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Abstract

This study establishes sufficient conditions for observing instances of Simpson’s (data aggregation) Paradoz under
rank sum scoring (RSS), as used, e.g., in the Wilcoron-Mann-Whitney (WMW) rank sum test. The WMW
test is a primary nonparametric statistical test in FDA drug product evaluation and other prominent medical
settings. Using computational nonparametric statistical methods, we also establish the relative frequency with
which paradox-generating Simpson Reversals occur under RSS when an initial data sequence is pooled with its
ordinal replicate. For each 2-sample, n-element per sample or 2 x n case of RSS considered, strict Reversals
occurred for between 0% and 1.74% of data poolings across the whole sample space, roughly similar to that
observed for 2 x 2 x 2 contingency tables and considerably less than that observed for path models. The Reversal
rate conditional on observed initial sequence is highly variable. Despite a mode at 0%, this rate exceeds 20%
for some initial sequences. Our empirical application identifies clusters of Simpson Reversal susceptibility for
publicly-released mobile phone radiofrequency exposure data. Simpson Reversals under RSS are not simply a
theoretical concern but can reverse nonparametric or parametric biostatistical results even in vitally important
public health settings. Conceptually, Paradox incidence can be viewed as a robustness check on a given WMW
statistical test result. When an instance of Parador occurs, results constituting this instance are found to be
data-scale dependent. Given that the rate of Reversal can vary substantially by initial sequence, the practice of
calculating this rate conditional on observed initial sequence represents a potentially important robustness check
upon a result.

1 Introduction

Simpson’s Aggregation Paradoz, also known as the Yule-Simpson Aggregation Paradox, represents an anomaly in
statistics whereby two qualitatively equivalent statistical test results—each arising from one of two qualitatively
equivalent statistical test results—reverse when the same statistical test is applied to the pooled data. The Paradox
was first put forth by Yule (1903) and later developed by Simpson (1951). While first analyzed for the domain of
parametric testing, its presence in non-parametric statistical results has recently been studied (Bargagliotti 2009,
Haunsperger 2003, Haunsperger and Saari 1991). Of particular importance to the present study, Haunsperger and
Saari (1991) find conditions for Simpson Reversal in rank sum statistical testing, where the term Simpson Reversal
is used synonymously with the term instances of Simpson’s Aggregation Paradoz herein. In general, the Paradox has
been found to affect statistical results in many important scientific domains, including pharmaceutical drug testing,
environmental research, and related medical and scientific research (see, e.g., Huang, Zalkikar and Tiwari 2019,
Allison and Goldberg 2002, Pineiro et al. 2006). Chipman and Braun (2017) identify and characterize the Paradoz
for integrated discrimination improvement comparisons of two prediction models. In studying global temperature
over time, Foster and Rahmstorf (2011) note that the scale of date (time scale of study) can influence the statistical
results of a study. Pordanjani et al. note the importance of the Paradox when analyzing geospatial data, while Tran
and Waller (2015) note that the Paradox can explain variability in results of environmental data analysis. Berger et
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al. (2016) find evidence of aggregation paradox instances in randomized clinical trial data. Evidence of aggregation
paradox has also been found in the settings of large-scale registry data (Gron et al. 2016), meta-analyses of an
academic literature (Kuss 2016), and clinical risk reclassification (Cook et al. 2017).

In one respect, the Paradoz can be viewed as a robustness check on a given statistical result. When the Paradox
occurs, it follows that a given result is at least partly a function of data scale or sample size. As noted, the Paradox
has been shown to occur for the Wilcozon-Mann-Whitney (WMW) Rank Sum Test. However, there exists no
computational or empirical evidence as to the frequency with which instances of the Paradox occur for the WMW
Rank Sum Test and little such evidence for non-parametric statistical tests overall. Are Simpson Reversals pervasive
or only a marginal concern for the WMW Test? Even previuos research as to the incidence of the Paradox for
parametric statistical tests is scarce and provides somewhat contrasting conclusions. There are two studies that
directly estimate the incidence of Simpson’s Paradoz for parametric tests: one pertaining to contingency tables and
the other pertaining to path models. Specifically, Pavlides and Perlman (2009) find that a Simpson Reversal occurs
for one-sixtieth (1.67%) of all 2 x 2 x 2 contingency tables. Kock (2015) estimates the likelihood of a Simpson
Reversal in path models as approximately 12.8%.

For nonparametric statistical testing, Nagaraja and Sanders (2020) consider a case in which a data set is ordinally
replicated and then pooled with the replicate data set. In such an environment, the authors prove that Simpson
Reversals cannot occur if the sign test for matched pairs is applied to the primitive and pooled data sets. They
also show evidence of Simpson Reversals for the WMW Test. The authors further discuss the advantage of such
a pooled replicate approach to studying Simpson Reversals in nonparametric settings. By introducing and pooling
an observed data set with its ordinal replicate, one introduces no additional information to the comparison between
two or more groups (e.g., between groups A and B). As such, instances of Simpson Reversal that occur when an
ordinal data is pooled with its ordinal replicate act as a pure robustness check upon a statistical result. Given only
iterations of this data sequence and the statistical test, we can obtain alternative results by varying the scale of the
data. As such, the original result can be viewed as scale-dependent. Moreover, a data sequence’s ordinal replicate
is always accessible such that this robustness check can be applied to every nonparametric statistical result. Given
these advantages, we will adopt a pooled replicate approach to studying Simpson Reversals in the present study.

