suffices to give a
clear and concise statement of the essential facts before and after the method (or
loop).

Chapter 6 introduces the use of preconditions and postconditions and Chapters
6 through 8 provide numerous examples of how to use them. It may be helpful to
reread some of those examples and model your documentation after the examples
shown there.

Sample Programs

For specific examples of well-documented programs used in the text, see the
online source code that is available on the accompanying Web site at� �

http : //www. prenhal l . com/m o r e l l i
 	

Appendix B

The Java Development Kit

The Java Development Kit (JDK) for JavaTM 2 Platform Standard Edition is a set
of command-line tools for developing Java programs. It is available for free in
versions for recent editions of Microsoft Windows, Linus, Macintosh OS X, and
Solaris (Sun Microsystems).

Download information and documentation are available for the entire range of
products associated with the JavaTM 2 Platform, Standard Edition (Java SE) at;� �

http : //java . sun . com/ j 2 s e /
 	
This appendix summarizes some of the primary tools available in the JDK. For
more detailed information you should consult Sun’s Web site.

Table B.1 provides a summary of some of the JDK tools.

TABLE B.1 Tools included in the Java Development Kit.

Tool Name Description

javac Java compiler. Translates source code into bytecode.
java Java interpreter. Translates and executes bytecode.
javadoc Java documentation generator. Creates HTML pages from

documentation comments embedded in Java programs.
appletviewer Appletviewer. Used instead of a browser to run Java applets.
jar Java archive manager. Manages Java archive (JAR) files.
jdb Java debugger. Used to find bugs in a program.
javap Java disassembler. Translates bytecode into Java source code.

Sun Microsystems provides detailed instructions on how to install JDK for Java
SE on computers running any of the above operating systems, including how to
set the system’s PATH and CLASSPATH variables. Installation instructions can be
located using the above link to downloading information.

The Java Compiler: javac

The Java compiler (javac) translates Java source files into Java bytecode. A Java
source file must have the .java extension. The javac compiler will create a
bytecode file with the same name but with the .class extension. The javac
command takes the following form:

809

810 APPENDIX B • The Java Development Kit

javac [options] sourcefiles [files]

The brackets in this expression indicate optional parts of the command. Thus,
options is an optional list of command-line options (including the -classpath
option), and files is an optional list of files, each of which contains a list of Java
source files. The files option would be used if you were compiling a very large
collection of files, too large to list each file individually on the command line.

Most of the time you would simply list the sourcefiles you are compiling imme-
diately after the word javac, as in the following example:� �

j a v a c MyAppletClass . j ava MyHelperClass . j ava
 	
Given this command, javacwill read class definitions contained in MyAppletClass.java
and MyHelperClass.java in the current working directory and translate them
into bytecode files named MyAppletClass.class and MyHelperClass.class.

If a Java source file contains inner classes, these would be compiled into sepa-
rate class files. For example, if MyAppletClass.java contained an inner class
named Inner, javac would compile the code for the inner class into a file named
MyAppletClass$Inner.class.

If you are writing a program that involves several classes, it is not necessary to
list each individual class on the command line. You must list the main class—that
is, the class where execution will begin. The compiler will perform a search for
all the other classes used in the main class. For example, if MyAppletClass uses
an instance of MyHelperClass, you can compile both classes with the following
command:� �

j a v a c MyAppletClass . j ava
 	
In this case, javac will perform a search for the definition of MyHelperClass.

How Java Searches for Class Definitions
When compiling a file, javac needs a definition for every class or interface
that’s used in the source file. For example, if you are creating a subclass of
java.applet.Applet, javac will need definitions for all of Applet’s super-
classes, including Panel, Container, and Component. The definitions for these
classes are contained in the java.awt package. Here’s how javac will search for
these classes.

Javac will first search among its library files for definitions of classes, such as
Applet and Panel. Next, javacwill search among the files and directories listed
on the user’s class path. The class path is a system variable that lists all the userThe Classpath
directories and files that should be searched when compiling a user’s program.
JDK no longer requires a class path variable. The class path can be set either by
using the environment variable CLASSPATH or by using the -classpath option
when invoking javac. By default, JDK will check in the current working directory
for user classes. It doesn’t require that the CLASSPATH variable be set. If this
variable is set, it must include the current directory. The preferred way to set the
classpath is by using -classpath option. For example,� �

j a v a c −c l a s s p a t h . . / source : . MyApplet . j ava
 	
will tell javac to search in both the current directory (.) and in the ../source
directory for user source files. Because the details for setting the CLASSPATH
variable are system dependent, it’s best to consult the online installation docu-
mentation to see exactly how this is done on your system.

APPENDIX B • The Java Development Kit 811

During a successful search, javac may find a source file, a class file, or both.
If it finds a class file but not source file, javac will use the class file. This would
be the case for Java library code. If javac finds a source file but not a class file, it
will compile the source and use the resulting class file. This would be the case for
the first compilation of one of your source programs. If javac finds both a source
and a class file, it determines whether the class file is up-to-date. If so, it uses it. If
not, it compiles the source and uses the resulting class file. This would be the case
for all subsequent compilations of one of your source programs.

As noted earlier, if your application or applet uses several source files, you need
only provide javac with the name of the main application or applet file. It will
find and compile all the source files, as long as they are located in a directory that’s
listed in the class path.

The Java Interpreter: java

The java interpreter launches a Java application. This command takes one of the
following forms:

java
java

[options]
[options]

classname
-jar

[argument . . .]
file.jar [argument . . .]

If the first form is used, java starts a Java runtime environment. It then loads the
specified classname and runs that class’s main() method, which must be declared
as follows:� �

public s t a t i c void main (S t r i n g args [])
 	
The String parameter args[] is an array of strings, which is used to pass any
arguments listed on the command line. Command-line arguments are optional.

If the second form of the java command is used, javawill load the classes and
resources from the specified Java archive (JAR). In this case, the special -jar option
flag must be specified. The options can also include many other command-line
options, including the -classpath option.

The appletviewer

The appletviewer tool lets you run Java applets without using a Web browser.
This command takes the following form:

appletviewer [threads flag] [options] url . . .

The optional threads flag tells Java which of the various threading options to use.
This is system dependent. For details on this feature and the command line options,
refer to Sun’s Web site.

The appletviewer will connect to one or more HTML documents specified by
their Uniform Resource Locators (URLs). It will display each applet referenced in
those documents in a separate window. Some example commands would be� �

appletviewer http : //www . d o m a i n . e d u / ˜ a c c o u n t / m y a p p l e t . h t m l

appletviewer myapplet . html
 	
In the first case, the document’s full path name is given. In the second case, since
no host computer is mentioned, appletviewer will assume that the applet is
located on the local host and will search the class path for myapplet.html.

