
CSE1322L Assignment 3 - Fall 2024

Introduction:

These days, there are several different ways to get a weather forecast. You could use the oldest

method available (looking outside and guessing), but you could also check any news channel on

TV, dozens of internet websites, apps on your phone, or through some sort of widget on your

computer. Besides the first method, all the other methods listed rely in part or in whole on

measurements from one or more Weather Forecast Offices spread across the US, which feed

their data to the National Weather Service.

In this assignment, we will write a simplified version of this system, in part using classifications

and metrics from the National Oceanic and Atmospheric Administration (e.g.: Types of Weather

Phenomena), and in part with information we’ll make up.

Note that this assignment deals with a data type which can be expanded at runtime called

ArrayList in Java and List in C#. The assignment will only refer to it as “ArrayList”, but C#

coders should be aware that they must use a List when the assignment asks for an

arraylist.

Requirements

The features described below must be in your program.

• A total of eight classes: the driver, WeatherEvent, Precipitation, Obscuration, Rain, Snow,

Fog, and Particle.

• WeatherEvent class, the superclass of all other classes (except the driver):

o Must be abstract

o Must have 4 fields:

▪ A string called “location”

▪ A static integer called “nextId”, initialized at 0

▪ An integer called “id”

▪ A boolean called “active”

o It must only feature an overloaded constructor, which assigns location and active

as appropriate, sets id with the value of nextId, and then increments nextId by 1.

o It must have a getter for all fields except nextId

o It must have a setter for location and active

o It must have an override of toString(). This override must be in the following format:

“Weather Event Location: {location}

 id: {id}

 active: {active}”

https://www.weather.gov/
https://www.noaa.gov/jetstream/synoptic/types-of-weather-phenomena
https://www.noaa.gov/jetstream/synoptic/types-of-weather-phenomena

• Precipitation class, which is a superclass of Rain and Snow

o Must be abstract

o Must have 1 field: a double called “rateOfFall”

▪ This field must have a getter and a setter. Do not allow this field to be set

at a value below 0.

▪ This field is keeping track of how fast the Precipitation is happening,

measured in inches/h.

o It must only feature an overloaded constructor which takes in the location, if the

Precipitation is active, and its rate of fall. The rate of fall is set as appropriate, but

the location and activity status must be passed to the super class constructor.

o It must overload the toString() method of its super class to add information to it.

The information added is the Precipitation’s rateOfFall and, in parenthesis, if the

rate is light, medium or heavy:

▪ Light: less than 0.5 inches/h

▪ Medium: Between 0.5 and 1.5 inches/h (inclusive)

▪ Heavy: Above 1.5 inches/h

“Weather Event Location: {location}

 id: {id}

 active: {active}

 Rate of Fall: {rateOfFall} in/h ({Light/Medium/Heavy})”

• Obscuration class, a superclass of Fog and Particle:

o Must be abstract

o Must have 1 field: an integer called “visibility”

▪ This field must have a getter and a setter. Do not allow this field to be set

at a value below 0.

▪ This field is keeping track of how far away a person can see through the

Obscuration, measured in eights of a mile.

o It must only feature an overloaded constructor which takes in the location, if the

Obscuration is active, and its visibility. The visibility is set as appropriate, but the

location and activity status must be passed to the super class constructor.

o It must overload the toString() method of its super class to add information to it.

The information added is the Obscuration’s visibility. If the visibility is at or above

56, the visibility is “Normal”. Otherwise, the visibility should be displayed in eights

of a mile.

“Weather Event Location: {location}

 id: {id}

 active: {active}

 Visibility: {visibility}/8 mi”

OR

“Weather Event Location: {location}

 id: {id}

 active: {active}

 Visibility: Normal”

• Rain class

o Must have 1 field: a double called “dropSize”

▪ This field must have a getter and a setter. Do not allow this field to be set

at a value below 0.02.

▪ This field is keeping track of the diameter of the rain drops, measured in

inches.

o It must only feature an overloaded constructor which takes in the location, if the

Rain is active, its rate of fall, and the diameter of its raindrops. The drop size is set

as appropriate, but the location, activity status, and rate of fall must be passed to

the super class constructor.

o It must overload the toString() method of its super class to add information to it.