Despite important theoretical contributions by Haunsperger and Saari (1991) and Nagaraja and Sanders (2020),
there have been no computational studies that assess the incidence of Simpson Reversals in the case of nonparametric
tests. Though we know the WMW Test yields instances of the Paradox, we cannot ascertain without computational
support if these instances are fairly frequent, as in the case of path models, or somewhat rare, as in the case of
contingency tables. The answer to this question has potentially important implications. The WMW Test is a leading
nonparametric statistical test across the medical sciences (see, e.g., Lin et al. 2021). For example, this test is
routinely used to assess drug efficacy in FDA clinical trials, as well as in EPA data evaluation (see, e.g., Boudreau
et al. (2018) for a discussion of FDA use of this test in the Statstical Review and Evaluations of products such
as Novantrone, Memantine, Cologuard, Pitressin, SPD485, Oxaliplatin, Oxcarbazepine, Berinert, Novartis, Vascepa,
Trileptal, and many others). Results as to incidence of Simpson Reversals for the WMW Test can effectively assess
the general robustness of WMW Test results to data scale changes. As Simpson Reversals cast ambiguity on a given
original result, incidence of Simpson Reversal for a test shares similarities to the concept of a hypothesis test p-value.
In the same way that a p-value assesses the proportion of significance results that are, in fact, non-robust due to
sample variation, incidence of Simpson Reversal assesses the proportion of statistical test results that are non-robust
due to data scale dependence. In this sense, the proportional incidence of Simpson Reversal might be thought of as
loosely analogous to a hypothesis test p-value (e.g., when considering the magnitude of the proportion).

Herein, we consider all 2-group, k-element per group cases of RSS for k € {2,3,4,5,6,7,8}. For each case up to
k = 7, we enumerate every possible rank outcome sequence in that case. For each given sequence, we then ordinally
replicate the sequence and consider all possible poolings of the sequence with its ordinal replicate. For each case, we
then compute the relative frequency with which a strict Simpson Reversal occurs. We find that strict instances of
the Paradoz cannot occur for 2-group, k-element per group cases of RSS where k € {1,2} but that instances occur
for approximately 1.7 percent of sequence poolings in the 2-group, 5-element and 2-group, 7-element cases. Given the
computational complexity of the problem—for the 2-group, 8-element case, there are 7.74 trillion possible poolings
of two rank data sequences—we are not able to extend the results beyond the k = 7 case at present. However, we
use a simulation approach to characterize the 2-group, 8-element case herein. We conclude from our computational
results that the incidence of Simpson Reversals in this setting is lower than a standard, allowable Type I error rate
(a-value) for a statistical test. Given conceptual similarities between a test’s p-value and its Simpson Reversal rate,
as discussed previously, we might then characterize the incidence of Simpson Reversal for considered cases of rank
sum testing as “tolerable” from the perspective of statistical sensitivity. For certain initial data sequences, however,
Rewversals are found to be much more prevalent, occurring as frequently as roughly once in five poolings for certain
initial sequences. As such, incidence of Simpson Reversals should ideally be considered conditional upon both the



test and data under consideration.

2 Material and Methods

2.1 Rank Sum Scoring and Simpson’s Aggregation Paradox: Definitions and a The-
orem

Let us formally define 2-group rank sum scoring. Consider two groups, A and B. Each group is defined as a rank-
ordered sequence of n individual elements, where n is some integer greater than 1 (n € ZT). For example, A is
defined as A = (a1, az,as, ..., a,), where the element a; represents the 7*" ranked element in A. We define an event
as an objective process of comparison that generates a complete rank-order sequence of individuals across more than
one group (i.e., both within and between groups). An event might be defined as a competition or as a statistical test.
Consider an event in which elements of A and B are compared. If A and B are each composed of n elements, for
example, then the event generates a rank-ordered outcome sequence of 2n elements. One possible outcome sequence
for the case in which n =3 is Fap = (a1, b1, b2, aa, b3, az). If a; precedes b; in the outcome sequence, we say a; > b;
(a; ranks higher than b;). For simplicity, we assume that rank-order equality between two elements is not possible,
an outcome that would obtain given continuous measurement of underlying parameter values. For any a; € A and
b; € B, that is, we have that a; >~ b; ©® b; >~ a; is a tautology.

Formally, we represent the rank of an element a; € A in the outcome sequence Fap asr(a; | Fap). Let xj (Fap) =
{x € Fap : = a;} be the set of elements in F4p that rank better than a;. Then, r(a; | Fag) =| 2] (Fap | +1.
From elemental rankings, we generate a rank sum score for each group as follows. The respective scores for A and
B for outcome sequence Fap are S(A | Fap) = Xa,ea 7(aj | Fap) and S(B | Fap) = Xy,e 7(bj | Fap),
where it must be that S(A | Fap) + S(B | Fap) = W That is, the sum of ranks for a 2n element sequence
simply equals the sum of integers from 1 to 2n. We map from group scores to group rankings to obtain the following
outcomes.

If S(A | FAB) < S(B ‘ FAB), then A > B
= If S(A|Fap) < S(B| Fap), then A ranks higher than B (1)

If S(A | FAB) = S(B | FAB)7 then A~ B
= If S(A| Fap)=S(B| Fap), then A ranks equally with B (2)

If S(A ‘ Fap) > S(B | FAB)7 then A< B
= If S(A| Fap) < S(B | Fap), then A ranks lower than B (3)

2.1.1 Replicated Data Aggregation

We consider an environment in which a data set yields a given aggregate or group rank-ordering result under RSS
(e.g., A > B). We then ordinally replicate the data. By necessity, the ordinal replicate data will yield the same group
rank result under RSS. As RSS is a nonparametric form of scoring, only the order of elements influences the group
ranking. We then aggregate the original data set with its ordinal replicate as in Nagaraja and Sanders (2020) and
consider whether (under what conditions) the pooled data yields a different group rank result under RSS than do
its two constituent data sets. That is, we consider the conditions for strict Simpson Reversal, whereby the outcome
in 1 (3) is obtained for each constituent data sequence, but outcome 3 (1) is obtained for the pooled sequence. It
is important to note that an ordinal-replicate data sequence can have starkly different parametric values than the
original data sequence that it ordinally replicates. Ordinal replication simply implies the same ordering of elements
across the two sequences.