AppletViewer tags

812 APPENDIX B • The Java Development Kit

Once appletviewer retrieves the HTML document, it will find the applet
by looking for either the object, embed, or applet tags within the document.
The appletviewer ignores all other HTML tags. It just runs the applet. If it
cannot find one of these tags, the appletviewer will do nothing. If it does locate
an applet, it starts a runtime environment, loads the applet, and then runs the
applet’s init() method. The applet’s init() must have the following method
signature:� �

public void i n i t ()
 	
The applet Tag

The applet tag is the original HTML 3.2 tag used for embedding applets within
an HTML document. If this tag is used, the applet will be run by the browser,
using the browser’s own implementation of the Java Runtime Environment (JRE).

Note, however, that if your applet uses the latest Java language features and the
browser is not using the latest version of JRE, the applet may not run correctly. For
example, this might happen if your applet makes use of Swing features that are not
yet supported in the browser’s implementation of the JRE. In that case, your applet
won’t run under that browser.

To ensure that the applet runs with the latest version of the JRE—the one pro-
vided by Sun Microsystems—you can also use the object or the embed tags.
These tags are used to load the appropriate version of the JRE into the browser
as a plugin module. A plugin is a helper program that extends the browser’s
functionality.

The applet tag takes the following form:� �
<applet

code=” yourAppletClass . c l a s s ”
o b j e c t =” ser ia l izedObjec tOrJavaBean ”
codebase=” c l a s s F i l e D i r e c t o r y ”
width=” pixelWidth ”
height=” pixelHeight ”

>
<param name=” . . . ” value=” . . . ”>

. . .
a l t e r n a t e−t e x t

</applet>
 	
You would use only the code or object attribute, not both. For the programs in
this book, you should always use the code tag. The code tag specifies where the
program will begin execution—that is, in the applet class.

The optional codebase attribute is used to specify a relative path to the applet.
It may be omitted if the applet’s class file is in the same directory as the HTML
document.

The width and height attributes specify the initial dimensions of the ap-
plet’s window. The values specified in the applet tag can be overridden in the
applet itself by using the setSize() method, which the applet inherits from the
java.awt.Component class.

The param tags are used to specify arguments that can be retrieved when the
applet starts running (usually in the applet’s init() method). The methods for
retrieving parameters are defined in the java.applet.Applet class.

APPENDIX B • The Java Development Kit 813

Finally, the alternative-text portion of the applet tag provides text that
would be displayed on the Web page if the appletviewer or browser is unable to
locate the applet.

Here’s a simple example of an applet tag:� �
<applet

code=”HelloWorldApplet . c l a s s ”
codebase=” c l a s s f i l e s ”
width=”200”
height=”200”

>
<param name=” author ” value=” Java Java Java ”>
<param name=” date ” value=”May 1999 ”>

Sorry , your browser does not seem to be able to
l o c a t e the HelloWorldApplet .

</applet>
 	
In this case, the applet’s code is stored in a file name HelloWorld-
Applet.class, which is stored in the classfiles subdirectory—that is, a sub-
directory of the directory containing the HTML file. The applet’s window will be
200× 200 pixels. And the applet is passed the name of the program’s author and
date it was written. Finally, if the applet cannot be located, the “Sorry . . . ” message
will be displayed instead.

The object Tag

The object tag is the HTML 4.0 tag for embedding applets and multimedia ob-
jects in an HTML document. It is also an Internet Explorer (IE) 4.x extension to
HTML. It allows IE to run a Java applet using the latest JRE plugin from Sun. The
object tag takes the following form:� �

<o b j e c t
c l a s s i d =”name of the plugin program”
codebase=” u r l f o r the plugin program”
width=” pixelWidth ”
height=” pixelHeight ”

>
<param name=”code” value=” yourClass . c l a s s ”>
<param name=” codebase ” value=” c l a s s F i l e D i r e c t o r y ”>

. . .
a l t e r n a t e−t e x t

</o b j e c t>
 	

814 APPENDIX B • The Java Development Kit

Note that parameters are used to specify your applet’s code and codebase. In ef-
fect, these are parameters to the plugin module. An example tag that corresponds
to the applet tag for the HelloWorldApplet might be as follows:� �

<o b j e c t
c l a s s i d =” c l s i d : 8 AD9C840−044E−11D1−B3E9−00805F499D93”
codebase=” http :// java . sun . com/products/plugin/”
width=”200”
height=”200”

>
<param name=”code” value=”HelloWorldApplet . c l a s s ”>
<param name=” codebase ” value=” c l a s s f i l e s ”>
<param name=” author ” value=” Java Java Java ”>
<param name=” date ” value=”May 1999 ”>

Sorry , your browser does not seem to be able to
l o c a t e the HelloWorldApplet .

</o b j e c t>
 	
If the browser has an older version of the plug in than shown in the codebase
attribute, the user will be prompted to download the newer version. If the browser
has the same or newer version, that version will run. In theory Netscape 6 should
also work the same as IE. For further details on how to use the object tag, see
Sun’s plugin site at:� �

http : //java . sun . com/products/plugin/
 	
The embed Tag

The embed tag is Netscape’s version of the applet and object tags. It is in-
cluded as an extension to HTML 3.2. It can be used to allow a Netscape 4.x browser
to run a Java applet using the latest Java plugin from Sun. It takes the following
form:� �

<embed
type=”Type of program”
code=” yourAppletClass . c l a s s ”
codebase=” c l a s s F i l e D i r e c t o r y ”
pluginspage=” l o c a t i o n of plugin f i l e on the web”
width=” pixelWidth ”
height=” pixelHeight ”

>
<noembed>
A l t e r n a t i v e t e x t
</noembed>

</embed>
 	
The type and pluginspage attributes are not used by the appletviewer, but they
are necessary for browsers. They would just be ignored by the appletviewer.

APPENDIX B • The Java Development Kit 815

For example, an embed tag for HelloWorldApplet would be as follows:� �
<EMBED

type=” a p p l i c a t i o n /x−java−applet ; vers ion =1.4 ”
width=”200”
height=”200”
code=”HelloWorldApplet . c l a s s ”
codebase=” c l a s s f i l e s ”
pluginspage=” http :// java . sun . com/products/plugin/”

>
<NOEMBED>

Sorry . This page won ’ t be able to run t h i s applet .
</NOEMBED>

</EMBED>
 	
It may be possible to combine the applet, embed, and object tags in the

same HTML file. Sun provides much more information, as well as demo programs
on its plugin website:� �

http : //java . sun . com/products/plugin/
 	

The Java Archiver jar Tool

The jar tool can be used to combine multiple files into a single JAR archive file.
Although the jar tool is a general-purpose archiving and compression tool, it was
designed mainly to facilitate the packaging of Java applets and applications into a
single file.

The main justification for combining files into a single archive and compressing
the archive is to improve download time. The jar command takes the following
format:

jar [options] destination-file input-file [input-files]

For an example of its usage, let’s use it to archive the files involved in the
WordGuess example in Chapter 9. As you may recall, this example used classes,
such as TwoPlayerGame, and interfaces, such as IGame, that were developed in
earlier sections of the chapter. So, to help manage the development of WordGuess,
it would be useful to have a library containing those files that must be linked
together when we compile WordGuess.

This is a perfect use of a jar file. Let’s name our library nplayerlib.jar.
We choose this name because the library can be used to create game programs that
have N players, including two-player games.