The information added is the Rain’s drop size, as well as their classification. Drop

sizes as classified as:

▪ Small: Less than 0.066 inches

▪ Medium: Between 0.066 and 0.112 inches (inclusive)

▪ Large: Greater than 0.112 inches

“Weather Event Location: {location}

 id: {id}

 active: {active}

 Rate of Fall: {rateOfFall} in/h ({Light/Medium/Heavy})

 Drop size: {dropSize} ({Small/Medium/Large})”

• Snow class

o Must have 1 field: a double called “temperature”

▪ This field must have a getter and a setter. Do not allow this field to be set

at a value below -459.67 or above 32.

▪ This field is keeping track of the temperature of the snowfall, measured in

Fahrenheit.

o It must only feature an overloaded constructor which takes in the location, if the

Snow is active, its rate of fall, and the temperature. The temperature is set as

appropriate, but the location, activity status, and rate of fall must be passed to the

super class constructor.

o It must overload the toString() method of its super class to add information to it.

The information added is the temperature.

“Weather Event Location: {location}

 id: {id}

 active: {active}

 Rate of Fall: {rateOfFall} in/h ({Light/Medium/Heavy})

 Temperature: {temperature} F”

• Fog class

o Must have 1 field: a boolean called “freezingFog”

▪ This field must have a getter and a setter.

▪ This field is keeping track of if the fog is freezing or not.

o It must only feature an overloaded constructor which takes in the location, if the

Fog is active, its visibility, and if it is a freezing fog. The freeze status is set as

appropriate, but the location, activity status, and visibility must be passed to the

super class constructor.

o An override to setVisibility(). A Fog’s visibility must be greater than 0 but less than

5.

▪ If the user tries to set to a value outside of that range, set the value to be

the nearest valid value (either 1 or 4).

▪ Fogs are characterized by their severe lack of visibility, hence the heavy

restriction on visibility.

o It must overload the toString() method of its super class to add information to it. If

the Fog is freezing, add “ALERT! FREEZING FOG!”. Otherwise, add nothing.

 “Weather Event Location: {location}

 id: {id}

 active: {active}

 visibility: {visibility}/8 mi

 ALERT! FREEZING FOG!”

OR

“Weather Event Location: {location}

 id: {id}

 active: {active}

 visibility: {visibility}/8 mi”

• Particle class

o Must have 1 field: a string called “particleType”

▪ This field must have a getter and a setter. This field must have only one

of the following values:

• Dust

• Sand

• Ash

• Any value that’s not one of the above should be set as “Other”.

▪ This field is keeping track of what the Obscurant is made of

o It must only feature an overloaded constructor which takes in the location, if the

Particle event is active, its visibility, and its particle type. The particle type is set as

appropriate, but the location, activity status, and visibility must be passed to the

super class constructor.

o It must overload the toString() method of its super class to add information to it.

The information added is the Obscuration’s particle type.

 “Weather Event Location: {location}

 id: {id}

 active: {active}

 visibility: {visibility}/8 mi

 Particle type: {particleType}”

OR

“Weather Event Location: {location}

 id: {id}

 active: {active}

 visibility: Normal

 Particle type: {particleType}”

• In the Driver:

o Create and Arraylist of WeatherEvents

o In a loop, prompt the user for the following options:

▪ Add weather event: Prompt the user for what type of WeatherEvent they

wish to create (Rain, Snow, Fog, Particle), then prompt them for the

necessary information to create said event, adding it to the arraylist. Print

an error message if the user picks a type of WeatherEvent that doesn’t

exist.

▪ Update location: Prompt the user for the ID of a WeatherEvent. If said ID

exists, prompt the user for the new location of said WeatherEvent and

update it. Otherwise, print an error message that no such WeatherEvent

exists.

▪ Update active: Prompt the user for the ID of a WeatherEvent. If said ID

exists, invert the activity status of that weather event (from true to false and

vice-versa). Otherwise, print an error message that no such WeatherEvent

exists.

▪ View all events: Calls the toString() of all WeatherEvents in the arraylist.

▪ Quit: Terminate the program.

Considerations
• This assignment may seem intimidating, but that’s just because of the number of things

you have to do; the assignment itself isn’t very hard, so don’t be discouraged.

• Remember that you will get partial credit for partial work. Try to deliver as much of the

assignment as you can.