Let Fap represent the original data sequence, F:A p its ordinal replicate, and F F:4 g the sequence whereby Fup
and F:4 p are pooled by comparing the underlying parametric value of each element. Formally, we define a Simpson
Rewversal as follows.

Definition 1 Simpson Reversal: When Fap and FAB are pooled, a strict Simpson Reversal occurs if [S(A|Fap) —
S(B|Fap)]-[S(A|FF)5)—S(B|FF)5)] < 0. Equivalently, a strict Simpson Reversal occurs if [S(A|F/y5)—S(B|F)yg)]-
[S(AIFF)5) — S(B|FF) )] < 0. These conditions yield the group rank result that A =p B and A =g B, but



B =g A (i.e., that A ranks strictly higher than B in F and F’, but B ranks strictly higher than A in FF') or that
B> Aand B =g A, but A =pp B (i.e., that B ranks strictly higher than A in F and F’, but A ranks strictly
higher than B in FF’).

We now derive sufficient conditions for the presence and absence of Simpson Reversal in RSS.

Theorem 1 (Sufficient Condition for Simpson Reversal in Rank Sum Scoring) For any two groups, A and
B, such that A > B in pairwise comparison for a given outcome sequence, Fap (i.e., A =p,, B), let ¢ be the largest
integer such that biyc—1 = a; in Fap (Flyg). When Fap and F'y 5 are pooled, a strict Simpson Reversal occurs for
at least one pooling of A and B if S(B | Fap) — S(A | Fap) < n(.

Proof: Note that the maximum differential impact toward a reversal that F”y 5 has when pooled with Fup is if all n
elements of F ; are pooled with Fap in a way that they are placed between bi+c—1 and a; of Fap. In this case, the
pooling effect of F’y 5 upon Fap is to raise the score of A by 2n{ more rank sum units than the score of B. If the 2n
elements of F) 5 are pooled with Fap at this position, then ¢ more elements of A in Fap than B in Fap each lose
2n rank positions (gain 2n additional rank sum points) to the elements of ", 5. Regardless of the reciprocal pooling
effect of Fap upon F 5, then, we are assured of at least this stated differential pooling effect for some pooling of
Fap and F'y 5.

As a countervailing effect, A has a lower score than B by S(B | Fap) — S(A | Fap) units in Fap (by definition)
and by the same margin in 'y, as S(B | Flyz) — S(A | Fig) = S(B | Fap) — S(A | Fap) due to Fap and F/g
being ordinal replicates. Then, S(A | FF' ) relative to S(B | FF/ ) depends upon the magnitude of the pooling
effect in comparison to the magnitudes of [S(B | Fag) — S(A | Fap)] and [S(B | Fiy5) — S(A | F)y5)], where the
latter two terms are equal to each other. For a sequence, F4pg, and its ordinal replicate, then, a Simpson Reversal
is certain to occur if 2 - [S(B | Fap) — S(A | Fap)] < 2n¢. That is, a Simpson Reversal is certain to occur if
[S(B | Fap) — S(A| Fap)] <n(H

Theorem 2 (Sufficient Condition for Impossibility of Simpson Reversal in Rank Sum Scoring) For any
two groups, A and B, such that A = B, in pairwise comparison for a given outcome sequence, Fap (i.e., A =p,, B),

let ¢ be the largest integer such that bitc—1 > a; in F (F'). A strict Simpson Reversal cannot occur for any pooling

of Fap and Fly 5 if S(B | Fap) — S(A | Fag) > 2n(.

Proof: Note that the maximum differential impact toward a reversal that F”, 5 can have when pooled with Fup is if
all n elements of F 5 are pooled with F4p in a way that they are placed between b;¢_1 and a,; of Fap. Reciprocally,
the maximum differential that F4p can have when pooled with FY, 5 is if all n elements of Fap are pooled with 'y 5
in a way that they are placed between b;¢_1 and a; of Fj 5. Thus, the maximum achievable two-way pooling effect
of Fap cannot exceed 4n(. If 4n( is not greater than the primitive score differentials between A and B in Fap and
F’, 5, then a strict Reversal is not possible. That is, if 2- [S(B | Fap) — S(A | Fag] > 4n(, then a strict Reversal is
not possible B

Interestingly, this condition is similar to the condition for a violation of Independence from Irrelevant Alternatives
(IIA) found in Boudreau et al. (2014). This equivalence is not coincidental. Rather, Simpson Reversals share
important properties with ITA violations. In each case, a pairwise group ranking is overturned by the inclusion of
additional data, where the imposed data is not expected to overturn the original ranking. Like an IIA violation, a
Simpson Reversal requires the additional data to impose a sufficiently differential effect upon the respective rank
sum scores of the two groups being compared. The conditions for that differential effect are similar for ITA violations
and for Simpson Reversals.

The following computational results tables further demonstrate that Theorems 1 and 2 each represent respective
sufficient conditions for both the 2 x 5 and 2 x 6 cases. While these computations are not strictly needed given the
previous general proofs, they are useful in that they demonstrate the utility of the sufficient conditions in practice
(i.e., how frequently sequences, F4p, that generate these conditions are observed).