816 APPENDIX B • The Java Development Kit

For the two-player game, WordGuess, we want to combine all the .class files
needed by WordGuess.java into a single jar file. Here’s a list of the files we want
to archive:� �

CLUIPlayableGame . c l a s s
ComputerGame . c l a s s
GUIPlayableGame . c l a s s
IGame . c l a s s
KeyboardReader . c l a s s
Player . c l a s s
TwoPlayerGame . c l a s s
U s e r I n t e r f a c e . c l a s s
 	

Assuming all of these files are contained in a single directory (along with other
files, perhaps), then the command we use from within that directory is as follows:� �

j a r c f n p l a y e r l i b . j a r ∗ . c l a s s
 	
In this case, the cf options specify that we are creating a jar file named
animated.jar that will consist of all the files having the .class suffix. This
will create a file named nplayerlib.jar. To list the contents of this file, you can
use the following command:� �

j a r t f n p l a y e r l i b . j a r
 	
Once we have created the jar file, we can copy it into the directory that contains
our source code for the WordGuess program. We would then the following com-
mands to include the code contained in the library when we compile and run
WordGuess.java� �

j a v a c −c l a s s p a t h n p l a y e r l i b . j a r : . WordGuess . j ava
java −c l a s s p a t h n p l a y e r l i b . j a r : . WordGuess
 	

These commands, which use the -classpath option, tell javac and java to in-
clude code from the nplayerlib.jar. The notation :., links code in the current
directory ()̇ with the library code.

Once we have created a library, we can also use it for Java applets. For exam-
ple, suppose we have developed an applet version of the WordGuess game and
linked all of the applet’s code into a jar file named wordguessapplet.jar. The

APPENDIX B • The Java Development Kit 817

following HTML file would allow users to download the applet from their web
browser:� �

<html>
<head><t i t l e >WordGuess Applet</t i t l e ></head>
<body>
<applet

archive=” wordguessapplet . j a r ”
code=”WordGuessApplet . c l a s s ”
width=350 height =350

>
<parameter name=” author ” value=” Java Java Java ”>
<parameter name=” date ” value=” Apri l 2005 ”>

</applet>
</body>

</html>
 	
When specified in this way, the browser will take care of downloading the archive
file and extracting the individual files needed by the applet. Note that the code
attribute must still designate the file where the program will start execution.

The Java Documentation Tool: javadoc

The javadoc tool parses the declarations and documentation comments in a
Java source file and generates a set of HTML pages that describes the follow-
ing elements: public and protected classes, inner classes, interfaces, constructors,
methods, and fields.

The javadoc tool can be used on a single file or an entire package of files.
Recall that a Java documentation comment is one that begins with /** and ends
with */. These are the comments that are parsed by javadoc.

The javadoc tool has many features, and it is possible to use Java doclets to
customize your documentation. For full details on using the tool, it is best to
consult Sun’s Web site. To illustrate how it might be used, let’s just look at a simple
example.

The FirstApplet program from Chapter 1 contains documentation com-
ments. It was processed using the following command:� �

javadoc F i r s t A p p l e t . j ava
 	
javadoc generated the following HTML documents:� �

F i r s t A p p l e t . html −The main documentation f i l e
a l l c l a s s e s −frame . html −Names and l i n k s to a l l the c l a s s e s used in

F i r s t A p p l e t
overview−t r e e . html −A t r e e showing F i r s t A p p l e t ’ s place

in the c l a s s hierarchy
packages . html −D e t a i l s on the packages used in F i r s t A p p l e t
index . html −Top−l e v e l HTML document f o r

F i r s t A p p l e t documentation
index−a l l . html −Summary of a l l methods and v a r i a b l e s in

F i r s t A p p l e t
 	

818 APPENDIX B • The Java Development Kit

To see how the documentation appears, review the FirstApplet.java source
file and the documentation it generated. Both are available at� �

http : //www. prenhal l . com/m o r e l l i/
 	

Appendix C

The ASCII and Unicode
Character Sets

Java uses version 2.0 of the Unicode character set for representing character data.
The Unicode set represents each character as a 16-bit unsigned integer. It can,
therefore, represent 216 = 65,536 different characters. This enables Unicode to
represent characters from not only English but also a wide range of international
languages. For details about Unicode, see� �

http : //www. unicode . org
 	
Unicode supersedes the ASCII character set (American Standard Code for In-

formation Interchange). The ASCII code represents each character as a 7-bit or
8-bit unsigned integer. A 7-bit code can represent only 27 = 128 characters. In
order to make Unicode backward compatible with ASCII, the first 128 characters
of Unicode have the same integer representation as the ASCII characters.

Table C.1 shows the integer representations for the printable subset of ASCII
characters. The characters with codes 0 through 31 and code 127 are nonprintable
characters, many of which are associated with keys on a standard keyboard. For
example, the delete key is represented by 127, the backspace by 8, and the return
key by 13.

819

820 APPENDIX C • ASCII and Unicode Character Sets

TABLE C.1 ASCII codes for selected characters

� �
Code 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Char SP ! ” # $ % & ’ () ∗ + , − . /

Code 48 49 50 51 52 53 54 55 56 57
Char 0 1 2 3 4 5 6 7 8 9

Code 58 59 60 61 62 63 64
Char : ; < = > ? @

Code 65 66 67 68 69 70 71 72 73 74 75 76 77
Char A B C D E F G H I J K L M

Code 78 79 80 81 82 83 84 85 86 87 88 89 90
Char N O P Q R S T U V W X Y Z

Code 91 92 93 94 95 96
Char [\] ˆ ‘

Code 97 98 99 100 101 102 103 104 105 106 107 108 109
Char a b c d e f g h i j k l m

Code 110 111 112 113 114 115 116 117 118 119 120 121 122
Char n o p q r s t u v w x y z

Code 123 124 125 126
Char { | } ˜
 	

Appendix D

Java Keywords

The words shown in Table D.1 are reserved for use as Java keywords and cannot
be used as identifiers. The keywords const and goto, which are C++ keywords,
are not actually used in Java. They were included mainly to enable better error
messages to be generated when they are mistakenly used in a Java program.

The words true, false, and null may look like keywords but are technically
considered literals. They also cannot be used as identifiers.

TABLE D.1 The Java keywords cannot be used as names for identifiers.

abstract continue for new switch
assert default goto package synchronized
boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while

821

822 APPENDIX D • Java Keywords

Appendix E

Operator Precedence
Hierarchy

Table E.1 summarizes the precedence and associativity relationships for Java op-
erators. Within a single expression, an operator of order m would be evaluated be-
fore an operator of order n if m< n. Operators having the same order are evaluated
according to their association order. For example, the expression� �

25 + 5 ∗ 2 + 3
 	
would be evaluated in the order shown by the following parenthesized expression:� �

(25 + (5 ∗ 2)) + 3 ==> (25 + 10) + 3 ==> 35 + 3 ==> 38
 	
In other words, because * has higher precedence than +, the multiplication op-
eration is done before either of the addition operations. And because addition
associates from left to right, addition operations are performed from left to right.