• Some of the classes you are writing are abstract, meaning you cannot create instances of

them. You will only be creating instances of Rain, Snow, Fog, and Particle. What this

means is that the line below will generate a compilation error:

WeatherEvent event = new WeatherEvent(“”, true);

• Remember that a subclass inherits all the public members of its superclass. As such, even

if your Rain class doesn’t have a method called “getId()”, it can still call this method

because:

o Rain is a subclass of WeatherEvent (which does have a getId())

o getId() is a public method in WeatherEvent

• You may add any other helper methods you believe are necessary, but they won’t count

towards your grade.

Example: [User input in red]

[Weather Tracking System]

1. Add weather event

2. Update location

3. Update active

4. View all events

5. Quit

Enter your option: 6

Invalid option!

1. Add weather event

2. Update location

3. Update active

4. View all events

5. Quit

Enter your option: 1

1. Rain

2. Snow

3. Fog

4. Particle

What type of weather event is being added? 1

Where is the event happening? Clayton

What is the rate of fall? (in/h) 0.6

What is the diameter of the drops? (in) 0.04

Rain event added

1. Add weather event

2. Update location

3. Update active

4. View all events

5. Quit

Enter your option: 1

1. Rain

2. Snow

3. Fog

4. Particle

What type of weather event is being added? 2

Where is the event happening? Cobb

What is the rate of fall? (in/h) 1.7

What is the temperature? (F) 50

Snow event added

1. Add weather event

2. Update location

3. Update active

4. View all events

5. Quit

Enter your option: 1

1. Rain

2. Snow

3. Fog

4. Particle

What type of weather event is being added? 3

Where is the event happening? Douglas

What is the visibility? (1/8 mi) 0

Is the fog freezing? (y/n) y

Fog event added

1. Add weather event

2. Update location

3. Update active

4. View all events

5. Quit

Enter your option: 1

1. Rain

2. Snow

3. Fog

4. Particle

What type of weather event is being added? 4

Where is the event happening? Hawaii

What is the visibility? (1/8 mi) 60

What is the obscuration made of? (Sand/Dust/Ash/Other) Sulfur

Particle event added

1. Add weather event

2. Update location

3. Update active

4. View all events

5. Quit

Enter your option: 4

Weather Event Location: Clayton

id: 0

Active: true

Rate of fall: 0.60 in/h (Medium)

Drop size: 0.04 (Small)

Weather Event Location: Cobb

id: 1

Active: true

Rate of fall: 1.70 in/h (Heavy)

Temperature: 32.00 F

Weather Event Location: Douglas

id: 2

Active: true

Visibility: 1/8 mi

ALERT! FREEZING FOG!

Weather Event Location: Hawaii

id: 3

Active: true

Visibility: Normal

Particle type: Other

1. Add weather event

2. Update location

3. Update active

4. View all events

5. Quit

Enter your option: 3

Enter id of weather event: 4

No event with that id.

1. Add weather event

2. Update location

3. Update active

4. View all events

5. Quit

Enter your option: 3

Enter id of weather event: 3

Event set to "inactive"

1. Add weather event

2. Update location

3. Update active

4. View all events

5. Quit

Enter your option: 2

Enter id of weather event: 2

Enter the new location of the weather event (currently “Douglas”): Floyd

Location updated

1. Add weather event

2. Update location

3. Update active

4. View all events

5. Quit

Enter your option: 4

Weather Event Location: Clayton

id: 0

Active: true

Rate of fall: 0.60 in/h(Medium)

Drop size: 0.04 (Small)

Weather Event Location: Cobb

id: 1

Active: true

Rate of fall: 1.70 in/h(Heavy)

Temperature: 32.00 F

Weather Event Location: Floyd

id: 2

Active: true

Visibility: 1/8 mi

ALERT! FREEZING FOG!

Weather Event Location: Hawaii

id: 3

Active: false

Visibility: Normal

Particle type: Other

1. Add weather event

2. Update location

3. Update active

4. View all events

5. Quit

Enter your option: 5

Shutting off...

Submitting your answer:

Please follow the posted submission guidelines here:

https://ccse.kennesaw.edu/fye/submissionguidelines.php

Ensure you submit before the deadline listed on the lab schedule for CSE1322L here:

https://www.kennesaw.edu/ccse/first-year-experience/cse-1322-lab.php

https://ccse.kennesaw.edu/fye/submissionguidelines.php
https://www.kennesaw.edu/ccse/first-year-experience/cse-1322-lab.php