Table 1: Sufficient Condition for Presence of Reversal and Observation of at Least One
Reversal; All Poolings Tabulated by Initial Sequence for 2x5 Case

Observation of at least one Reversal
Sufficient Condition for Presence of Reversal F T
F 162 12
T 0 73

Table 2: Sufficient Condition for Absence of Reversal and Observation of at Least One
Reversal; All Poolings Tabulated by Initial Sequence for 2x5 Case

Observation of at least one Reversal
Sufficient Condition for Absence of Reversal F T
F 84 e0
T T8 0

Table 3: Sufficient Condition for Presence of Reversal and Observation of at Least One
Reversal; All Poolings Tabulated by Initial Sequence for 2x6 Case

Observation of at least one Reversal
Sufficient Condition for Presence of Reversal F T
F 618 BE
T 1] 220

Table 4: Sufficient Condition for Absence of Reversal and Observation of at Least One
Reversal; All Poolings Tabulated by Initial Sequence for 2x6 Case

Observation of at least one Reversal
Sufficient Condition for Absence of Reversal F T
F 254 306
T 364 0

Of the 252 initial sequences, Fap, Table 1 tells us that the sufficient condition for presence of at least one Reversal
across all poolings of Fup and F 5 holds for 78 of those sequences. Empirically, we observe at least one Reversal
for each of those sequences. The second table shows that for a distinct 78 of the 252 initial 2 x 5 sequences, Fap,
the sufficient condition for absence of Reversals across all poolings of Fap and F’ 5 holds. Empirically, we do not
observe a Reversal in any of those sequences. For the 2 x 5 case, then, the sufficient conditions from Theorems 1
and 2 assure us whether or not Reversal is possible for 156 of the 252 initial sequences (61.9%).

Tables 3 and 4 deal with sufficient conditions for the 2 x 6 case. Of the 924 initial sequences, Fap, for the 2 x
6 case, Table 3 shows that the sufficient condition for presence of at least one Reversal across all possible poolings
of Fyp and F'y 5 holds for 220 of those sequences. Empirically, we observe at least one Reversal for each of those
sequences. The fourth table shows that for a distinct 364 of the 924 initial 2 x 6 sequences, F4p, the sufficient
condition for absence of Reversals across all poolings of Fap and F/ holds. Empirically, we do not observe a
Reversals for any of those sequences. For the 2 x 6 case, then, the sufficient conditions from Theorems 1 and 2
assure us whether or not Reversal is possible for 584 of the 924 initial sequences (63.2%). In each observed case,
the sufficient conditions determine unambiguously whether an initial sequence is susceptible to Reversal in more
than three-fifths of cases. Therefore, we can usually assess the general robustness of a rank sum result in terms of



susceptibility to Simpson Reversals. As such an assessment can determine whether a given result is scale-variant, we
conclude that Theorems 1 and 2 can usually combine to offer a “quick and dirty” robustness check on a rank sum
result.

2.2 The Sample Space: A Combinatorial Description

For the 2 x n case, there are % initial sequences, F'. We are arranging 2n elements—n elements from each of

2 groups—where we do not distinguish between respective objects of a given group. For each initial sequence, we
then ask in how many ways F can be pooled with its ordinal replicate, F’. This is equivalent to a “stars and bars”
combinatorial problem, in which we are placing 2n “stars” or elements from F’ into 2n “bars” or potential pooling
positions amongst the elements of F. From this characterization, there are % poolings for each initial sequence

and Ei?)); initial sequences. The number of poolings for a given 2 x n case equals the product of the number of initial

sequences and the number of poolings per initial sequence, or ﬁi’,l)); . ([(24:]?)!2, for each case, 2 x n. For example, in

the 2 x 7 case, there are % = 3,432 initial sequences, F'. Moreover, there are % = 40,116,600 poolings per

initial sequence. As such, there are 3,432 - 40,116,600 or approximately 137.68 billion possible poolings for the 2 x
7 case. We provide the sample space for each 2 x n case in Table 5 of the subsequent section.

2.3 Computational Methods Materials

We wrote a computational algorithm in Java by which to search the sample space of each case where 0 < n(e Z1) < 7.
The algorithm is shown in Appendix 1. It programmatically generates all possible initial sequences, Fap (F' ), for
a case, then creates all possible pooled sequences, F'F,;;, for each initial sequence. For each initial sequence, rank
sum scores for A and B are computed. This scoring task is then repeated for each pooling FF 5 of Fap and F'y g5
and iteratively for each pooling of each initial sequence. Then, instances of Simpson Reversal are checked using the
condition obtained in Theorem 1. This brute force, enumerative approach is extended later in the paper using a
simulation approach. The algorithmic code is provided in Appendix 1 of the paper.

2.4 Empirical Methods and Materials: Application to Phone Radiofrequency Energy
Exposure Data: Apple iPhone 3/4 v Nokia E Series

For our application, we consider mobile phone Specific Absorption Rate (SAR) radiofrequency exposure data. The
Federal Communications Commission (FCC) requires that mobile phones sold in the U.S. undergo manufacturer
SAR testing while the phone is operating at highest power. FCC regulation requires that each cell phone test at a
SAR level of no greater than 1.6 watts per kilogram. Utilizing compiled data on FCC cell phone radiation ratings
by model/brand,! we compare iPhone 3 / 4 phones with Nokia E Series phones. We chose this comparison for a
few reasons. Namely, these two series of phones were manufactured during roughly the same time frame, where new
versions in each series were released with similar frequency. Moreover, each type of phone achieved a high level of
market popularity. Lastly, each series features 8 different phone versions in the source dataset such that the empirical
application can align with our computational results in terms of case coverage.

3 Results and Discussion

3.1 Computational

Computational results are given in Table 1 as follows.