Most operators associate from left to right, but note that assignment operators
associate from right to left. For example, consider the following code segment:� �

i n t i , j , k ;
i = j = k = 1 0 0 ; // E q u i v a l e n t t o i = (j = (k = 1 0 0)) ;
 	

In this case, each variable will be assigned 100 as its value. But it’s important that
this expression be evaluated from right to left. First, k is assigned 100. Then its
value is assigned to j. And finally j’s value is assigned to i.

For expressions containing mixed operators, it’s always a good idea to use
parentheses to clarify the order of evaluation. This will also help avoid subtle
syntax and semantic errors.

823

824 APPENDIX E • Operator Precedence Hierarchy

TABLE E.1 Java operator precedence and associativity table.

Order Operator Operation Association

0 () Parentheses
1 ++ -- · Postincrement, Postdecrement, Dot Operator L to R
2 ++ -- + - ! Preincrement, Predecrement, R to L

Unary plus, Unary minus, Boolean NOT
3 (type) new Type Cast, Object Instantiation R to L
4 * / % Multiplication, Division, Modulus L to R
5 + - + Addition, Subtraction, String Concatenation L to R
6 < > <= >= Relational Operators L to R
7 == != Equality Operators L to R
8 ∧ Boolean XOR L to R
9 && Boolean AND L to R

10 —— Boolean OR L to R
11 = += -= *= /= %= Assignment Operators R to L

Appendix F

Java Inner Classes

This appendix describes basic features of some advanced elements of the Java lan-
guage. As for many language features, there are details and subtleties involved in
using these features that are not covered here. For further details, you should
consult Sun’s online references or other references for a more comprehensive
description.

What Are Inner Classes?

Inner classes were introduced in Java 1.1. This features lets you define a class as
part of another class, just as fields and methods are defined within classes. Inner
classes can be used to support the work of the class in which they are contained.

Java defines four types of inner classes. A nested top-level class or interface
is a static member of an enclosing top-level class or interface. Such classes are
considered top-level classes by Java.

A member class is a nonstatic inner class. It is not a top-level class. As a full-
fledged member of its containing class, a member class can refer to the fields and
methods of the containing class, even the private fields and methods. Just as
you would expect for the other instance fields and methods of a class, all instances
of a member class are associated with an instance of the enclosing class.

A local class is an inner class that’s defined within a block of Java code, such as
within a method or within the body of a loop. Local classes have local scope—they
can only be used within the block in which they are defined. Local classes can refer
to the methods and variables of their enclosing classes. They are used mostly to
implement adapters, which are used to handle events.

When Java compiles a file containing a named inner class, it creates sepa-
rate class files for them with names that include the nesting class as a quali-
fier. For example, if you define an inner class named Metric inside a top-
level class named Converter, the compiler will create a class file named
Converter$Metric.class for the inner class. If you wanted to access the in-
ner class from some other class (besides Converter), you would use a qualified
name: Converter.Metric.

An anonymous class is a local class whose definition and use are combined into
a single expression. Rather than defining the class in one statement and using it
in another, both operations are combined into a single expression. Anonymous
classes are intended for one-time use. Therefore, they don’t contain constructors.
Their bytecode files are given names like ConverterFrame$1.class.

825

826 APPENDIX F • Java Inner Classes

Nested Top-Level Versus Member Classes

The Converter class (Figure F–1) shows the differences between a nested top-
level class and a member class. The program is a somewhat contrived example
that performs various kinds of metric conversions. The outer Converter class

� �
public c l a s s Converter {

private s t a t i c f i n a l double INCH PER METER = 3 9 . 3 7 ;
private f i n a l double LBS PER KG = 2 . 2 ;

public s t a t i c c l a s s Distance { // N e s t e d Top− l e v e l c l a s s

public double metersToInches (double meters) {
return meters ∗ INCH PER METER ;

}
} // D i s t a n c e

public c l a s s Weight { // M e m b e r c l a s s

public double kgsToPounds (double kg) {
return kg ∗ LBS PER KG ;

}
} // W e i g h t

} // C o n v e r t e r

public c l a s s ConverterUser {
public s t a t i c void main (S t r i n g args []) {

Converter . Distance d i s t a n c e = new Converter . Distance () ;
Converter conver ter = new Converter () ;
Converter . Weight weight = conver ter . new Weight () ;
System . out . p r i n t l n (”5 m = ” + d i s t a n c e . metersToInches (5) + ” in ”) ;
System . out . p r i n t l n (”5 kg = ” + weight . kgsToPounds (5) + ” l b s ”) ;

}
} // C o n v e r t e r U s e r
 	

Figure F–1: A Java application containing a top-level nested class.

serves as a container for the inner classes, Distance and Weight, which perform
specific conversions.

The Distance class is declared static, so it is a top-level class. It is contained
in the Converter class itself. Note the syntax used in ConverterUser.main()
to create an instance of the Distance class:� �

Converter . Distance d i s t a n c e = new Converter . Distance () ;
 	
A fully qualified name is used to refer to the static inner class via its containing
class.

The Weight class is not declared static. It is, therefore, associated with in-
stances of the Converter class. Note the syntax used to create an instance of the
Weight class:� �

Converter conver ter = new Converter () ;
Converter . Weight weight = conver ter . new Weight () ;
 	

APPENDIX F • Java Inner Classes 827

Before you can create an instance of Weight, you have to declare an instance of
Converter. In this example, we have used two statements to create the weight
object, which requires using the temporary variable, converter, as a reference to
the Converter object. We could also have done this with a single statement by
using the following syntax:� �

Converter . Weight weight = new Converter () . new Weight () ;
 	
Note that in either case the qualified name Converter.Weight must be used to
access the inner class from the ConverterUser class.

There are a couple of other noteworthy features in this example. First, an inner
top-level class is really just a programming convenience. It behaves just like any
other top-level class in Java. One restriction on top-level inner classes is that they
can only be contained within other top-level classes, although they can be nested
one within the other. For example, we could nest additional converter classes
within the Distance class. Java provides special syntax for referring to such
nested classes.

Unlike a top-level class, a member class is nested within an instance of its con-
taining class. Because of this, it can refer to instance variables (LBS_PER_KG) and
instance methods of its containing class, even to those declared private. By con-
trast, a top-level inner class can only refer to class variables (INCH_PER_METER)—
that is, to variables that are declared static. So you would use a member class if
it were necessary to refer to instances of the containing class.

There are many other subtle points associated with member classes, including
special language syntax that can be used to refer to nested member classes and
rules that govern inheritance and scope of member classes. For these details you
should consult the Java Language Specification, which can be accessed online at� �

http : //java . sun . com/docs/books/ j l s /html/index . html
 	
Local and Anonymous Inner Classes

In this next example, ConverterFrame, a local class is used to create an
ActionEvent handler for the application’s two buttons (Fig. F–2).
As we have seen, Java’s event-handling model uses predefined interfaces, such
as the ActionListener interface, to handle events. When a separate class is
defined to implement an interface, it is sometimes called an adapter class. Rather
than defining adapter classes as top-level classes, it is often more convenient to
define them as local or anonymous classes.

The key feature of the ConverterFrame program is the createJButton()
method. This method is used instead of the JButton() constructor to create but-
tons and to create action listeners for the buttons. It takes a single String param-
eter for the button’s label. It begins by instantiating a new JButton, a reference
to which is passed back as the method’s return value. After creating an instance
button, a local inner class named ButtonListener is defined.

The local class merely implements the ActionListener interface by defining
the actionPerformed method. Note how actionPerformed() uses the con-
taining class’s converter variable to acquire access to the metersToInches()
and kgsToPounds() methods, which are inner class methods of the Converter
class (Fig. F–1). A local class can use instance variables, such as converter, that
are defined in its containing class.

828 APPENDIX F • Java Inner Classes� �
import j avax . swing . ∗ ;
import j ava . awt . ∗ ;
import j ava . awt . event . ∗ ;

public c l a s s ConverterFrame extends JFrame {
private Converter conver ter = new Converter () ; // R e f e r e n c e t o a p p

private J T e x t F i e l d i n F i e l d = new J T e x t F i e l d (8) ;
private J T e x t F i e l d outF ie ld = new J T e x t F i e l d (8) ;
private JButton metersToInch ;
private JButton kgsToLbs ;

public ConverterFrame () {
metersToInch = c r e a t e J B u t t o n (” Meters To Inches ”) ;
kgsToLbs = c r e a t e J B u t t o n (” Ki los To Pounds”) ;
getContentPane () . setLayout (new FlowLayout ()) ;
getContentPane () . add (i n F i e l d) ;
getContentPane () . add (outF ie ld) ;
getContentPane () . add (metersToInch) ;
getContentPane () . add (kgsToLbs) ;

} // C o n v e r t e r F r a m ()

private JButton c r e a t e J B u t t o n (S t r i n g s) { // A m e t h o d t o c r e a t e a J B u t t o n

JButton j b u t t o n = new JButton (s) ;
c l a s s But tonLis tener implements Act ionLis tener { // L o c a l c l a s s

public void actionPerformed (ActionEvent e) {
double inValue = Double . valueOf (i n F i e l d . getText ()) . doubleValue () ;
JButton button = (JButton) e . getSource () ;
i f (button . getText () . equals (” Meters To Inches ”))

outF ie ld . s e t T e x t (””+ conver ter . new Distance () . metersToInches (inValue)) ;
e lse

outF ie ld . s e t T e x t (””+ conver ter . new Weight () . kgsToPounds (inValue)) ;
} // a c t i o n P e r f o r m e d ()

} // B u t t o n L i s t e n e r

Act ionLis tener l i s t e n e r = new But tonLis tener () ; // C r e a t e a l i s t e n e r

j b u t t o n . addActionListener (l i s t e n e r) ; // R e g i s t e r b u t t o n s w i t h l i s t e n e r

return j b u t t o n ;
} // c r e a t e J B u t t o n ()

public s t a t i c void main (S t r i n g args []) {
ConverterFrame frame = new ConverterFrame () ;
frame . s e t S i z e (2 0 0 , 2 0 0) ;
frame . s e t V i s i b l e (t rue) ;

} // m a i n ()

} // C o n v e r t e r F r a m e
 	
Figure F–2: The use of a local class as an ActionListener adapter.

After defining the local inner class, the createJButton() method creates an
instance of the class (listener) and registers it as the button’s action listener.
When a separate object is created to serve as listener in this way, it is called an
adapter. It implements a listener interface and thereby serves as adapter between

APPENDIX F • Java Inner Classes 829

the event and the object that generated the event. Any action events that occur
on any buttons created with this method will be handled by this adapter. In other
words, for any buttons created by the createJButton() method, a listener ob-
ject is created and assigned as the button’s event listener. By using local classes,
the code for doing this is much more compact and efficient.

Local classes have some important restrictions. Although an instance of a local
class can use fields and methods defined within the class itself or inherited from its
superclasses, it cannot use local variables and parameters defined within its scope
unless these are declared final. The reason for this restriction is that final vari-
ables receive special handling by the Java compiler. Because the compiler knows
that the variable’s value won’t change, it can replace uses of the variable with their
values at compile time.

830 APPENDIX F • Java Inner Classes

Anonymous Inner Classes
An anonymous inner class is just a local class without a name. Instead of using two
separate statements to define and instantiate the local class, Java provides syntax
that let’s you do it in one expression. The following code illustrates how this is
done:� �

private JButton c r e a t e J B u t t o n (S t r i n g s) { // A m e t h o d t o c r e a t e a J B u t t o n

JButton j b u t t o n = new JButton (s) ;

j b u t t o n . addActionListener (new Act ionLis tener () { // A n o n y m o u s c l a s s

public void actionPerformed (ActionEvent e) {
double inValue = Double . valueOf (i n F i e l d . getText ()) . doubleValue () ;
JButton button = (JButton) e . getSource () ;
i f (button . getLabel () . equals (” Meters To Inches ”))

outF ie ld . s e t T e x t (”” + conver ter . new Distance () . metersToInches (inValue)) ;
e lse

outF ie ld . s e t T e x t (”” + conver ter . new Weight () . kgsToPounds (inValue)) ;
} // a c t i o n P e r f o r m e d ()

}) ; // A c t i o n L i s t e n e r

return j b u t t o n ;
} // c r e a t e J B u t t o n ()
 	

Note that the body of the class definition is put right after the new operator. The
result is that we still create an instance of the adapter object, but we define it on
the fly. If the name following new is a class name, Java will define the anonymous
class as a subclass of the named class. If the name following new is an interface, the
anonymous class will implement the interface. In this example, the anonymous
class is an implementation of the ActionListener interface.

Local and anonymous classes provide an elegant and convenient way to im-
plement adapter classes that are intended to be used once and have relatively
short and simple implementations. The choice of local versus anonymous should
largely depend on whether you need more than one instance of the class. If so, or if
it’s important that the class have a name for some other reason (readability), then
you should use a local class. Otherwise, use an anonymous class. As in all design
decisions of this nature, you should use whichever approach or style makes your
code more readable and more understandable.

Appendix G

Java Autoboxing and
Enumeration

This appendix describes some basic properties of autoboxing and enumeration, two
of the features added to the Java language with the release of Java 5.0. As for
many language features, there are details and subtleties involved in using these
features that are not covered here. For further details, you should consult Sun’s
online references or other references for a more comprehensive description.