IThe secondary dataset is available from users.stat.ufl.edu/ winner/datasets.html



Table 5: Relative Frequency of Simpson Reversal by Case

[Groups| Data Points [Initial Data [Poolings per [Poolings overall| | Simpson Feversal Bel Frequency
per Group| Sequences| Imtizl Sequencel
2 1 2 i 12 0712 = 0%
2 2 [i] 10 420 0/420=0%
2 3 20 924 18,480 30/18,480 = 0.30%
2 4 10 12,870 S0, 900 1.732/800,900 = 0.19%
2 5 252 184,756 46,558,512 785.392/46 558 512 =1.71%
2 (i 924 2704156 2,498 640,144 10.780.504/2 498 640,144 = 0.43%
2 1 3432 40,116,600 137,680,171.200 | 2,435,044, 740/
137,680,171 200 = 1.77%

We observe that Simpson Reversals are not possible for sufficiently small n (i.e., n < 3). In the context of
Theorem 1, the largest possible ( is not sufficiently large to motivate a strict Simpson Reversal in these cases. For
the 2 x 1 and 2 x 2 cases, a group that is strictly outranked in F4p cannot have a positive (, and therefore a strict
Simpson Reversal is not possible for these cases. We can also consider computed cases where n > 2. From even to
odd case, the results suggest a wavelike movement in the likelihood of a Simpson Reversal. In general, there is a
lower likelihood of strict Simpson Reversal in even cases than in neighboring odd cases due to the possibility of ties
for n-even cases of pairwise rank sum scoring (but not for n-odd cases). With some probability mass allowing for a
pairwise tie in the n-even case, strict Simpson Reversals are less likely. This result also holds for other social choice
violations (e.g., violations of Transitivity and of ITA; see Boudreau et al. 2014). To evaluate the marginal effect of
increases in n, as distinct from the effect of changes from even to odd case, one should compare the iterative trend
between n and n + 2 rather than that between n and n 4+ 1. We do this for the even and odd cases, respectively, in
Figure 1.

Figure 1: Frequency of Simpson Reversal by Case
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Over the set of cases computed, the relative frequency of Reversal rises for both the even and odd sets of cases.
For the 2 x 8 case, we run a simulation to estimate whether this trend might continue. Specifically, we randomly



select and generate one-quarter of all possible initial sequences, Fap, (without replacement) for this case and then
replicate each selected initial sequence. For each selected initial sequence and its replicate, we then randomly select
approximately 0.1% of all possible poolings, or a little more than 600,000 poolings per sampled initial sequence. For
each pooling, we check for Reversals as in the main algorithm. Doing so, we estimate that 0.63% of all poolings
result in reversal for the 2 x 8 case. In proportion terms, this represents a substantial increase from the 2 x 6 case.
As such, this estimate suggests that our trend of rising relative frequency of Reversal from n to (n+ 2) is maintained
for the 2 x 8 case.

We find that strict instances of the Paradox cannot occur for 2-group, k-element per group cases of rank sum
scoring where k € {1,2} but that instances occur for as many as roughly 1.7 percent of sequence poolings in the
2-group, b-element and 2-group, 7-element cases. We conclude from our computational results that the incidence of
Simpson Reversal for small sample cases of rank sum scoring is (not) roughly similar to previous results on 2 x 2 x 2
contingency tables (path models). Moreover, the computed rate of Simpson Reversals in this setting is generally lower
than a standard, allowable Type I error rate (a-value) for a statistical test. Given conceptual similarities between
a test’s p-value and its Simpson Reversal rate, as discussed previously, we might then characterize the incidence of
Simpson Reversals for considered cases of rank sum testing as being typically “tolerable” from the perspective of
statistical sensitivity. Next, we consider how likelihood of Simpson Reversal relates to rank sum score for A and
B in Fyp. We do this sub-analysis for the 2 x 5 case and visualize the results in the heat map and scatter plot of
Figure 2.

Figure 2: Heat Map and Scatter Plot Relating Rank Sum Scores to Likelihood of Reversal
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For the 2 x 5 case, Reversals are most likely when the rank sum score margin in F4 5 is closest (i.e., where one group
scores 27 and the other scores 28). A Reversal is more likely if the original score margin is close due to the relative
ease with which a Reversal can be obtained in such a case. As the score margin increases, the relative frequency of
Rewversals declines quickly. This observed relationship between match “closeness” and likelihood of violation mirrors
earlier results for violations of Transitivity and IIA under rank sum scoring (see Boudreau et al. 2019). We also find
that Reversals cannot occur if the rank sum score margin in Flap is equal to 7 or more for the 2 x 5 case. If the
score margin is 7 or more, then it must be that ¢ < 1. As such, we know that S(B | Fap) — S(A | Fap) > n( for
this range of score margins in the 2 x 5 case, and a Reversal cannot occur.

While the overall likelihood of Reversal is relatively low for small sample cases of rank sum scoring (e.g., relative
to a standard a-value), there is evidence that certain types of sequences are problematic. For example, sequences
that yield closer scores are shown to be more productive of Reversals. As such, we compute the relative frequency
of Reversal for each initial sequence in each case and then identify the initial sequence for each case that yields
the highest such relative frequency, as well as the relative frequency itself. In Figure 3, we plot the highest relative
frequency of Reversal at the initial sequence level for each computed case. These same results are represented with
greater detail in Table 6.