Autoboxing and Unboxing

Autoboxing refers to the automatic storing of a value of primitive type into an
object of the corresponding wrapper class. Before autoboxing, it was necessary to
explicitly box values into wrapper class objects with code like:� �

I n t e g e r iObj = new I n t e g e r (3 4 5) ;
double num = −2.345;
Double dObj = new Double (num) ;
 	

Java 5.0 automatically creates a wrapper class object from a value of primitive type
in many situations where a wrapper class object is expected. The assignments
above can be accomplished with the simpler code:� �

I n t e g e r iObj = 3 4 5 ;
double num = −2.345;
Double dObj = num;
 	
There is a corresponding feature in Java 5.0 which automatically performs the

unboxing of primitive values from wrapper class objects. Instead of the explicit
unboxing in:� �

i n t m = iObj . intValue () ;
double x = dObj . doubleValue () ;
 	

831

832 APPENDIX G • Java Autoboxing and Enumeration

Java 5.0 allows the simpler:� �
i n t m = iObj ;
double x = dObj ;
 	
Java 5.0 provides autoboxing of primitive values and automatic unboxing of

wrapper class objects in expressions or in arguments of methods, where such a
conversion is needed to complete a computation. Beginning programmers are
unlikely to encounter many problems that require such conversions. One situa-
tion which often requires boxing and unboxing are applications that involve data
structures. The generic type data structures of Chapter 16 must store objects but
the data to be stored might be represented as values of a primitive type. The
code segment below should give you some idea of the type of situation where
autoboxing and unboxing can be a genuine help simplifying one’s code:� �

Stack<Integer> s tack = new Stack<Integer > () ;
for (i n t k = −1; k > −5; k−−)

s tack . push (k) ;
while (! s tack . empty ())

System . out . p r i n t l n (Math . abs (s tack . pop ())) ;
 	
Notice that the stack.push(k) method is expecting an Integer object so the
int value stored in k will be autoboxed into such an object before the method
is executed. Also note that the Math.abs() method in the last line of the code
fragment is expecting a value of primitive type so the Integer value returned by
stack.pop() must be automatically unboxed before the Math.abs() method
can be applied.

Sun’s online Java 5.0 documentation can be consulted for a more precise de-
scription of where autoboxing and unboxing takes place and a list of some special
situations where code allowing autoboxing can lead to confusion and problems.

Enumeration

A new enumeration construct was included in Java 5.0 to make it simpler to repre-
sent a finite list of named values as a type. The enum keyword was added as part
of this construct. Standard examples of lists of values appropriate for enumera-
tions are the days of the week, months of the year, the four seasons, the planets,
the four suits in a deck of cards, and the ranks of cards in a deck of cards. The
following declaration of Season enumerated type is an example used by the Sun
online documentation.� �

public enum Season { spring , summer , f a l l , winter}
 	
Compiling a file that contains only this statement will create a Season.class
file that defines a Java type just in the same way that compiling class definitions
does. The variables and values of type Season can be referred to in other classes

APPENDIX G • Java Autoboxing and Enumeration 833

just like other types and values. For example, the following statements are valid
statements in a method definition in another class:� �

Season s1 = winter ;
i f (s1 == spring)

System . out . p r i n t l n (s1) ;
 	
Note that the values of enumerated types can be used in assignment statements,
equality relations, and it will be printed out exactly as declared in the enum
statement.

The enum declaration could also occur inside the definition of a class and be
declared as either public or private. In this case the visibility of the type would
be determined in a manner similar to inner classes.

A standard way to represent such a finite list of values in Java before the enum
construct was to create a list of constants of type int. For example, if one wanted
to represent the four seasons you would have to do it inside a definition of a class,
say of a class named Calendar. Such a representation might look like:� �

public c l a s s Calendar {
public s t a t i c f i n a l i n t SPRING = 0 ;
public s t a t i c f i n a l i n t SUMMER = 1 ;
public s t a t i c f i n a l i n t FALL = 2 ;
public s t a t i c f i n a l i n t WINTER = 3 ;

// O t h e r C a l e n d a r d e f i n i t i o n s

} // C a l e n d a r
 	
In addition to being a lengthier declaration, note that other classes that wish to
refer to this representation would have to use notation something like:� �

i n t s1 = Calendar .WINTER;
i f (s1 == Calendar . SPRING)

System . out . p r i n t l n (s1) ;
 	
In addition to being more awkward, note that the println() call will print out
an integer in this case. Some additional code would have to be written to be able
to print the names of the seasons from the int values used to represent them. It is
the case that for methods in the Calendar class, the names of the constants look
very much like the values of the enum type.

834 APPENDIX G • Java Autoboxing and Enumeration

To illustrate a couple of additional advantages of the enum structure, lets con-
sider using the int representation above in a method definition that describes the
start date of a given season. Code for such a method would look something like:� �

public s t a t i c S t r i n g s t a r t D a t e (i n t s){
switch (s){
case SPRING : return ” Vernal Equinox” ;
case SUMMER : return ”Summer S o l s t i c e ” ;
case FALL : return ”Autumnal Equinox” ;
case WINTER : return ”Winter S o l s t i c e ” ;
} // s w i t c h

return ” e r r o r ” ;
} // s t a r t D a t e ()
 	

This method has a problem referred to as not being typesafe. We would want the
startDate() method to be called only with an argument equal to an int value
of 0, 1, 2, or 3. There is no way to tell the compiler to make sure that other int
values are not used as an argument to this method.

Let’s contrast this with a similar startDate() method that can refer to the
Season enumerated type that was defined above. The Calendar class (Figure G–
1) shows the definition of a startDate() method as well as a method to print
a list of seasons with corresponding starting dates. Note that the parameter of

� �
public c l a s s Calendar {

public s t a t i c S t r i n g s t a r t D a t e (Season s){
switch (s){
case spring : return ” Vernal Equinox” ;
case summer : return ”Summer S o l s t i c e ” ;
case f a l l : return ”Autumnal Equinox” ;
case winter : return ”Winter S o l s t i c e ” ;
} // s w i t c h

return ” e r r o r ” ;
} // s t a r t D a t e ()

public s t a t i c void pr intDates () {
for (Season s : Season . values ())

System . out . p r i n t l n (s + ” − ” + s t a r t D a t e (s)) ;
} // p r i n t D a t e s ()

} // C a l e n d a r
 	
Figure G–1: A Calendar class using the Season.

startDate() is of type Season and so the Java compiler can check that call
to this method have an argument of this type. This time the startDate() is
typesafe.

The printDates() method illustrates another feature of the enumeration
structure. The for loop in this method is the for-in loop which was added
to Java 5.0. The expression Season.values() denotes a list of the elements of
the type in the order that they were declared. The for-in loop iterates through
all the values of the type in the correct order and, in this case, prints out the type

APPENDIX G • Java Autoboxing and Enumeration 835

name followed by a dash followed by the String computed by the startDate()
method. The output when the printDates() method is called is given below:� �

spring − Vernal Equinox
summer − Summer S o l s t i c e
f a l l − Autumnal Equinox
winter − Winter S o l s t i c e
 	
The for-in loop provides a very nice way to iterate through the values of any

enumerated type. You may wish to write a corresponding method for the earlier
int representation of the seasons for a comparison.

Sun’s online Java 5.0 documentation provides a more precise definition of enu-
merated types and describes quite a number of other features that we have not
alluded to.

836 APPENDIX G • Java Autoboxing and Enumeration

Appendix H

Java and UML Resources

Reference Books

• David Flanagan, Java in a Nutshell Edition 5, 5th ed., O’Reilly and Associates
2005. Part of the O’Reilly Java series, this book provides a concise desktop
reference to Java and the API.

• James Gosling, Bill Joy, and Guy Steele, The Java Language Specification, 3d ed.,
Addison-Wesley, 2005. This book, which is part of Addison-Wesley’s Java Se-
ries, provides a detailed description of the Java language. An online version is
available at� �
http : //java . sun . com/docs/books/ j l s
 	

• Martin Fowler, UML Distilled, 3d ed., Addison-Wesley, 2003. This book, which
is part of Addison-Wesley’s Object Technology Series, provides a concise intro-
duction to UML.

Online References

• http://www.omg.org/ contains good information on UML.
• http://java.sun.com/j2se is one of Sun Microsystems’ Java Web sites.

From this page you can find links to downloads of JDK, API specifications, and
documentation on all of Java, including Swing, AWT, and new features of Java
5.0.

• http://java.sun.com/docs/codeconv/ provides a description of coding
conventions suggested by the Java Language Specification and followed by the
Java programming community. (These are summarized in Appendix A.)

• http://java.sun.com/tutorial provides an online Java tutorial.
• http://www.JARS.com provides reviews and ratings of the best Java applets.
• http://www.java-news-center.org/ is a clearinghouse for Java news,

programming examples, debugging tips, and many other useful resources.

837

Index

absolute path name, 519
Abstract Data Type (ADT), 771
accessor method, 102
arithmetic 210
arithmetic operators, 208, 211
array, 442
array allocation, 399
array assignment, 400
array component, 396
array component type, 396
array declaration, 397
array element, 396
array element type, 396
array initializer, 400, 443
array length, 396, 397, 427
array storage, 402
ascent, 326
ASCII, 232, 820
ASCII character set, 232
assignment operator =, 213
assignment operators, 214
asynchronous, 653
AWTEvent, 601

baseline, 326
binary search, 416
blocked, 655
Boehm, 277
Boole, George, 199
bound, 272
break, 274
buffering, 504
busy waiting, 675, 704

Caesar cipher, 357
callback design, 612
callback method, 707
catch block, 470
central processing unit, 3
char, 231
character conversion, 235
character conversion example, 238
charAt() method, 310
checked exception, 464
cipher, 357
ciphertext alphabet, 357

class scope, 105
client, 697
client-server, 4
client/server protocols, 697
compiler, 8
computational overhead, 547
Compute Average Example, 266
computer memory, 3
computer storage, 3
concurrently, 644
constructor, 110, 140
constructor default, 112
containment hierarchy, 604
content pane, 606
control structures, 277
controller, 596
counting loop, 270
CPU, 3
critical section, 673

data hierarchy, 501
data structure, 298, 758
Data Validation Example, 270
database, 501
decrement operator –, 212
dequeue, 778
dialog box, 489
digitToInteger() method, 237
Dikjstra, 277
directory, 518
dispatched, 655
divide and conquer, 548
divide-and-conquer, 416
do-while structure, 272
domain names, 697
dynamic scope, 473
dynamic structure, 758

Encapsulation Principle, 88
encryption, 357
end-of-file character, 506
enqueue, 778
error dialog, 489
ethernet protocol, 698
event model, 598
exception, 460

838

INDEX 839

exception handling, 460

factorial, 549
fetch-execute cycle, 3, 645
Fibonacci sequence, 295, 588
fields, 501
Filtering, 504
first-in–first-out (FIFO), 778
floating-point division, 208
for statement, 285
formal parameter, 103

goto statement, 277

head-and-tail algorithm, 552
high-level language, 7
HTML, 5
HTTP, 5

if statement, 123
if-else statement, 125
increment operator ++, 212
IndexOutOfBoundsException, 420
infinite loop, 272
Information Hiding Principle, 140
initializer, array, 427
integer division, 208
Internet, 5, 695
internet, 695
Internetworking Protocol (IP), 699
interpreter, 8
ItemListener interface, 578
iterative method, 546

Jacopini, 277
java.io package, 52

keyword, cipher, 357

last-in–first-out (LIFO), 776
last-in–first-out (LIFO) protocol, 555
lastIndexOf() method, 304
layout manager, 606
lexicographic order, 317, 318
life cycle, 654
link, 759
linked list, 759
list, 758
listener, 598
local scope, 104
lock, 667
loop design, 265
loop design principles, 270

machine language, 7
Maintainability Principle, 224, 402

method call stack, 474
method call, recursive, 552
method invocation, 109
method stack trace, 475
modal dialog, 489
model, 596
monitor, 667
multidimensional array, 427
multitasking, 645
multithreaded, 645
multiway selection, 125
multiway-selection structure, 274
mutator method, 102
mutual exclusion, 667

nested if-else, 125
networks, 4

object code, 8
object serialization, 530
object-oriented design, 355
object-oriented metaphor, 62
off-by-one error, 314
one-dimensional array, 396

packets, 698
parameter, 107, 140
parameter scope, 104
path, 518
plaintext alphabet, 357
platform independence, 7
pop, 776
port, 719
postdecrement, 213
postincrement, 212
precedence, 201, 210, 215
precedence table, 239
predecrement, 213
preincrement, 212
primitive type, 118
priority scheduling, 646
producer/consumer model, 664
promotion rule, 210
protocol, 5, 696
push, 776

qualified name, 105
quantum, 646
queue, 655, 778

ready queue, 655
record, 501
recursion, 551
recursion parameter, 553, 564
recursion, base case, 550
recursion, recursive case, 549

840 INDEX

recursive case, 550
recursive definition, 549
recursive method, 546, 581
reference type, 118
relational operators, 214, 235
repetition structure, 285
return statement, 123
round-robin, 646
routers, 695

sandbox security model, 741
scope, 104
self-referential object, 759
self-similarity, 548
sequential search, 414
server, 697
signature, 140
socket, 719
software, 3
source code, 8
square, 450
stack, 776
static scope, 473
static structure, 758
String, 329
String equality, 321
String identity, 321
String methods, 330
String.equals(), 319
StringTokenizer class, 323
structured programming, 277, 285
subscript, 442
substitution cipher, 357
substring() method, 310
switch statement, 273

tail recursive, 573
TestEncrypt class, 363
thread, 644
throw an exception, 466
time slicing, 645
toString() method, 135
toUpperCase() method, 236
translator, 8
Transpose class, 362
transposition cipher, 357
traverse, 764
trusted code, 741
try block, 470
type conversion rule, 234

unchecked exception, 465
Uniform Resource Locator, 5
Uniform Resource Locator (URL), 696
URL, 5
UTF, 523

vector, 758
view, 596
void, 86

while statement, 129
while structure, 129, 272
widget hierarchy, 604
Wirth, 277
World Wide Web, 5
WWW, 5

zero indexed, 302

	0 Computers, Objects, and Java
	0.1 Welcome
	0.2 What Is a Computer?
	0.3 Networks, the Internet and the World Wide Web
	0.4 Why Study Programming?
	0.5 Programming Languages
	0.6 Why Java?
	0.7 What Is Object-Oriented Programming?