Figure 3: Highest Initial Sequence Level Reversal Likelihood by Case

Team Size
= Ddd
Even
Table 6: Highest Initial Sequence Level Reversal Likelihood by Case
|Groups| | |Data Points | Highest Simpson Reversal | Generating S(A) - S(B) {
per Group| | Likelihood by Initial Sequence | Sequence
2 1 0/6 NA NA NA
2 2 0/70 NA NA NA
2 3 30/924 =3.25% abbaab 10-11 1
2 4 402/12,870=3.12% abbbaaab 19-17 1
2 5 26,872/184,756 = 14.54% aabbbbaaab 27-28 2
2 6 187,520/2,704,156 = 6.93% aaabbbbbabaa 38-40 2
2 7 8881034/40116600 = 22.14% aaabbbbbbaaaab | 52-53 3

Table 6 shows that reversals are more likely given sequences that feature both close rank sum scores and unin-
terrupted clusters of one group and then of the other within the rank sequence. Note that the maximum Reversal
likelihood generating sequence for each case is not unique. In each case, one could transpose the elements ‘a’ and
the elements ‘b’ to obtain the same Reversal likelihood. We find that the maximum Reversal likelihood generating
sequence also generates the closest margin of victory in each case (i.e., 1 rank sum unit for n-odd cases and 2 rank
sum units for n-even cases). While the overall likelihood of Reversal is consistently below 0.02 for computed cases,
Reversals are found to be much more prevalent for certain initial sequences. In the 2 x 7 case, the maximum initial
sequence conditional likelihood of Reversal is approximately 0.22, for example. The results of Figure 3 suggest that it
is important to consider not only the statistical test but also the particular data (sequence) of interest when assessing
prevalence of Simpson Reversals. As with the overall likelihood of Reversal for computed cases, we find that the
maximum likelihood of Reversal at the initial sequence level of the data strictly increases from the n to n + 2 case
for the range of computed cases.

3.2 Empirical

Table 7 provides parametric SAR value data for each phone under consideration. Unlike in our theoretical case,
we note that SAR data is typically rounded to the nearest hundredth or thousandth unit such that several ties are
observed in our data.



Table 7: Smart Phone SAR Values and Ranking

Rank in Set (Lower
Phone Type SAR | SARs rank higher)
Apple iPhone (4GB) 0.974 7.5
Apple iPhone (8GB) 0.974 7.5
Apple iPhone 3G (16GB) 1.38 14.5
Apple iPhone 3G (8GB) 1.38 14.5
Apple iPhone 3G S (16GB) 0.79 3.5
Apple iPhone 3G S (32GB) 0.79 3.5
Apple iPhone 4 (16GB) 1.17 11.5
Apple iPhone 4 (32GB) 1.17 11.5
Nokia E61i 0.83 5
Nokia E63 1.24 13
Nokia E65 0.74
Nokia E70 0.9
Nokia E71x 1.53 16
Nokia E73 1.07 10
Nokia E75 0.99 9
Nokia E90 Communicator 0.59

From this data, we find that Nokia E Series phones from this time period rank higher than Apple iPhones in
terms of emitting lower levels of radiation. The rank sum score for the 8 Nokia (Apple) phones is 62 (74). We
also compare subsets of these two mobile phone series. For example, we compare the 7 (6, 5,4, 3,2,1) most recently
released Nokia E phones in the dataset with the 7 (6,5,4,3,2,1) most recently released Apple iPhones. For each
of these subsets, Nokia E Series phones also rank better than Apple iPhones under rank sum scoring. Given these
subset results, we might expect Simpson Reversals to not occur in this application data.

In this application setting, there are two main ways in which to think of Simpson Reversals. One can think
of them in the specific: Is there an alternative set of data comparing the two phone series such that, when pooled
with the original data, yields a Reversal? Alternatively, one can think of them generally: For what proportion of
poolings of this data and its ordinal replicate does a strict Reversal arise? Though the specific question dominates
applications in the previous literature on Simpson Reversals, the general question has certain conceptual advantages.
Under the general question, one can determine how globally robust a given data is against Reversal when pooled
with an ordinal data that individually generates an identical test result. When one ordinally replicates a data set, no
new information is introduced by which to evaluate the two groups. By definition, the original data and its ordinal
replicate yield the very same rank sum test result. By considering incidence of Reversal under pooling of the two data
sets, one can determine the general robustness of the original result by considering to what extent that result relies
upon the interaction of the test itself with scale-variant features of the data. In the present application, therefore,
we consider the general question as a means to determine the general robustness of the data against (susceptibility
to) Reversal. In so doing, one can characterize the strength of the original result in terms of data scale invariance.

In the empirical exercise, we first consider the 2 groups and 8 phone types per group case (i.e., the 2 x 8 case).
We sort the data from lowest to highest SAR level to obtain SAR rankings for each of the 16 phones. We then
add the 8 rank positions of Apple iPhones and the 8 rank positions of Nokia FE phones, respectively, to obtain each
brand’s empirically-observed rank sum score. We then consider each “most-recent sub-sample” of the data. That is,
the 2 x 7 case is developed by rank sum scoring the 7 most recently marketed Apple iPhones in the sample against
the 7 most recently marketed Nokia E phones. The same procedure was followed inductively to obtain the 2 x n
case Vn € {1,2,3,...,6}. For each case, rank sum scores are shown in Table 8. In Table 9, incidence of empirically
observed Reversal is reported for each case.
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Table 8: Rank Sum Scoring of Apple iPhone v Nokia E SAR Level

Case | F (sequence; i = “iPhone”, n = | iPhone Rank | Nokia Rank Sum | Outcome on F
“Nokia E”) Sum Score Score

2x1 | <n,i> 2 1 N >gl

2x2 <m,i,i,n> 2+3=5 1+4=5 N ~p

2x3 <n,n,i,ini> 3+4+6=13 1+2+5=8 N > I

2x4 <n,n,mn,i,i,n,i,i> 4+5+7+8=24 |1+2+3+6=12 N >gl

2x5 | <n,inn,iiniin> 24+54+6+8+9=|1+3+4+7+10= N>pl1
30 25

2x6 | <n.i,in,n,iin,n,i,in> 2+34+6+7+10|1+4+5+8+9 + N ~g1
+11=39 12=39

2x7 | <n,iinniinniniin> 2+3+6+7+10|1+4+5+8+9+ N>pl
+12+13=53 11+14=52

2x8 <n,n,i,in,n,i,in,n,i,in,iin> 34+44+74+8+11+12+ | 142+54+6+9+10+13 N > 7 I
14+15 =74 +16 =62