	1 Java Program Design and Development
	1.1 Introduction
	1.2 Designing Good Programs
	1.3 Designing a Riddle Program
	1.4 Java Language Elements
	1.5 Editing, Compiling, and Running a Java Program
	1.6 From the Java Library: System and PrintStream

	2 Objects: Using, Creating, and Defining
	2.1 Introduction
	2.2 Using String Objects
	2.3 Drawing Shapes with a Graphics Object (Optional)
	2.4 Class Definition
	2.5 CASE STUDY: Simulating a Two-Person Game
	2.6 From the Java Library: java.util.Scanner.

	3 Methods: Communicating with Objects
	3.1 Introduction
	3.2 Passing Information to an Object
	3.3 Constructor Methods
	3.4 Retrieving Information from an Object
	3.5 Passing a Value and Passing a Reference
	3.6 Flow of Control: Control Structures
	3.7 Testing an Improved OneRowNim
	3.8 From the Java Library java.lang.Object
	3.9 Object-Oriented Design: Inheritance and Polymorphism
	3.10 Drawing Lines and Defining Graphical Methods (Optional)

	4 Input/Output: Designing the User Interface
	4.1 Introduction
	4.2 The User Interface
	4.3 A Command-Line Interface
	4.4 A Graphical User Interface (GUI)
	4.5 Case Study: The One Row Nim Game
	4.6 From the Java Library: java.io.File and File Input (Optional)

	5 Java Data and Operators
	5.1 Introduction
	5.2 Boolean Data and Operators
	5.3 Numeric Data and Operators
	5.4 From the Java Library java.lang.Math
	5.5 Numeric Processing Examples
	5.6 From the Java Library java.text.NumberFormat
	5.7 Character Data and Operators
	5.8 Example: Character Conversions
	5.9 Problem Solving = Representation + Action

	6 Control Structures
	6.1 Introduction
	6.2 Flow of Control: Repetition Structures
	6.3 Counting Loops
	6.4 Example: Car Loan
	6.5 Graphics Example: Drawing a Checkerboard
	6.6 Conditional Loops
	6.7 Example: Computing Averages
	6.8 Example: Data Validation
	6.9 Principles of Loop Design
	6.10 The switch Multiway Selection Structure
	6.11 OBJECT-ORIENTED DESIGN: Structured Programming

	7 Strings and String Processing
	7.1 Introduction
	7.2 String Basics
	7.3 Finding Things Within a String
	7.4 Example: Keyword Search
	7.5 From the Java Library: java.lang.StringBuffer
	7.6 Retrieving Parts of Strings
	7.7 Example: Processing Names and Passwords
	7.8 Processing Each Character in a String
	7.9 Comparing Strings
	7.10 From the Java Library: java.util.StringTokenizer
	7.11 Handling Text in a Graphics Context (Optional)

	8 Inheritance and Polymorphism
	8.1 Introduction
	8.2 Java's Inheritance Mechanism
	8.3 Abstract Classes, Interfaces, and Polymorphism
	8.4 Example: A Toggle Button
	8.5 Example: The Cipher Class Hierarchy
	8.6 Case Study: A Two Player Game Hierarchy
	8.7 Principles Of Object-Oriented Design

	9 Arrays and Array Processing
	9.1 Introduction
	9.2 One-Dimensional Arrays
	9.3 Simple Array Examples
	9.4 Example: Counting Frequencies of Letters
	9.5 Array Algorithms: Sorting
	9.6 Array Algorithms: Searching
	9.7 Two-Dimensional Arrays
	9.8 Multidimensional Arrays (Optional)
	9.9 OBJECT-ORIENTED DESIGN: [2pt]Polymorphic Sorting (Optional)
	9.10 From the Java Library: java.util.Vector
	9.11 Case Study: An N-Player Computer Game
	9.12 A GUI-Based Game (Optional Graphics)

	10 Exceptions: When Things Go Wrong
	10.1 Introduction
	10.2 Handling Exceptional Conditions
	10.3 Java's Exception Hierarchy
	10.4 Handling Exceptions Within a Program
	10.5 Error Handling and Robust Program Design
	10.6 Creating and Throwing Your Own Exceptions
	10.7 From the Java Library: JOptionPane

	11 Files and Streams: Input/Output Techniques
	11.1 Introduction
	11.2 Streams and Files
	11.3 CASE STUDY: Reading and Writing Text Files
	11.4 The File Class
	11.5 Example: Reading and Writing Binary Files
	11.6 Object Serialization: Reading and Writing Objects
	11.7 From the Java Library javax.swing.JFileChooser
	11.8 Using File Data in Programs

	12 Recursive Problem Solving
	12.1 Introduction
	12.2 Recursive Definition
	12.3 Recursive String Methods
	12.4 Recursive Array Processing
	12.5 Example: Drawing (Recursive) Fractals
	12.6 OBJECT-ORIENTED DESIGN: Tail Recursion
	12.7 OBJECT-ORIENTED DESIGN: Recursion or Iteration?
	12.8 From the Java Library: javax.swing.JComboBox

	13 Graphical User Interfaces
	13.1 Introduction
	13.2 Java GUIs: From AWT to Swing
	13.3 The Swing Component Set
	13.4 OBJECT-ORIENTED DESIGN: Model-View-Controller Architecture
	13.5 The Java Event Model
	13.6 CASE STUDY: Designing a Basic GUI
	13.7 Containers and Layout Managers
	13.8 Checkboxes, Radio Buttons, and Borders
	13.9 Menus and Scroll Panes

	14 Threads and Concurrent Programming
	14.1 Introduction
	14.2 What Is a Thread?
	14.3 From the Java Library: java.lang.Thread
	14.4 Thread States and Life Cycle
	14.5 Using Threads to Improve Interface Responsiveness
	14.6 CASE STUDY: Cooperating Threads
	14.7 CASE STUDY: The Game of Pong

	15 Sockets and Networking
	15.1 Introduction
	15.2 An Overview of Networks
	15.3 Using Multimedia Network Resources for a Graphical Program
	15.4 From the Java Library: java.net.URL
	15.5 The Slide Show Program
	15.6 Adding Text Network Resources for an Application
	15.7 Client/Server Communication via Sockets
	15.8 CASE STUDY: Generic Client/Server Classes
	15.9 Playing One Row Nim Over the Network
	15.10 Java Network Security Restrictions
	15.11 Java Servlets and Java Server Pages

	16 Data Structures: Lists, Stacks, and Queues
	16.1 Introduction
	16.2 The Linked List Data Structure
	16.3 OBJECT-ORIENTED DESIGN: The List Abstract Data Type (ADT)
	16.4 The Stack ADT
	16.5 The Queue ADT
	16.6 From the Java Library: The Java Collections Framework and Generic Types
	16.7 Using the Set and Map Interfaces
	16.8 The Binary Search Tree Data Structure

	A Coding Conventions
	B The Java Development Kit
	C The ASCII and Unicode Character Sets
	D Java Keywords
	E Operator Precedence Hierarchy
	F Java Inner Classes
	G Java Autoboxing and Enumeration
	H Java and UML Resources