Table 9: Incidence of Empirical Reversal by Case under Rank Sum Scoring of Apple iPhone
v Nokia E SAR Level

Case [Poolings of F and F’| | |Strict Percentage
(K specified) Reversals| | Strict Reversals

2x1 6 0 0

2x2 70 0 0

2x3 924 0 0

2x4 12,870 0 0

2x5 184,756 1,474 0.80%

2x6 2,704,156 0 0

2x7 40,116,600 0 0

2x8 6.01 x 108 0 0

Unlike in our computational treatment, note that a single outcome for F' is given (observed) in the empirical
treatment. For the empirical application, then, we need only consider all possible poolings of the specified sequence,
F, and its ordinal replicate, F’. In the computational section, we observed that the likelihood of a strict Reversal
has a high degree of variability across initial sequences. As this application selects a single sequence F' based solely
on market characteristics of two cellular phone product series (e.g., similar market time period, status as a popular
line of phones during that time period, and number of models in series) and not on parametric properties of the
underlying data, there was no a priori reason to believe that instances of strict Reversal would occur at all in the
application. For two of the 2 x n cases considered, the 2 x 1 and 2 x 2 cases, we have established that Reversals
are not possible for any pooling of the data. However, we observe a cluster of Reversals occurring with moderate
frequency, relative to the theoretical results, for the 2 x 5 case. For this case, we have that N =g I for F' but that
I =pp N for 0.80% of poolings of F and F’. For this observed sequence, we have that n = 5, observed { = 2, and the
score differential is 5 such that we are, in fact, assured the existence of Reversals in this case. For no other observed
sequences do we obtain sufficient conditions for the existence of a Reversal. Given the results of the 2 x 5 case, we
observe that data scale can influence one’s comparison of radiofrequency exposure when comparing models from two
types of mobile phone. In this case, Simpson Reversals are empirically present in the 2 x 5 case. This finding shows
that the 2 x 5 empirical result for F' is not robust against aggregation. Rather, that result is potentially data scale
variant. While the incidence in this application is perhaps modest and “acceptable” (e.g., relative to a standard
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a-value) from an inferential statistical perspective, our computational section demonstrates that there exist data
sequences for which Simpson Reversals are observed at substantially higher levels. Given that the rate of Reversal
can vary substantially by initial sequence, the practice of calculating this rate, conditional on the observed F', can
be seen as a potentially important robustness check.

4 Conclusion

This study establishes sufficient conditions for observing instances of Simpson’s (data aggregation) Paradoz under
rank sum scoring (RSS), as used, e.g., in the Wilcoxon-Mann-Whitney (WMW) rank sum test. Using computational
methods, we also establish the relative frequency with which paradox-generating Simpson Reversals occur under
RSS when an initial data sequence is pooled with its ordinal replicate. For each 2 x n case of RSS considered, strict
Reversals occurred for between 0% and 1.74% of data poolings across the whole sample space, roughly similar to that
observed for 2 x 2 x 2 contingency tables and considerably less than the rate observed for path models. The rate of
Reversal conditional on observed initial sequence was highly variable. Despite a mode at 0%, this rate exceeds 20%
for some initial sequences. Further, our empirical application identifies empirical susceptibility to Simpson Reversals
in the case of publicly-released mobile phone radiofrequency exposure data. Simpson Reversals under RSS are not
simply a theoretical concern but can serve to flip nonparametric or parametric biostatistical results even in vitally
important public health settings. Conceptually, incidence of the Paradox can be viewed as a robustness check on
a given WMW statistical test result. When the Paradox occurs (is possible), it follows that a given result is at
least partly a function of data scale or sample size. Given that the rate of Reversal can vary substantially by initial
sequence, the practice of calculating this rate conditional on the observed F' can be seen as a potentially important
robustness check upon a result.
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5 Appendix: Computational Code

import
import
import
import
import
import
import
import
import
import
import

lll'it

|

*f
public

pri
pri

int
int
int
int
int
int
int
int
int

lon
lon

lon
lon
itr

java.io.Bufferediriter;
java.io.Filekriter;
java.io.I0Exception;
jawa.util.Arrays;
jawa.util .HashMap;
jawa.util.Map;
java.util.Scanner;
jawa.util.Sortedset;
jawa.util.Treeset;
jawa.util.logging.Level;
jawa.util.logging. Logger;

class SimpsonsParadox {

vate static int nueGroups = 8;
vate static int nuebataPoints = &;

numPossiblelnd = 8;
numlndseakinlyinomalyTypel = &;
numIndeeakinlydnomalyTypell = 8;
numPossibleCycles = &

numdnomaly = B
firstbegreeTransativityWiolations = &;
numkeakinomaly = 8;
secandlegreaTransativityviclations = 8
thirdDegreeTransativityWiolations = @;

g numkinnerChanged = &;
g numkinnerChangedPossible = 8;

g topMumkllinnerChanged = 4;
g topMumkinnerChangedPossible = 8;
ing topInitialSequence = "";

Map<Long, Long: numlndependencevViclationlategoryOccurences = new HashMap<lLong

; Longs

Map<Long, Long> numlndependenceViclationiategorylCycles

ng>{);

(};
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Map<Long, Long: numSisponsParadoxviclationHighScore = new HashMap<lLong, Long:

()

Map<Long, Long> numsismponsPFaradoxviclationbossibleHighScore = new HashMap<Lon
Bs Longx(];

public SimpsonsParadox(} {
}

private woid createShuffledEvent{5tring databoints, 5tring criginalbataPoints
s Ant numGroups, int numBins, int currentBin, int dataPoinmtsAdded, char criginald
inmer}q{

if{dataPointshdded == criginalbataPoints.lengthd}i{
char winner = findbependentblinner{datafoints,numGroups);
nusklinnerChangedPossibles+;

if{winner == " " || eriginalWinner == ' '){ //weak
return;

}

if{winner != griginalWinner){
nuskinnerChanged++;

1

return;

1
if{currentBin >= numBins){
Sfonly allow for the correct number of bins. starts at @ so should no
t equal numBins
return;
1
for{imt subsetSize=8; subsetSize <= originalbataPoints.length{)-
dataPointsfdded; subsetSizes+)q
String preString = dataPoints.substringi{e, dataPoinmtsfdded+currentBin
1; SrendIndex is exclusive, startIndex is inclusiwve
String postitring = dataPolints.substring(databointsédded+currentBin;
createshuffledEvent{prestring + originalbataPoints.substring(datafoin
tsadded, dataPointsAdded+subsetSize) +
poststring, originalbDataPoints  numGroups, numBims, currentBimsl, d
gtafointsAddedssubsetsize, originalkinner};

}

Ffreturen " ' 1IF winner is tied
private char findbependentWinner{%tring datalfoints, int numTeam}q{
char[] groups = new char[numTeam];
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for{imt i=8; i<nuaTeam; i++){
groups[i] = {char) {'a" + {char)i};
}

imt[] proupsScores = new int[numTeam];

imt counter = @;
for (int i = B; i < dataPoints.length{); i++) {
counterd+;
for{int j=8; j<numTeam; j+&+){
if{dataPoints.charft{i) == groups[j]}{
groupsicores[j] = groupsicores|j]+countar;

imt min=groupsScores[@];
imt minIndex = B&;
for (int i = 8; 1 < numTeam; i#+){
if{groupsscores[i] < mim){
pin=groupsscores[i];
minIndex = i;

}
Jfdetect tie

far{imt 1 = 8; i <« numGroups; i++){
if{i != minIndex){
if{groupsScores[i] == groupsScores[minIndex]}{
return{” "};

1

return{groups [minIndex]);

private imt findDependentWinnericore{String dataPoints, int numTeam){
char[] groups = new char[numTeam];
for{imt i=8; i<numTeam; i++){
groups[i] = {char) {'a" + {char)i};
1

imt[] groupsScores = new int[numTeam];

int ®Score = B
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¥i

imt yhcore = B
imt counter = &;
for (int i = B8; 1 < dataPoints.length{); i++)} {
counter++;
for{int j=8; j<numTeam; j+=){
if{dataPoints.charAt{i)} == groups[j]}{
groupsicores[j] = groupsScores[j]+counter;

imt min=groupsScores[d];
imt minIndex = B8;
for (int i = 8; i < numTeam; is#+){
if{groupsScores[i] < min}q
pin=groupsScores[i];
pinlndex = i;

1
fidetect tie
for{imt 1 = @; i < numGroups; I++){
if{i != minIndex}{
if{groupsScores[i] == growpsScores[minlndex]}{
returni” "};

1

return{groupsscores[minIndex]);

private wvoid findSimpsonsParadox{string dataPoints, int numGroups}{

long previumkinnerihanged = nusbinnerChanged;

long previumkdinnerChangedPossible = numeinner{hangedPossible;

char winner = findDependentWinner(datafoints, numGroups);

imt numBins = dataPoimts.lengthl) + 1;
cregteshuffledEvent(datafoints, dataPoints  numGroups, numBins, 2, @,winner

long deltabumkinnerChanged = numdinnerChanged - previumkinnerChanged;
long deltabumikinnerChangedfossible = numblinnerchangedPossible - previumbi

nnerihangedPossible;

if({deltalusiinnerChanged > topNumkinnerChanged){
toplnitialSeguence = dataPoints;
topNumsinnerChanged = deltaMumkWinnerihanged;
topMumeinner{hangedPossible = deltaluskinnerChangedPossible;

17



long topScore = findDependentlinnerScore{dataPoints, numGroups);

if {nueiimponsParadoxViolationHighScore. containsKey (topScore) }q
nuesimponsParadoxViolationHighScore. put{topScore, numSimponsParadosii
olatigonHighScore.get{topicore)+deltalNuslinnerChanged};
} else{
nuesimponsParadoxViolationHighScore. put{topScore, {long)deltallumsinne

rchangad};
1

if {nueitimponsParadoxViclationPossibleHighScore. containsKey{topScore) )|
nuetimponsParadoxViolationPossibleHighScore. put{topScore, numSimponsP
aradoxViclationPossibleHighScore. get{ topScore }+toplumdinnerChangedfossible) ;
} else{
nuesimponsParadoxviolationPossibleHighScore., put{topicore, (longltophu
minnerChangedPossible);

1

}

public static int countOccurrences{String haystack, char needle) {
imt count = &;
for (int 1 = 8; i < haystack.lengthi); i++) {
if (haystack.chardt{i) == needle} {
COUNT++;

1

return count;

}

private woid generate{S%tring dataPoints, int numGroups, int numbataPoints) th
rows IOException |
for (int 1 = 8; i < numbGroups; i++) {
Jfdon't allow more data points per group than numbataPoints
if {countOccurrences (databPoints, {char} (i + %7)) » numbDataPocints)
return;

1

S Fif more dataPoints are needed
if {dataPoints.length{} < numGroups * numbataPocints) {
for {int i = 8; i < numGroups; i++) {
generate{dataPoints + (char) (i + 97}, numGroups, numbBataPoints);
1
} else
permutaticnsCompleted++;
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findsimpsonsParadox{dataPoints, numGroups);

}
public static woid main(String[] args) throws I0Exception {
imt mumGroups = 23
for{nuebataPoints = 1; numbataPolints <= T; numbataPolints++){
SimpsonsParadox pRk = new SimpsonsParadox();
pk.generate(" ", numGroups ,, numbataPoints);
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